
Multithreaded Pruned Tree Search
in Distributed Systems

Yaoqing Gao and T. A. Marsland ∗

Computing Science Department
University of Alberta

Edmonton, Canada T6G 2H1
<gaoyq,tony>@cs.ualberta.ca

Abstract

Although efficient support for data-parallel applications is relatively well estab-
lished, it remains open how well to support irregular and dynamic problems where
there are no regular data structures and communication patterns. Tree search is central
to solving a variety of problems in artificial intelligence and an important subset of the
irregular applications where tasks are frequently created and terminated. In this paper,
we introduce the design of a multithreaded distributed runtime system. Efficiency and
ease of parallel programming are the two primary goals. In our system, multithreading
is used to specify the asynchronous behavior in parallel game tree search, and dynamic
load balancing is employed for efficient performance.

Keywords: Multithreaded computation, irregular problem, α − β search,
data dependency and dynamic scheduling

1 Introduction

Workstation networks are increasingly prevalent because of their versatility and the advan-
tage of high scalability and cost-effectiveness over parallel machines. Many distributed
programming systems such as PVM, P4, MPI, Linda and Express have been built. Most
of them handle only a process-based message-passing paradigm that ably supports data-
parallel applications with regular data structures and communication patterns. But, un-
fortunately, a large proportion of real-word applications are irregular. Pruned search, an

∗The research was supported by the Natural Sciences and Engineering Research Council of Canada.



important subset of these irregular applications, is central to solving a variety of problems
in artificial intelligence. Compared with traditional data-parallel applications, search prob-
lems tend to be highly irregular and dynamic in nature and pose new challenges: (1) asyn-
chronous behavior results in greater software complexity; (2) variable data structures such
as lists are used; (3) communication patterns are irregular; (4) scheduling for load balancing
and data locality are potentially difficult since work is dynamically created and terminated.
Load distribution can not rely wholly on static analysis at compile-time. Thus dynamic
scheduling at runtime plays an even more important role in enhancing performance. In
the recent years, many parallel search algorithms have evolved, including mandatory work
first, principal-variation splitting, tree splitting, young brother waiting, delay splitting and
multiple principal-variation splitting. Implementing these algorithms is tedious and error-
prone on existing process-based message passing systems. These reasons have motivated us
to address the following two fundamental issues: (1) what kind of programming paradigms
can be used to express search problems easily? (2) what mechanisms and functionalities
must a runtime system provide in order to support parallel search efficiently? In this paper,
we will use the multithreading technique to obtain both ease of parallel programming and
efficient performance. Multiple threads can be used not only as a mechanism for tolerating
unpredictable communication latency, but also for facilitating dynamic scheduling and load
balancing. Multithreading is popular in single-process and shared-memory multiprocessor
system. On distributed systems, however, it encounters other difficulties, due to the un-
derlying physical distributed memories, and the need to address new issues such as thread
scheduling, migration and communication in a separate addressing space.

This paper will introduce the design and implementation of a multithreaded distributed
runtime system on a cluster of workstations. Section 2 first gives a brief introduction of
typical parallel search algorithms and problems with their implementations on most ex-
isting systems. Then, after addressing some major issues of multithreading, we provide
the details of how to obtain programmability and efficiency by multithreading. Finally we
draw some conclusions by comparing what we have done to some related work.

2 Problems with Parallel Game Tree Search

Two person games between human and computer is one search problem that relies heavily
on the α − β pruning technique to reduce search cost, by ignoring subtrees that cannot
affect the final value of the root node. To speed up such search processes, many parallel
algorithms have been proposed, and they can be classified into the following categories:

1. window partitioning (also called parallel aspiration search): the search window is
divided into a number of disjoint segments. Different processors search the same
tree with different disjoint windows.



2. tree splitting: selected nodes in a tree are split and assigned to different processors.

3. special hardware is used to generate moves and evaluate nodes in parallel.

This paper will focus on the tree splitting approach which is more popular and suc-
cessful, compared with the others. The performance of parallel search algorithms is usu-
ally measured by search overhead, synchronization overhead and communication overhead
[14]. These reflect the major obstacles to achieving perfect efficiency: starvation loss,
interference loss and speculative loss. Another method can be used to quantify parallel
performance by the critical path length and the total work [12]. By representing a parallel
algorithm as an acyclic directed graph, the combination of the critical path length and the
total work can be used to measure the average available parallelism of a program, and to
determine the overhead induced by communications, load-balancing and scheduling.

