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The “alpha-beta” algorithm forms the basis of many programs that search game trees. A number of methods have been

designed to improve the utility of the sequential version of this algorithm, especially for use in game-playing programs. These

enhancements are based on the observation that alpha-beta is most effective when the best move in each position is considered

early in the search. Trees that have this so-called “strong ordering” property are not only of practical importance but possess

characteristics that can be exploited in both sequential and parallel environments.

This paper draws upon experiences gained during the development of programs which search chess game trees. Over the

past decade major enhancements to the alpha-beta algorithm have been developed by people building game-playing programs,

and many of these methods will be surveyed and compared here. The balance of the paper contains a study of contemporary

methods for searching chess game trees in parallel, using an arbitrary number of independent processors. To make efficient use

of these processors, one must have a clear understanding of the basic properties of the trees actually traversed when alpha-beta

cutoffs occur. This paper provides such insights and concludes with a brief description of our own refinement to a standard

parallel search algorithm for this problem.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—system architectures; C.1.2 [Pro-

cessor Architectures]: Multiple Data Stream Architectures (Multiprocessors)—associative processors; parallel processors;

C.4 [Computer Systems Organization]: Performance of Systems— design studies; F.2.2 [Analysis of Algorithms and

Problem Complexity]: Nonnumerical Algorithms and Problems—pattern matching; I.2.8 [Artificial Intelligence]: Problem

Solving, Control Methods and Search—heuristic methods; graph and tree search strategies

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Alpha-beta search, computer chess, game playing, parallel search, tree decomposition

INTRODUCTION

Chess, checkers, kalah, and go are popular examples of two-person “zero-sum” games—that is, games in
which one player’s losses are the opponent’s gains. There are a number of methods for programming a
computer to play such games. The simplest (and most successful) programs have as their basis “brute-force”
search, in which an exhaustive examination of all possible sequences of moves is carried out until terminal
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positions are reached (no more legal moves). By subsequently backing up through this tree of moves, a
player can find the best move for one side by using the minimax algorithm. Minimax search assumes that
the players will always select the alternative that is best for them in any given position. The advantage of
such an approach is that it guarantees perfect play; a “winning” position will always be won, and a drawn
position will at least be drawn. This strategy works admirably for games such as tic-tac-toe, but most
interesting games are too large to be handled in this fashion. In chess, for example, de Groot [DEGR65] has
estimated that the number of positions that could be explored is 3884.

The method used in most current game-playing programs is to approximate the whole game tree by
searching a succession of fixed-depth trees. Since the search is truncated before the end of the game is
reached, estimates of the value of the discarded portion of the tree are made by an evaluation function. Such
estimates are inherently unreliable, however, since if one had a perfect evaluation function, there would be
no need to conduct a search at all. Empirical evidence suggests that for most common games, the deeper the
search, the higher the quality of the play. The alpha-beta pruning algorithm is one technique for increasing
the speed of minimax search. Alpha-beta is able to avoid searching subtrees that are judged not relevant to
the outcome of the search, while always producing the same result as minimax. A complete description of
the minimax and alpha-beta algorithms can be found elsewhere [KNUT75, NILS80]; our own summary of
them, along with a programming example, appears in the next section.

In this paper we assess the effectiveness of various refinements to the alpha-beta algorithm, especially
with regard to their importance in searching trees whose branches are ordered to favor early detection of
the ultimate solution. Most theoretical work on both sequential and parallel game-tree searching has been
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primarily concerned with random trees [FULL73, KNUT75, BAUD78], although there is one major exception
[NEWB77]. In practice, truly random trees are quite uncommon, and so, under reasonable assumptions,
improvements to the searching algorithm are possible. Also, these game tree problems may be partitioned
in a number of different ways to facilitate parallel solutions. We compare various ways of doing parallel
alpha-beta searches and present algorithms that attempt to take advantage of the characteristics of strongly
ordered trees. The rationale for this work is that well-ordered trees are not only more realistic, but possess
properties that can be exploited in a parallel environment. General information about processor selection
and communication is not presented here, since it is commonly available elsewhere [WEIT80, ENSL74].

1. SEQUENTIAL SEARCH ALGORITHMS

Given a position p in a two-person zero-sum game, all the potential continuations from p can be represented
as a game tree, with nodes corresponding to positions and branches to moves. Leaves of the tree are called
terminal nodes, and are assigned values by the evaluation function. All remaining nodes are classified as
nonterminal. The task in searching a game tree is to determine the minimax value of the root node p.
Intuitively, the minimax value of a node is the best value attainable from that node against an opponent
who uses a similar technique to select best moves.

The minimax algorithm assumes that there are two players, called Max and Min, and it assigns a value
to every node in a game tree (and in particular to the root) as follows. Terminal nodes are assigned values
that represent the desirability of the position from Max’s point of view. Nonterminal nodes are assigned a
value recursively. If Max is to move at a given nonterminal node, its value is the maximum over the values
of its successors. Similarly, if it is Min’s move, he will choose the minimum over the values of the successors.

The alpha-beta algorithm produces the same result as minimax, but at reduced cost. Typical usage of
the alpha-beta algorithm involves a function call of the form

V := alphabeta (p, alpha, beta, depth);

where p represents a position, (alpha, beta) represents the search window or range of values (the bounds)
over which the search is to be made, and depth represents the intended length of the search path measured
in ply (i.e., moves). Typically, p is a pointer to a data structure that describes the state of the game at
this node. The exact nature of the structure is very implementation dependent. The value returned by the
function, V, is the minimax value for the position p. Figure 1 illustrates a “negamax” [KNUT75] version of
the depth-limited alpha-beta algorithm. Use of the negamax framework is particularly attractive since, by
maximizing over the negative of the values returned by the search, one avoids the need to select the correct
maximum/minimum operation. Our various program excerpts are presented in a PASCAL-like language,
extended with the return statement for function termination.

Although the alpha-beta function only returns one value, it is also necessary to keep track of the optimal
move in position p. This is a simple matter, but is not illustrated in Figure 1 in order to keep the structure of
the program as simple as possible. Note also that our version of alpha-beta includes the functions evaluate,

to assess a terminal node, and generate, to produce p.1 through p.w, pointers to the immediate successors of
position p. Details about the maintenance of these successors have been omitted, although functions make

and undo are included to play and retract the current move. Also, evaluate is usually complex, because the
whole quality of the play hinges on the assessment made here [SLAT77]. Since the majority of the nodes in
the tree are terminal, the function must not be too time consuming. Nevertheless, in chess programs evaluate

often extends the search using moves that are selected from captures and certain checks. This is done to
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function alphabeta(p : position; alpha, beta, depth : integer) : integer;

VAR width, score, i, value : integer;

BEGIN

IF (depth <= O) THEN { a terminal node? }

return(evaluate(p));

{ determine successor positions }

width := generate(p); { p.1 .. p.w and return number of }

{ successors as function value }

IF (width = O) THEN { no legal moves? }

return(evaluate(p));

score := alpha;

FOR i := 1 TO width DO BEGIN

make(p.i);

value := -alphabeta(p.i, -beta, -score, depth-1);

undo(p.i);

IF (value > score) THEN { an improvement? }

score := value;

IF (score >= beta) THEN { a cutoff? }

return ( score );

END;

return( score );

END;

Figure 1. Negamax version of the depth-limited alphabeta function.

ensure that only quiescent positions are evaluated.
For purposes of analysis, it is convenient to study the performance of the minimax and alpha-beta

algorithms on uniform trees of depth D and constant width W . It is also usual to measure the relative
efficiency of tree-searching algorithms in terms of the number of terminal nodes evaluated. The minimax
algorithm will always examine M(W,D) = W D terminal nodes, while at best the alpha-beta algorithm
evaluates only [SLAG69]

B(W,D) = W dD/2e + W bD/2c – 1 nodes

where dxe and bxc represent upper and lower integer bounds on x. Thus the efficiency of the alpha-beta
algorithm can be very good, potentially visiting as few as two times the square root of the maximum number
of nodes, while still generating the same solution path (the principal variation) from the root node. However,
this optimal performance is achieved only when the first move considered at each node is the best one. That
alpha-beta is effective in reducing the number of terminal nodes evaluated is clear from a study of the sample
uniform tree (width = 3 and depth = 3) shown in Figure 2. The numbers at the terminal nodes would be
produced by an evaluation function. The other numbers are the values of the individual subtrees, as passed
back (backed up) to the root node by the alpha-beta algorithm. Thus the minimax value of this tree is 3,
and only 16 terminal nodes would be visited, as shown by the solid lines, rather than 27, as would be the
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Figure 2. Minimax tree showing alpha-beta cutoffs.

case for an exhaustive search. The dotted branches of the tree are said to have been cut off or pruned by
the alpha-beta algorithm.

For the purposes of this paper more realistic assumptions are needed. A random uniform game tree will
be defined to be one in which the terminal node scores (values of nodes at the maximum depth in the tree)
are uniformly distributed across some fixed range of value. Also, trees are defined to be strongly ordered if

(1) 70 percent of the time the first branch from each node is best;

(2) 90 percent of the time the best move is in the first quarter of the branches being searched.

Although these numbers may appear to be rather arbitrary, it turns out that static ordering mechanisms,
when combined with heuristic methods and memo functions [BIRD80], tend to produce trees with these
properties [GILL78, MARS74]. Thus for each variation of the alpha-beta algorithm we can define the
following quantities:

R(W,D) = average number of terminal nodes visited in a search of a random uniform game tree;
S(W,D) = average number of terminal nodes visited in a search of a strongly ordered uniform game tree.

At each terminal node visited during the search the evaluation function is invoked to assess the position.
While the performance of alpha-beta on random trees has a solid theoretical basis [FULL73, BAUD78],

at present only empirical data are available for strongly ordered trees [GRIF76]. Nevertheless, statistical
evidence supports the relationship

B(W,D) < S(W,D) < R(W,D) << M(W,D) = W D.

Relative values for these terms can be seen from our Monte Carlo simulation results, presented in Table
1. These results were obtained from trees of depth 4 or less, and terminal node scores were chosen from
the range 0-127. To estimate R , the values were assigned randomly to the terminal nodes. Because of
the way the scores were chosen, they were not all unique and distinct, and so R is slightly underestimated.
The calculation of S, on the other hand, relied on the use of a distribution function at the terminal nodes,
to ensure that the best move met our strong ordering criteria. The parenthesized numbers represent the
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Table 1. Expected Search Costs for Trees (in Number of Terminal Nodes Visited)
Width Best S-Strong R-Random Minimax

Depth = 3

8 71 105 (21) 181 (36) 512

16 271 405 (64) 786 (114) 4096

24 599 857 (115) 1752 (250) 13824

Depth = 4

8 127 281 (88) 690 (163) 4096

14 511 1286 (430) 4125 (875) 65536

24 1151 2946 (1013) 10425 (1891) 331776

standard deviation for 100 independent search trials. Therefore Table 1 illustrates the relative efficiency of
alpha-beta under best, strong, random, and worst move ordering assumptions, and supports the view that
R(W,D) is very much less than M(W,D).

2. ENHANCEMENTS TO ALPHA-BETA SEARCHING

Many of the following techniques have been developed in efficiency-conscious chess programs, but ones that
discard moves only at the terminal nodes. These programs are often called full-width programs because
they examine all necessary moves at every node, employing “forward pruning” only at the terminal nodes
to eliminate the quiescent moves. Even so, the basic methods are applicable to most programs that search
game trees.

2.1 Aspiration Search

The interval enclosed by alpha and beta is referred to as the window. For the alpha-beta algorithm to be
effective, the minimax value of the root position must lie within the initial window. Generally speaking, the
narrower the initial window, the better is the algorithm’s performance. In many problem domains, including
chess, there are reliable methods to estimate the value that will be returned by the search. Thus, instead
of using an initial window of (–INF, +INF)—where INF is a number larger than any that evaluate will
return—one can use (V − e, V + e), where V is the estimated value and e the expected error. There are
three possible outcomes of this so-called aspiration search, depending on V ∗, the actual minimax value of a
position p. Since V ∗ is in the range –INF < V ∗ < +INF, one of the following conditions is true:

(1) If V ∗ ≤ V − e, then alphabeta(p, V − e, V + e,D) = V − e.