Akl, Barnard and Doran [1] introduced the “Mandatory Work First (MWF)” algorithm.
The fundamental idea of MWF is that the tree to be searched is perfectly ordered, and those
nodes that must be visited (called mandatory nodes) in the sequential α − β algorithm are
first search in parallel. By first searching the mandatory nodes, the algorithm attempts to
achieve all the cutoffs that are possible in the serial case. Even simpler is a root-tree split-
ting algorithm. The nodes in the games are split and mapped onto a tree of processors.
Marsland and Popowich’s Principal Variation Splitting (PVSplitting) algorithm [14] im-
proves things by splitting at all nodes in the first continuation. It concentrates on searching
the first path along the principal variation with a full window and after a tighter bound α

from the leftmost subtree is obtained, the remaining branches are split among the avail-
able processors and are searched with a minimal (or null) window. Later both Schaeffer
and Hyatt et al. present Distributed Search (DPVS) [18] and Enhanced Principal Varia-
tion Splitting (EPVS) [11], respectively. Both of these algorithms improve the PVSplitting
method by introducing dynamic work assignments. To parallelize game tree search on mas-
sively parallel machines efficiently, Feldmann et al. [6] introduce the Young Brother Wait
(YBW) concept and a distributed control method. The search of a successor of a node in
the game tree must be delayed until its leftmost brother is completely evaluated. Marsland
et al.’s Dynamic, Multiple Principal Variation Splitting (DM-PVSplit) [13] employs a new
approach to reduce re-search delay and synchronization overhead. It first exploits specula-
tive parallelism at a set of most promising nodes, called the PV set in the expectation that
the best successor almost always falls into this set. As before, alternatives to the PV set are
assumed inferior until proven otherwise in parallel.

In addition, there are many other parallel algorithms such as ER [19], Jamboree [12],
αβ∗[5] and ABDADA[21], which vary in the approach to reducing search and synchroniza-
tion overhead. All could benefit from better efficiency in the underlying operating system.

Although search and knowledge lie in different dimensions, they are not independent:
on one hand, deeper search in general results in more accurate evaluation, on the other,



better search strategy depends on the quality of the evaluation function. All these in combi-
nation with the underlying system induce non-deterministic factors that effect the efficiency
of a parallel algorithm. Thus, to develop a parallel game-playing program, the algorithm
is often chosen through experience. But implementing these algorithms seems to be te-
dious and error-prone on existing process-based message passing systems. Most existing
systems such as PVM and MPI focus primarily on process-based message-passing, but do
not provide much support for scheduling beyond a basic and static scheduler. Since the
dynamic nature of game tree search does not fit well into the data-parallel approach, devel-
oping parallel game tree search on these traditional systems leaves the following burdens to
the programmer: (1) it is very difficult to specify the asynchronous behavior in game tree
search, due to irregular data structures and communication modes; (2) work load distribu-
tion among these processes should be taken care of by the programmer. Since the creation
of processes is time-consuming in the process-based message-passing model, a fixed num-
ber of processes are usually first created and then work loads are explicitly distributed by
users.

To speed up the development of parallel game programs, while obtaining efficient per-
formance, the programming system must provide high-level abstraction to separate a paral-
lel algorithm from its scheduling mechanism, i.e., at the application level, users specify the
parallelization points based on a parallel algorithm and leave the details of communication,
synchronization and scheduling to the runtime system. Our approach is to use threads to
express pieces of work corresponding to the nodes in game trees, a parallel algorithm to
specify the dependency between threads and the runtime system to handle thread creation,
scheduling, synchronization and scheduling. Due to the lower context switch and creation
cost of threads, multithreading can be used to provide a finer granularity of concurrency
and to facilitate dynamic load balancing. Moreover, better performance can be obtained
through overlapping computation and communication to tolerate communication latency.

3 An Efficient Distributed System for Game Tree Search

3.1 Issues in implementing multithreading

Designing and implementing multiple threads in distributed systems involves such issues
as thread implementation, thread communication and scheduling mechanisms, and thread-
safety.

Threads can be supported at the system-level or by user-level library code. The User-
level implementations multiplex a potentially large number of user-defined threads on top
of a single kernel-implemented process. This approach can be more efficient than relying
on operating system kernel support, because of the overhead of entering and leaving the
kernel at each call, and since the context switch overhead of kernel threads is high. Fur-



thermore, user-level threads are not only flexible but can also be customized to the needs of
the language or user without kernel modification. So our system will employ this approach.