(2) If V ∗ ≥ V + e, then alphabeta(p, V − e, V + e,D) = V + e.

(3) If V − e < V ∗ < V + e, then alphabeta(p, V − e, V + e,D) = V ∗.

Cases 1 and 2 are referred to as failing low and failing high, respectively [FISH80]. Only in Case 3 is the true
value of the position p found. In this case the search time will not be greater than that for a full window
search, and cannot be less than that for an optimal search. In the failing low case, it is necessary for the
search to show that every alternative from the root is less than V − e. Thus, assuming a perfectly ordered
tree of width W and depth D,
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{ Assume V = estimated value of position p, and e = expected error limit }

alpha := V - e;

beta := V + e;

V := alphabeta(p, alpha, beta, depth);

IF (V >= beta) THEN { failing high }

V := alphabeta(p, beta, +INF, depth);

ELSE

IF (V <= alpha) THEN { failing low }

V := alphabeta(p, -INF, alpha, depth);

{ arrive here after successful search }

Figure 3. Aspiration alpha-beta search.

W dD/2e nodes must be examined.

Conversely, in the failing high case the search stops as soon as an alternative is found which is greater than
V + e. Again, under perfect ordering conditions, only

W bD/2c nodes need be examined.

Either way the search must be repeated. As illustrated in Figure 3,

V := alphabeta(p, beta, +INF, D);

must be invoked for the failing high case. Empirical evidence has shown aspiration searches to be very
effective; in TECH,1 search time reductions averaging 23 percent were noted [GILL78]. This figure was
confirmed by Baudet by adapting his results for parallel tree search to the sequential case [BAUD78].

Falphabeta, for “fail-soft alphabeta” [FISH80], is useful when aspiration searching is employed. Fal-
phabeta is produced through two modifications to the alpha-beta function of Figure 1. The recursive call
becomes

value := –falphabeta(p.i, –beta, –max(alpha, score), depth–1);

and score is initialized to –INF, rather than alpha. The function falphabeta gives a tighter bound on the true
value of the tree when the search fails high or low, and does so while searching the same nodes as alpha-beta
[FISH80]. Although falphabeta requires a slightly larger overhead, any system that uses aspiration searches
should find the technique practical, even though the actual savings may be small, since the next iteration
may start with a better window.

1All footnotes in this paper refer to chess programs.
TECH was formulated by J. Gillogly, Carnegie-Mellon University. Further details concerning some of these programs can be
found in More Chess and Computers, by D. Levy and M. Newborn, Computer Science Press, Rockville, Md., 1982.
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Table 2. Components of a Minimal Transposition Table Entry

lock move score flag length prio

lock is used to check that the table entry corresponds to the desired tree position;

move is the best move in the position, as determined by a previous search;

score is the value of the subtree as computed previously;

flag indicates whether score is an upper bound, lower bound, or a true value;

length is the height of the subtree upon which score is based;

prio is used in table management, to select entries for deletion.

2.2 Transposition Table

In carrying out a game tree search it is not uncommon for positions to recur in numerous places throughout
the tree. Rather than reevaluate these positions, it may be possible simply to retrieve the equivalent search
result from a large hash table [SORE78] whose entries represent positions. For game modeling, nearly
perfect hashing functions can be produced. Although there are some table management problems that must
be solved, the technique has very low overhead and large potential gains.

A typical hash index generation method is the one proposed by Zobrist [ZOBR70], and an illustration
of its application to chess can be found in a paper by Marsland and Campbell [MARS81]. A transposition
table entry could have the components shown in Table 2.

For best effect the transposition table must be incorporated into alpha-beta carefully, as shown in Figure
4. Note that our implementation employs two functions, store and retrieve, to perform transposition table
access, but details have not been included. In addition, functions make and undo, to play and retract moves,
are omitted. When a position reached during a search is located in the table (i.e., the lock matches), there
are two possibilities, depending on whether length is smaller than the remaining depth to be searched. If
possible, score is used to reduce the size of the current alpha-beta window, unless length is less than the
depth of search. In any case, move must be tried immediately, since if it again causes a cutoff, it will save
an expensive move generation (Figure 4).

Other possibilities for a transposition table entry also exist. For example, DUCHESS2 maintains both
upper and lower bounds on the position score, with separate lengths for each [TRUS81], thus improving the
possibility that one of the bounds may be used to reduce the window size.

Transposition tables are most effective in chess end games, where there are fewer pieces and more re-
versible moves. CHESS 4.73 was the first to demonstrate searches of more than 25 ply in certain types of
King and Pawn endings; by taking advantage of this knowledge, gains of a factor of 5 or more are typical
[SLAT77]. Even in complex middle games, however, significant (25-50 percent) performance improvement
has been observed [THOM81]. Furthermore, if the actual length of the subtree whose result is retrieved from
the transposition table is greater than the specified search depth of the current variation, then the effective
length of the search for this variation is greater than the maximum specified depth, and so the equivalent
of an extended search is done. Also, successful use of the transposition table makes the tree more strongly
ordered. Thus search times shorter than those for optimal alpha-beta are possible, since some subtrees need
not be reevaluated.

2DUCHESS was formulated by T. Truscott, B. Wright, and E. Jensen, Duke University.
3CHESS was formulated by D. Slate, and L. Atkin, Northwestern University.
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function AB(p : position; alpha, beta, depth : integer) : integer;

VAR i, value, width, length, score, flag : integer;

p.opt : position;

BEGIN

retrieve(p, length, score, flag, p.opt);

{ length is the effective subtree height.

length < 0 - position not in table.

length 2 0 - position in table. }

IF (length >= depth) THEN BEGIN

IF (flag = VALID) THEN return(score);

IF (flag = LBOUND) THEN

alpha := max(alpha, score);

IF (flag = UBOUND) THEN

beta := min(beta, score);

IF (alpha >= beta) THEN return(score);

END;

{ Note beneficial update of alpha or beta bound assumes full width search.

Score in table insufficient to terminate search so continue as usual, but

try p.opt (from table) before generating other moves. }

IF (depth <= 0) THEN { terminal node? }

return(evaluate(p));

IF (length >= 0) THEN BEGIN

score := -AB(p.opt, -beta, -alpha, depth-1);

IF (score >= beta) THEN goto done;

END ELSE score := -INF;

{ No cutoff, generate moves }

width := generate(p);

IF (width = 0) THEN { mate or stalemate? }

return(evaluate(p));

FOR i := 1 TO width DO BEGIN

value := -AB(p.i, -beta, -max(alpha, score), depth-1);

IF (value > score) THEN BEGIN

score := value;

p.opt := p.i; { note best successor }

IF (score >= beta) THEN goto done;

END;

END;

done:

flag := VALID;

IF (score <= alpha) THEN flag := UBOUND;

IF (score >= beta) THEN flag := LBOUND;

IF (length <= depth) THEN store(p, depth, score, flag, p.opt);

return(score);

END;

Figure 4. Alpha-beta implementation using a transposition table.
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V := 0;

FOR D := 1 TO depth DO BEGIN

alpha := V - e;

beta := V + e;

V := falphabeta(p, alpha, beta, D);

IF (V >= beta) THEN

V := falphabeta(p, V, +INF, D);

ELSE

IF (V <= alpha) THEN

V := falphabeta(p, -INF, V, D);

sort(p); { best move so far is tried first on next iteration. }

END;

Figure 5. Iterative deepening with aspiration search.

2.3 Killer Heuristic

The killer heuristic is based on the premise that if move My refutes move Mx, it is more likely that My (the
killer) will be effective in other positions [GREE67]. Any move that causes a cutoff at level N in the tree
is said to have refuted the move at level N − 1 [CICH73]. A node is at level N in the tree if it is N ply
from the root node. There are many ways of using this information. For example, the program CHESS 4.7
maintains a short list of “killers” at each level in the tree, and attempts to apply them early in the search in
the hope of producing a quick cutoff. A further advantage of the killer heuristic is that it tends to increase
the usefulness of the transposition table. By continually trying the same killer moves, there is a greater
possibility of reaching a position already in the table [TRUS81], and thus reducing the time spent searching
the tree.

In its full generality, the killer heuristic can be used to dynamically reorder moves as the search progresses.
For example, if a move My at level N refutes a move at level N−1, then it is worth trying My at level N−2, if
it exists, before generating all the moves for that position and trying them in order [NEWB79]. An additional
method, used by AWIT,4 seeks out defensive moves at ply N − 1, which counteract killers from level N. The
idea behind the generalized killer heuristic mechanism is to allow information gathered deep in the tree to
be redistributed to shallower levels. This is not usually done by the full-width programs, since it is not clear
that the potential gains exceed the overhead. The actual search reductions produced by the killer heuristic
cannot be stated with certainty. Even though use of the killer heuristic did not yield improvements for
TECH [GILL78], variations of this method were used in CHESS 4.7, DUCHESS, OSTRICH,5 and BLITZ,6

and were found to be effective.

4AWIT was formulated by T. A. Marsland, University of Alberta.
5OSTRICH was formulated by M. Newborn, McGill University.
6BLITZ was formulated by R. Hyatt and A. Gower, University of Southern Mississippi.
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2.4 Iterative Deepening

Iterative deepening refers to the process of using a (D − 1) ply search to prepare for a D ply search. That
is, after a (D − 1) ply search one can retain the moves of the principal variation and use them as an initial
sequence of moves for a D ply search [SLAT77]. The cost of iterative search (again measured in terms of the
number of terminal nodes visited) is given by a recurrence relation of the form

S(W,D) = S(W,D − 1) + F (W,D),

where F (W,D) is the expected cost of an alpha-beta search given the first D − 1 moves of the principal
variation, and W is the search width. The exact nature of F (W,D) is not known, but it has been hypothesized
for chess programs that employ transposition tables [MARS81]

F (W,D) ' B(W,D) + (W − 1) ∗ B(W − 1, D − 2)

for the cases W > 20 with D > 4.
Iterative deepening can be used to advantage in the following ways:

(1) It can be used as a method for controlling the time spent in a search. In the simplest case, new
iterations can be tried until a preset time threshold is passed.

(2) A (D – 1) ply search can provide a principal variation, which, with high probability, contains a
prefix of the D ply principal variation. This allows the alpha-beta search to proceed more quickly.

(3) The value returned from a (D – 1) ply search can be used as the center of an (aspiration) alpha-beta
window for the D ply search (Figure 5). It is probable that this window will also contain the value
for the current search, thus reducing search time.

These last two points, though significant, are not really complete justifications for the use of iterative
deepening. In fact, in experiments with checkers game trees [FISH80], it was found that iterative deepening
increased the number of nodes searched by 20 percent (apparently only using Point (2), however). In addition,
studies with TECH using a generalized version of (2), but not (3), noted a 5 percent increase in search times
when iterative deepening was applied [GILL78]. It appears that a strong initial move ordering, together with
a good alpha-beta window estimate, can approximately match the advantages of iterative deepening. The
real searching advantage of iterative deepening, however, is that

(4) The transposition table and killer lists are filled with useful values and moves.

As a consequence, the search may proceed more quickly since the table entries and killer lists tend to direct
the search along lines that are sufficiently good to cause immediate cutoffs.

The importance of transposition tables is illustrated by the performance of the BELLE7 chess machine
[COND82]. Typical chess middle-game positions have branching factors of 35–40. It has been found that in
such positions, it normally costs BELLE a factor of between 5 and 6 to go one further ply, in fact, slightly less
than the expected cost of optimal alpha-beta [THOM81]. Exactly how much each additional ply improves
the performance of a program has recently been quantified by Thompson [THOM82]. This was done by
playing a series of matches between (D + 1) ply and D ply versions of BELLE, for all values of D from 3 to
8.