In distributed multithreaded systems, scheduling is done both within a process and
among processes. The former is similar to the priority-based preemptive or round robin
strategies in traditional single-processor systems, while the latter is more complicated.
Typically there are two classes of dynamic scheduling strategies: work sharing (sender-
initiated) and work stealing (receiver-initiated). With a work sharing strategy, whenever a
processor generates new threads, the scheduler decides whether to migrate some of them
to other processors on the basis of the current system state. Control over the maintenance
of the information may be centralized in a single processor, or distributed among the pro-
cessors. In the work stealing strategy, whenever processors become idle or underutilized,
they attempt to steal threads from more busy processors. Our system aims at providing a
flexible scheduling strategy thus enabling users to guide thread scheduling at runtime.

The thread safety problem is about whether multiple threads in the system can execute
successfully without data corruption and without interfering with each other (see [15] for a
more detailed discussion).

3.2 Multithreaded runtime system

In two-person, perfect-information games, there are two players that make moves alter-
nately and both players have complete information about the current status. A computer
game program contains at least move generation, search, and evaluation functions, plus
data bases for storing opening and endgame knowledge.

For a game tree, nodes represent legal game states (boards); the root of the tree is the
current board and a branch is a legal move. The aim of the search is to find a path from
the root to the highest valued “leaf node” that can be reached, under the assumption of best
play by both sides. The parallelism in game trees derives from dynamic tree splitting. In
our multithreaded system, at the application level, a node can be expressed by a thread and
a parallel algorithm specifies where threads can be activated in parallel and the dependency
among threads. For example, for the PVSplitting algorithm, each node in the game is
expressed by a thread. A thread will spawn one child thread for each legal move. But data
dependency specified by the algorithm exists among these threads: After getting a tighter
bound from the thread corresponding to the PV node, the remaining threads are ready to
run, as shown in Figure 1.

Runtime support for multithreading: In a serial implementation of a recursive game
tree search program, an implicit stack of activation frames is used to maintain the execu-
tion state for the depth-first search. But a parallel implementation needs a tree of activation
frames so that any ready node can be expanded concurrently. Our system supports three



1 2 3

=a

The null window (a,a+1) is used to search
the remaining subtrees in parallel after the
bound a is obtained from the leftmost subtreea

Figure 1: PVSplitting

Ready thread queue

System thread queue 
(with high priority)

Runtime subsystem

Message−passing
subsystem

polling and processing 
messages

Ready thread queue

System thread queue 
(with high priority)

Runtime subsystem

Message−passing
subsystem

polling and processing 
messages

Ready thread queue

Runtime subsystem

Message−passing
subsystem

polling and processing 
messages

Ask for a thread

If the queue is not 
empty, migrate a 
thread System thread queue 

(with high priority)

Migrate a thread

Virtual processor
(process)

Virtual processor
(process)

Virtual processor
(process)

If the queue is empty 
and the active thread
can not spawn threads,
forward the request to
others

If the queue is empty,
the current active thread
spawns threads

Figure 2: Thread scheduling among processors

mechanisms for managing activation frames: eager, anticipatory, and lazy thread creation.
By the first mechanism, an active thread will spawn all its child threads and put them into
the queue. Each thread becomes ready only after all its arguments are available. This
mechanism simplifies the activation frame management but has extra overhead in compar-
ison with the latter two implementations.

To optimize accesses of activation frames, and to execute a parallel search as fast as
possible compared to a serial search in a single processor, anticipatory, and lazy thread cre-
ation mechanisms are supported to create threads on demand. In each processor, a subtree
in the search tree is mapped to a thread (instead of a node being a thread), which is similar
to that used by Gao et al. [10]. Each processor conducts a depth-first search. Each proces-
sor maintains a ready thread queue that can be assigned to other idle processors, and a stack



for activation frames during traversal down and up the game tree. Some threads must be
activated on the user’s pre-specified processors. Threads are prioritized and a ready thread
with a highest priority will be activated first. The scheduler provides the dynamic schedul-
ing mechanism: when the ready thread queue becomes empty, the processor can help other
busy ones by sending a request message, see Algorithm 1. The processor which receives a
request will first look up its ready thread queue and migrate a number of threads from the
queue to the requesting processor if the queue is not empty. Otherwise it will let threads
spawn their children and migrate some newly generated threads to the requesting proces-
sor. As a thread travels up and down a subtree, the anticipatory thread creation mechanism
spawns ready threads once the length of the queue is less than a pre-specified threshold.
But by the lazy thread creation mechanism, the currently active thread spawns its ready
threads only if there is a remote request and the queue is empty. If the queue is empty and
no more child threads can be spawned, the processor forwards this request to others. The
child threads can be spawned at the divisible node either closest to the root of the subtree
(from the bottom of the stack), or from the currently examined node (from the top of the
stack), see Algorithm 2. The former may spawn more work, while the latter can result in a
simple implementation and low spawning overhead, see Figure 2.