7BELLE was formulated by K. Thompson and J. Condon, Bell Telephone Laboratories.
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An alternative form of iterative deepening, one that is especially appropriate if transposition tables are
not used, was employed by L’EXCENTRIQUE.8 A 2 or 4 ply minimax search was first performed to obtain
W minimax move pairs (move and best refutation). These were then sorted and a 6, 8, 10,... ply iterative
deepening cycle initiated. The rationale behind 2 ply increments is to preserve a consistent theme between
iterations, so that the principal variation will not flip-flop between attacking and defensive lines. To our
knowledge, no comparison between this and conventional iterative deepening has been done. Likewise, no
quantitative study of the advantages of minimax move pairs over conventional alpha-beta move pairs (move
and sufficient refutation) seems to have been done. In either case, this refutation table usage is a valuable
way of guiding the search, since the storage requirement is only W ∗ D (width * depth) entries. For each
variation at the next iteration, the corresponding sequence of moves in the refutation table is tried first.
Often these sequences will be sufficient to cut off the search, thus reducing the number of necessary move
generations. In our experience with chess programs, use of a refutation table to seed the variations often
improves iterative deepening searches by 30 percent.

2.5 Other Searching Techniques

A number of modifications to the alpha-beta algorithm have been proposed. They are examined here mainly
for compatibility with the other search enhancements discussed.

An interesting implementation of the alpha-beta algorithm treats the first variation in a special way.
The method was originally called Palphabeta [FISH80] and then renamed Calphabeta [FISH81], but will
be referred to here as principal variation search or PVS for short. Once a candidate principal variation is
obtained, the balance of the tree is searched with a minimal window , an alpha-beta window of (–score –
1, –score), where score is the best value found so far (Figure 6). On the other hand, if the tree is poorly
ordered, each subtree that is better than its elder siblings must be searched again. Hence there is some risk
that PVS will examine more nodes than alpha-beta. When iterative deepening is used to provide a principal
variation, PVS becomes more effective, because with each iteration it is increasingly likely that the first
move tried is best. The structure of PVS can be seen in Figure 6, which includes an alpha-beta refinement,
falphabeta, to enable use of a narrower window whenever the minimal window search fails. For simplicity,
make and undo are again omitted.

The basic idea behind PVS is that it will assume that the first move made at each node is best. Thus
PVS makes a recursive call to the first successor, p.1, and determines its value. The remaining successors,
p.i for 2 ≤ i ≤ width, are examined in turn. If one of these successors has a value that is greater than that
for the current principal variation, it becomes the new principal variation, and is searched again with the
correct window. It is possible that PVS can also benefit from some form of aspiration search, but to our
knowledge that has not yet been accomplished. Even so, our experience with PVS suggests that a 13 percent
improvement in speed over an aspiration search may be expected. One practical observation about the
operation of the minimal window search has been made, namely, after a failing-high minimal window search
at the first level in the tree, there is no need to follow immediately with a full window search [THOM81].
Since we now have a new bound on the minimax value, only if an even more successful variation arises will
there be any doubt about which one might be the new principal variation. This refinement has been tested
in the BELLE program, and search time reductions of up to 50 percent have been noted.

SCOUT [PEAR80] is a further generalization of PVS, in which the final call to falphabeta is replaced by
score := –PVS(p.i, depth – 1);
In its original form, SCOUT did not use the minimal window idea, but rather an equivalent test proce-

8L’EXCENTRIQUE was formulated by C. Jarry, CIP Inc., Sun Life Building, Montreal.
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function PVS(p : position; depth : integer) : integer;

VAR width, score, i, value : integer;

BEGIN

IF (depth <= 0) THEN

return(evaluate(p));

width := generate(p);

IF (width = O) THEN

return(evaluate(p));

score := -PVS(p.1, depth-1);

FOR i := 2 TO width DO BEGIN

value := -falphabeta(p.i, -score-1, -score, depth-1);

IF (value > score) THEN

score := -falphabeta(p.i, -INF, -value, depth-1);

END;

return(score);

END;

Figure 6. Minimal window search.

dure. Initial simulation results indicate that PVS is slightly better than SCOUT on strongly ordered trees
[CAMP83].

Even though SSS∗ [STOC79] and staged SSS* [CAMP83] are effective in the search of random or poorly
ordered trees, these algorithms are not significantly better than alpha-beta on strongly ordered trees, and
require more time and space. We do not consider further those methods that are not especially suited to the
search of strongly ordered trees.

3. APPROACHES TO PARALLEL TREE SEARCH

The best way to make K processors perform an alpha-beta search on a tree is not known. Generally, a
K-fold increase in computing power is not possible because some intercommunication between processors
is necessary, causing losses as they wait for these messages. More important, if independent subtrees are
searched concurrently, it is likely that redundant nodes will be examined, because the best bounds are not
always available. In spite of these problems, some processor configurations yield substantially higher effective
computing power than others.

3.1 Parallel Evaluation

Current game-playing programs that carry out full-width searches must come to terms with the trade-off
between depth of search and complexity of terminal node evaluation. Most of the stronger chess programs
employ a rather simplistic scoring (evaluation) function, in order to make time for deeper searches. Never-
theless, a considerable portion of the search time is spent in evaluation: on the order of 40 percent in both
BLITZ and DUCHESS.

An obvious application of concurrency to game tree search appears to be within the scoring function itself.
A number of processors could be used to evaluate simultaneously different terms in the scoring function,
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which could be combined to form an overall evaluation of the position. This method is used to a limited
extent in the chess machine BEBE.9

Advantages of this technique are numerous:

(1) Evaluation time can be reduced, allowing deeper searches.

(2) Many small, cheap processors can be used to evaluate individual features in a position.

(3) Since there is no obvious limit to the amount of concurrency possible, the evaluation function
can be considerably more complex: large amounts of game-specific knowledge can be utilized, and
extended arbitrarily.

Admittedly a large proportion of terminal nodes in a full-width search, about 50 percent in CHESS 4.7, need
nothing more than a count of the pieces held by each side [SLAT77]. Nevertheless, applying concurrency to
the evaluation function, as described above, can improve positional understanding in the remainder. It is
these positional factors that are so expensive, and, by this technique, can be computed concurrently with
material evaluation and each other.

Another method, employed by BELLE and to a lesser extent by BEBE, is to partition the board and to
apply a microprocessor to the maintenance of the data structure associated with each square. Ultimately one
could envision an evaluation machine that would consist of a processor hierarchy. For example, bottom-level
processors would assess primitive board features, passing the values to higher level processors, which would
combine the features in various (not necessarily linear )ways to form more complex features. The machine
could also have the ability to return from a terminal search with an indication that the position is too
unstable to assess reliably. While it is too early to say how far one can successfully pursue this approach in
practice, it is clear that there are many opportunities for experimental and theoretical work.

3.2 Parallel Aspiration

Even though the alpha-beta search itself is relatively efficient, the aspiration refinement provides improvement
whenever it is successful. One parallel implementation of this idea is to divide the alpha-beta window into
nonoverlapping subintervals and apply a processor to each range [BAUD78]. For example, take

Processor 1 (–INF, V − e)
Processor 2 (V − e, V + e)
Processor 3 (V + e, +INF).

Ideally Processor 2 will finish first, but, in any case, one of them will succeed, and will do so in less time
than a uniprocessor searching over (–INF, +INF). Those processors that fail early can cut off or improve
the bounds for others. Baudet [BAUD78] has explored optimal ways of decomposing windows, including in
his exposition methods that do not initially cover (–INF, +INF).

There are two important results from this parallel aspiration work:

(1) Maximum expected speedup is typically a factor of 5 or 6, regardless of the number of processors
available. This is because the cost of an aspiration search is bounded below by B(W,D).

(2) When the number of processors (K) is small (K = 2 or 3), the speedup obtained may be greater
than K [BAUD78].

9BEBE was formulated by T. Scherzer, SYS-10 Inc., Chicago.
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These results are based on certain assumptions; in particular, it is assumed that the distribution of the
backed-up value is known. The implications for parallel search of strongly ordered trees are not clear, but
since the sequential version of the aspiration search is so effective for chess game trees, one cannot expect
the parallel aspiration methods to offer much improvement.

3.3 Tree Decomposition

Most discussions of parallel game tree search have concentrated on concurrent examination of independent
subtrees. Although there are a number of overheads involved in concurrent search of different subtrees,
they can be divided into two broad categories, search overhead and communication overhead. Even Baudet
concludes that parallel aspiration searching must be combined with tree decomposition if large performance
improvements are desired [BAUD78].

The efficiency of most search algorithms arises from the fact that decisions to cut off search on given
subtrees are based on all the accumulated information obtained to that point in the search. For various
reasons, this information is not always available to parallel search algorithms. Communication delays may
make the data arrive too late or, more important, information may not yet be available as it is being
calculated by another concurrent search. The extra effort that a given parallel algorithm must carry out
(relative to the sequential algorithm) can be defined as the search overhead .

Communication overhead can arise in different ways, depending on the system configuration. Information
can be exchanged via some sort of message-passing system, or through a globally shared data structure. The
former incurs message-passing costs, whereas the latter requires synchronization overhead if high degrees of
concurrency are to be achieved. Of course, the volume of information to be shared is dependent upon the
particular search algorithm used, but it seems clear that, in general, communication overhead is inversely
related to search overhead. In other words, if improved sharing of data between independent searches is
achieved (at increased communication costs), better cutoff decisions can be made by the search algorithm,
thus reducing search overhead.

3.4 Enhancements to Parallel Search

Before considering newer search algorithms, the sequential search enhancements will be assessed to determine
their effectiveness in a parallel situation.

Aspiration searching in parallel offers no particular advantage, since a single processor employing a good
initial window will do just as well. However, the sequential version of aspiration searching, when used in
conjunction with iterative deepening, is equally, if not more, applicable to parallel systems, since a common
problem of such systems concerns their inappropriately wide windows.

Transposition tables continue to be effective, provided that all the processors access the same table.
Since transposition table usage is a naturally autonomous function, it is an especially attractive parallel
application. Furthermore, a processor can do something useful while waiting for access to the transposition
table, namely, evaluate the next subtree. If the position sought is not in the table, then no time is lost;
otherwise, the first result from either the tree recomputation or the table access is used.

Access delays to the transposition table can be reduced by dividing the table into ranges and providing
a different processor for each partition. In any case, the table naturally splits itself into two portions,
those positions for white to move and those for black (Figure 7). This scheme is quite independent of
the relationships between the game processors, C1, C2, and C3, which share and provide updates for the
transposition table memory. The game processors place their transposition requests with a manager, P0.
A potential bottleneck exists there, but this should not be severe since P0 has no significant computational
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Figure 7. Transposition table access and management.

functions beyond those necessary for the routing operations.
The killer heuristic presents problems similar to the transposition table. The killer list of moves that

have been effective in comparable positions is so small, however, that the management problems are much
reduced.

The other alpha-beta modifications are relatively unaffected by parallelism. Falphabeta proceeds identi-
cally, with similar advantages to those found in sequential systems. PVS restricts the method of application
of parallelism to the tree, to ensure the correct minimal windows can be found, but these restrictions are
not necessarily deleterious.

4. TREE DECOMPOSITION METHODS

4.1 Naive Approach

With a static decomposition, the game tree is split into groups of subtrees, and each subtree is assigned to
a different processor (Figure 8). As processors complete, they are allocated to the next group of subtrees,
until the full tree is evaluated. Ideally each processor should be given exactly the same size of subtree to
search, in order that all may complete at about the same time. Even so, the efficiency of this method is very
sensitive to the width/processor ratio W/K.