Algorithm 1:

1 if the local ready thread queue is not empty
2 then get a thread from the local ready thread queue
3 execute the thread which corresponds to a subtree:
4 recursively examine the subtree in a depth-first fashion
5 if the current node is a leaf
6 then evaluate it and backup this value
7 else if the current node is divisible
8 then expand the current node in parallel only if
9 the local thread queue is empty:

10 if the local ready thread queue is empty
11 then spawn its child threads and put them into the queue
12 the leftmost child node becomes the current node;
13 goto 4;
14 else sequentially expand the current node
15 the leftmost child node becomes the current node;
16 goto 4;
17 fi
18 else recursively examine the subtree in depth-first fashion:
19 sequentially expand the current node;
20 the leftmost child node becomes the current node;



21 goto 4;
22 fi
23 fi
24 else
25 the processor asks for a thread (thread scheduling):
26 chose a processor Pi based on the pre-specified order;
27 send a request message to Pi;
28 fi

Algorithm 2:

1 if the local ready thread queue is not empty
2 then get a selection of threads from the queue
3 and migrate them to the request processor;
4 else
5 if the node currently examined is divisible
6 then spawn its child threads and put them into the queue;
7 migrate one subset of threads to the request processor;
8 else recursively examine the tree node in the depth-first fashion:
9 if no more threads can be spawned

10 then chose a processor Pi based on the pre-specified order;
11 send a request message to Pi;
12 else
13 if the current thread is divisible
14 then spawn its child threads and put them into the queue;
15 goto 1;
16 else goto 8;
17 fi
18 fi
19 fi
20 fi

4 Related Work and Conclusion

Parallel game tree search on existing process-based message-passing systems such as PVM
and MPI pose difficult programming: users need to handle scheduling issues explicitly. Par-
allel programming in the shared-memory paradigm is relatively easy but efficient perfor-
mance may be obtained only on shared memory or massively parallel machines. Ciancar-
ini [4] compared parallel game tree search algorithms on Linda, which defines a logically



shared memory mechanism called tuples. Linda requires large volumes of data to be ex-
changed to and from the shared memory. This may cause cause heavy congestion over the
available communication channels of a cluster of workstations and has high communication
overhead.

Dynamic task migration can be broadly categorized as either at the user-level or the
system-level. As discussed in Section 3.1, user-level threads and task migration simplify
the implementation because there is no need to modify standard operating system kernels.
Condor [17], MPVM [3] and YALB [16] are examples of such an approach. They allow
parallel computations to co-exist with other applications, by global scheduling and resource
management. But these systems have different goals from ours. Our system supports
dynamic load balancing within a single application. TPVM [7] and Nexus [9] are two
another multithreaded distributed systems but lack dynamic load balancing mechanisms.

Our system is more similar to Cilk [2], Dynamo [20] and DIB [8]. Cilk is a C-based
multithreaded system and employs a work stealing strategy for load balancing. Cilk uses
explicit representation throughout the computation, each node is mapped into a thread. The
continuation-passing style and eager thread creation mechanism result in a simple imple-
mentation but need more frequent copying of arguments. Dynamo provides an application
programming interface which separates the application and the scheduler. But, like Cilk, it
only supports eager thread creation and the way tasks are spawned is as specified explicitly
by users. DIB employs two representations for its activation frames to optimize accesses
within a single processor: local processor stack and inter-processor tree. In addition, DIB
supports a natural mechanism for fault tolerance. Our system also uses explicit and im-
plicit activation frame representations but has different strategies for converting these two
representations, including eager, anticipatory and lazy thread creation. Furthermore, users
can specify different priorities of nodes and assign nodes to specific processors to guide
scheduling at runtime.