More important, for a typical game tree with W = 40, a direct alpha-beta search is equivalent to an
exhaustive search of a tree with W = 7 [GILL72]. Thus, if K = 40 processors are applied at the root of the
tree, the average speedup over a uniprocessor employing alpha-beta would be only 7. Note that the most
serious disadvantage with this scheme is that the processors share alpha-beta values in a very limited way.

4.2 Minimal Tree

The minimal tree that must be searched by the sequential version of the alpha-beta algorithm has a very
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   1    2    K K+1   W

Figure 8. Apply all K processors at the first level.

definite structure. It has been proposed that these subtrees be searched independently and concurrently as
the first stage of a parallel algorithm [AKL82]. Akl’s method uses the alpha-beta window generated by the
first phase to speed a second phase, where an independent parallel search of the remaining subtrees takes
place. To simplify the description, the following terminology is used:

The first branch of a node points to the left son, and is contained in the left subtree. All other branches of
the node point to right sons and are in right subtrees.

Phase 1. Recursively search the left subtree of the root node, and the left subtrees only of right sons of
the root node. At the end of this phase the left sons will have been fully evaluated. The right sons will have
temporary values, which are the values of their left sons. Figure 9 shows the first phase of a search on a 3
ply tree. The branches explored are marked with solid lines and terminal scores.

7 5 3 2 1 0 5 15 33

Figure 9. Necessary tree searched during the first phase.
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Phase 2. Those subtrees whose temporary values are insufficient to cause a cutoff are now assigned
different processors and searched one branch at a time until all right sons have been cut off or fully explored.
The second phase of the search is illustrated in Figure 10. Again solid lines show the branches examined
during this phase, single dots show lines never considered, and double dots show variations completed during
the first phase. Assuming perfect ordering, the search will have cost B(W,D − 1) + (W − 1) ∗B(W,D − 2),
where W is the width of each node and D the maximum depth of search.

3 1 2

7 5 2 5

01 1

Figure 10. Balance of the tree searched during the second phase.

This model has been simulated for cases with W ≤ 20 and trees with random terminal nodes [AKL82].
Although it is not yet clear how effective an actual implementation might be, an important point has been
made: certain subtrees must be searched, no matter what the conditions, and so they may as well be searched
in parallel, although perhaps not with the narrowest possible bounds that sequential alpha-beta could supply.

SCOUT can be adapted to a parallel system in a similar manner [AKL81]. Simulations indicate that
parallel SCOUT is slightly better than parallel alpha-beta for strongly ordered trees, but alpha-beta is better
as trees become less ordered.

4.3 Processor Tree Hierarchy

In order to limit interprocessor communication, one should use simple connection mechanisms. For example,
in the processor tree of Figure 11 each node in the hierarchy has a fan-out of 2 and a distinct computational
function. In the simplest case, all nonterminal nodes of the processor tree execute a Master algorithm. They
receive a position and an alpha-beta window from their parent, generate successor positions, and assign them
to child processors. Whenever a child completes, it returns a value for its subtree. If this value causes the
alpha bound to change, the master interrupts its children and forces them to update their alpha-beta values,
using the mechanism of Figure 12.

The terminal nodes of the processor tree also receive a position and a window, but simply execute a Slave
algorithm to construct the game tree to its maximum permitted depth, evaluate the terminal nodes, and
return to the master (parent) the best value for the subtree. This is essentially the tree-splitting algorithm
[FISH80], and is informally presented in Figure 13. The processor tree architecture (Figure 11) is well
suited to executing the tree-splitting algorithm. Several constructs have been adapted from Fishburn’s work
[FISH81] for the algorithm presentation in Figure 13, as follows:
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Figure 11. Example of processor tree method.

VAR alpha, beta : ARRAY [1..MAXDEPTH] OF integer;

{ alpha-beta bounds are stored in global tables }

procedure update(depth, side, bound : integer);

BEGIN

IF (side > 0) THEN

alpha[depth] := max(alpha[depth], bound);

ELSE

beta[depth] := min(beta[depth], bound);

IF (depth > 0) THEN

update(depth-1, -side, -bound);

END;

Figure 12. Dynamic update of alpha-beta values.

(1) j.treesplit is the recursive execution of treesplit on processor j.

(2) parfor, a parallel for loop, conceptually creates a separate process for each iteration of the loop.
The program continues as a single process when all iterations are complete.

(3) when waits until its associated condition is true before proceeding with the body of the statement.

(4) critical allows only one process at a time into a critical region.

(5) procedure terminate kills all processes in the parfor loop that are still active.

An important feature of parallel implementations is dynamic updating of the alpha-beta windows, since
this speeds the completion of the child processors. Even though an inexpensive mechanism for dynamically
sharing these bounds is available [FISH80], the processors still spend a large amount of time computing
without their benefit. Fortunately, the update method is relatively simple, as shown by the pseudo-code of
Figure 12.

There are a number of refinements to the processor tree scheme.

(1) Since the masters spend most of their time waiting for a child processor to complete, their idle
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function treesplit(p : position; alpha, beta : integer) : integer;

VAR width, i : integer;

value : ARRAY [1..MAXWIDTH] OF integer;

j : processor;

BEGIN

IF (I am a leaf processor) THEN

return(alphabeta(p, alpha, beta));

width := generate(p); { determine successors }

{ p.1 .. p.w }

parfor i := 1 TO width DO BEGIN

when (a slave j is idle) BEGIN

value[i] := -j.treesplit(p.i, -beta, -alpha);

critical BEGIN

IF (value[i] > alpha) THEN

alpha := value[i];

END;

IF (alpha >= beta) THEN BEGIN

terminate();

return(alpha);

END;

END;

END;

return(alpha);

END;

Figure 13. The tree-splitting algorithm.

time can be filled by executing the slave algorithm for the next unassigned successor position, as
is essentially the case for the architecture of Figure 11.

(2) Alternatively, a master processor may take charge of the computations at several levels in the game
tree, especially near the root of the tree.

(3) The master can assign a successor’s successors to the child processors, improving alpha-beta value
sharing, and reducing the idle time of the slave processors.

The disadvantage of these refinements is that either a more involved mechanism is needed to indicate com-
pletion of a child process (1 and 2), or increased interprocessor communication is necessary (3).

4.4 Principal Variation Search

Algorithms can be designed for even more efficient search of strongly ordered trees. One such method
operates on the P rincipal V ariation as a refinement of the tree-splitting algorithm, hence the name PV-
splitting [CAMP81]. This algorithm assumes an underlying hierarchical processor organization. Its regular
configuration limits the complexity of interprocessor communication required, and simplifies the control
structure for processor initiation and termination.
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To understand the basis of the PV-splitting algorithm it is necessary to closely examine the nature of
the tree searched by alpha-beta under optimal ordering conditions. Nodes in the tree have been classified
into one of three types [KNUT75]. Intuitively, type 1 nodes are those on the principal variation, and type
2 nodes are alternatives to the principal variation. Type 3 nodes are successors of type 2, and successors of
type 3 are again of type 2. For optimal search the following conditions hold:

(1) At type 1 and 2 nodes, the best move must be considered first.

(2) At type 1 and 3 nodes, all the successors are examined.

(3) At type 2 nodes, only the first successor is examined.

Clearly, the power of alpha-beta pruning derives from the fact that type 2 nodes can be cut off with less than
a full-width search. Maximum benefit from this cutoff is only possible, though, if the best alpha value is
available. There is strong reason, therefore, to establish this alpha value before searching type 2 nodes. For
this reason we have proposed pvsplit (Figure 14), which follows the principal variation for the number of ply
specified by the length parameter, before invoking treesplit to bring all the processors into play on the largest
part of the minimal tree that must be searched. A further enhancement is possible by having the master
processors assign their slaves successors of successors. This ensures that type 2 nodes are always explored
one branch at a time, in case a cutoff occurs. The concurrency is effectively applied at type 3 nodes, which
will have to be searched full width in any case.

From a close examination of PV splitting, one can see how it draws on the minimal tree concept [AKL82],
but two important differences can be noted. PV splitting assumes an underlying processor hierarchy struc-
ture. This contrasts with Akl’s algorithm, which employs a pool of processors running a group of priority-
ordered processes. Also, the processor tree architecture is conceptually clearer from an implementation point
of view. A second point of difference comes about because PV splitting waits for the search value of left
subtrees before initiating right subtree searches. This ensures that the best available alpha value is given to
the right subtree searches, which is not necessarily the case in other algorithms. The cost for this is increased
processor idle time.

The advantages of PV splitting over tree splitting are fairly obvious (assuming, of course, strongly ordered
trees). In particular, the width of the processor tree can be much greater, since concurrency is only applied
to type 3 positions. Also, much improved sharing of bounds is achieved at the cost of a moderate increase in
communication overhead. On the other hand, PV splitting suffers from the restriction that the processor tree
must be shallower than the tree being searched, particularly since processors are employed at alternating
levels. The possibility for wider processor trees reduces this problem somewhat. Tree splitting and PV
splitting have been compared by simulation. Results are given in Table 3a and b. All searches were carried
out on trees of depth 4 and width 24. The length parameter to pvsplit was initially 1; thus the principal
variation was followed for one ply before the other processors were activated. It was assumed that one time
unit of overhead was needed to process a node, terminal or nonterminal, and that communication costs were
negligible, relative to this interval.

These preliminary figures indicate that PV splitting, as expected, outperforms ordinary tree splitting. The
wider the processor tree, the greater is the relative difference. The values for processor trees of configuration
(2, 2) and (3, 2) are included for comparison with the (1, 4) and (1, 8) structures, respectively, since the
corresponding systems have equal numbers of slave nodes. Apparently PV splitting still does better, but
this is highly dependent on the ordering of the tree.
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function pvsplit(p : position; alpha, beta, length : integer) : integer;

VAR width, i : integer;

value : ARRAY [1..MAXWIDTH] OF integer;

j : processor;

BEGIN

IF (length <= 0) THEN

return(treesplit(p, alpha, beta));

width := generate(p); { determine successors }

{ p.1 .. p.w }

alpha := -pvsplit(p.1, -beta, -alpha, length-1);

IF (alpha >= beta) THEN

return(alpha);

parfor i := 2 TO width DO BEGIN

when (a slave j is idle) BEGIN

value[i] := -j.treesplit(p.i, -beta, -alpha);

critical BEGIN

IF (value[i] > alpha) THEN

alpha := value[i];

END;

IF (alpha >= beta) THEN BEGIN

terminate();

return(alpha);

END;

END;

END;

return(alpha);

END;

Figure 14. Parallel alpha-beta with processor tree architecture: the PV-splitting algorithm.

5. CONCLUSIONS

This paper has shown that many of the techniques employed by sequential game-playing programs to improve
searching efficiency are applicable to parallel systems. Of particular importance is the proposed parallel
implementation of transposition tables, since such tables provide significant performance improvement. It is
therefore reasonable to assume that the trees to be searched by parallel algorithms will be strongly ordered,
and the resultant properties can be used to advantage. Preliminary results on the proposed PV splitting
indicate that this method is able to utilize the ordered-tree characteristics to increase searching speed.

More detailed analysis of PV splitting is necessary, mainly in conjunction with the alpha-beta search
enhancements. Such study is probably only possible in an actual game-playing program. The underlying
processor tree architecture of the tree-splitting algorithms provides a convenient implementation framework
for parallel searches of game trees.
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Table 3. Comparison between Tree Splitting and PV Splitting
for Various Processor Tree Configurationsa

(L, F) Tree splitting PV splitting

(a) Optimally ordered trees

(1, 2) 1222 961

(1, 4) 922 505

(1, 8) 772 277

(2, 2) 910 648

(3, 2) 778 —

(b) Strongly ordered trees

(1, 2) 2700 2264

(1, 4) 2030 1425

(1, 8) 1859 1084

(2, 2) 1724 1587

(3, 2) 1172 —

aL = processor tree length; F = processor tree fan-out. Depth = 4;
width = 24.
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