This paper introduces the design and implementation of a multithreaded distributed
system for parallel game search. It provides a relatively high-level and machine indepen-
dent programming system that greatly simplifies the efficient parallelization of irregular
applications on a cluster of workstations. Future work includes integration of multiple
programming paradigms and coordination between thread and process scheduling. Mul-
tithreaded systems have demonstrated their suitability for task-parallel computations, but
most existing systems have not yet obtained good efficiency for data-parallel problems. A
multithreaded system involves both thread and process scheduling. So far not enough at-
tention has been paid to coordinating these two activities. In addition, fast communication
mechanisms are used to replace the heavyweight protocols of existing communication net-
works. Improvements in communication performance can dramatically increase the system
applicability.



References

[1] Selim G. Akl, David T. Barnard, and Ralph J. Doran. Design, analysis, and imple-
mentation of a parallel tree search algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-4(2):192–203, March 1982.

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In
Proc. 6th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming,
pages 207–216, July 1995.

[3] Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W. Otto, Robert Prouty, and
Jonathan Walpole. MPVM: A migration transparent version of PVM. Computing
Systems, 8(2):171–216, 1995.

[4] P. Ciancarini. Distributed Searches: a Basis for Comparison. Journal of the Interna-
tional Computer Chess Association, 17(4):194–206, 1994.

[5] V. David. Algorithmique paralléle sur les arbres de décision et raisonnement en temps
contraint. Etude et application au Minimax. PhD thesis, ENSAD, November 1993.

[6] Rainer Feldmann. Game tree search on massively parallel systems. PhD thesis, Dept.
of Math. and Computer Sci., University of Paderborn, Paderborn, Germany, 1993.

[7] Adam Ferrari and V. S. Sunderam. TPVM: Distributed concurrent computing with
lightweight processes. In IEEE High Performance Distributed Computing, pages
211–218, August 1995.

[8] Raphael Finkel and Udi Manber. DIB – a distributed implementation of backtracking.
ACM Transactions on Programming Languages and Systems, 9(2):235–256, April
1987.

[9] Ian Foster, Carl Kesselman, and Steven Tuecke. Nexus: Runtime support for task-
parallel programming languages. Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, IL, August 1994.

[10] Yaoqing Gao, Wang Dingxing, Zheng Weimin, and Shen Meiming. Intelligent
scheduling AND- and OR- parallelism in the parallel logic programming system
rap/lop-pim. In Proc. of the 20th Annual Inter. conf. on Parallel Processing, pages
II–186 – II–192, August 1991.

[11] R. M. Hyatt and B. W. Suter. A parallel alpha/beta tree searching algorithm. Parallel
Computing, 10:299–308, 1989.



[12] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Dept. of EE and
CS, Massachusetts Institute of Technology, 1994.

[13] T. A. Marsland, Yaoqing Gao, A. Reinefeld, and A. Yonezawa. Multiple principal
variation splitting search. In High Performance Computing Symposium, HPCS’95,
pages 292–303, Montreal, July 1995.

[14] T. Anthony Marsland and Fred Popowich. Parallel game-tree search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-7(4):442–452, July 1985.

[15] T.A. Marsland, Yaoqing Gao, and Francis C.M. Lau. A study of software multithread-
ing in distributed systems. Technical Report TR 95-23, Department of Computing
Science, University of Alberta, Edmonton, Canada, November 1995.

[16] S. Petri and H. Langendőrfer. Load balancing and fault tolerance in workstation clus-
ters – migrating groups of communicating processes. Operating Systems Review,
29(4):25–36, October 1995.

[17] Jim Pruyne and Miron Livny. Providing resource management services to parallel
applications. In Proceedings of the Second Workshop on Environments and Tools for
Parallel Scientific Computing, May 1995.

[18] Jonathan Schaeffer. Distributed game-tree searching. Journal of Parallel and Dis-
tributed Computing, 6:90–114, 1989.

[19] Igor R. Steinberg and Marvin Solomon. Searching game trees in parallel. In Pro-
ceedings of the IEEE International Conference on Parallel Processing, pages III–9 –
III–17, 1990.

[20] Erik Tarnvik. Dynamo – a portable tool for dynamic load balancing on distributed
memory multicomputers. Concurrency: Practice and Experience, 6(8):613–639, De-
cember 1994.

[21] Jean-Christophe Weill. The ABDADA distributed minimax search algorithm. In
Proceedings 1996 ACM Computer Science Conference, pages 131–138, Philadelphia,
1996.


