
Selective Depth-First Search Methods

Yngvi Björnsson and Tony Marsland

Department of Computing Science

University of Alberta

Edmonton, Alberta

CANADA T6G 2H1

E-mail: {yngvi,tony}@cs.ualberta.ca

Abstract

In this paper we take a general look at forward
pruning in tree search. By identifying what we
think are desirable characteristics of pruning
heuristics, and what attributes are important
for them to consider, we hope to understand
better the shortcomings of existing techniques,
and to provide some additional insight into how
they can be improved. We view this work as a
first step towards the goal of improving existing
forward-pruning methods.

1 Introduction

The thinking-process used by computers for playing
chess and other two-person games differs significantly
from the one used by humans. While humans consider
at most a few alternatives when deciding what to play,
computers exhaustively search all the possible moves. In
the half century since minimax was first suggested as a
strategy for adversary game search, various algorithms
have been developed, most notably Alpha-Beta and its
variants. The Alpha-Beta like algorithms, as formulated,
explore all continuations to some fixed depth. However,
in practice the algorithms are not used that way, instead
various heuristics are used that allow them to vary the
search horizon, exploring some moves more deeply than
others. In an indirect way, this resembles the human ap-
proach. Continuations that are thought to be of interest
are expanded beyond the nominal depth, while others of
less interest are terminated prematurely. The latter case
is referred to as forward pruning.

In this paper we discuss forward pruning from a gen-
eral perspective, and identify important factors to con-
sider when developing a pruning heuristic. We describe a
few existing forward-pruning methods and try to assess
how well they address the factors we identify as being
important. This work is a first step towards the goal
of improving existing forward-pruning methods and de-
veloping new ones, and will help us recognize the short-
comings of the existing techniques and thereby guide us

to potential improvements. First the rationale behind
forward pruning is discussed, followed by a description
of desirable characteristics of forward-pruning methods
and various other factors to consider. Section 4 discusses
existing pruning methods, and finally we conclude by
outlining our thoughts on the promise for improvement.

2 Selective Search and Decision Quality

The number of nodes visited by Alpha-Beta increases ex-
ponentially with increasing search depth. This obviously
limits the scope of the search, especially because game-
playing programs have to meet external time-constraints:
often having only a few minutes to decide which move
to play. In general, the quality of the move decision im-
proves the further we lookahead1. The question now be-
comes, how to make best use of the available time to find
a good move. The rationale behind selective search is
that the time saved by pruning off non-promising lines is
better used to search other lines more deeply and there-
fore, hopefully, to increase the overall decision quality of
the search.

The theoretical issue surrounding forward pruning and
how it affects decision quality has not been studied much.
Smith and Nau [1994] introduced a model of forward-
pruning using (over)simplified game trees, concluding
that forward-pruning works best when there is a high
correlation among the minimax values of sibling nodes
in the game tree. Conversely, for chess, checkers and
Othello some empirical studies exist that investigate how
error in leaf-node evaluation affects the move decision at
the root [Junghanns et al., 1997].

1Some artificial games have been constructed where the
opposite is true; when backing up a minimax value the de-
cision quality actually decreases as we search deeper. This
phenomenon has been studied thoroughly and is referred to
as pathology in game-tree search [Nau, 1980]. However, this
pathology is not seen in chess or the other games we are in-
vestigating.

1

3 Forward pruning

When applying forward pruning the real task is to iden-
tify which move sequences are worth considering more
closely and which can be pruned off with minimal risk of
overlooking a good continuation. Several factors should
be considered when coming up with an effective forward-
pruning heuristic:

• Risk-assessment.
How safe is the forward pruning method? We want
to minimize the risk that speculative pruning intro-
duces errors into the search.

• Applicability.
To maximize the possible gains of using forward
pruning while searching we would like to apply
the pruning frequently in the tree, especially where
there is a potential for big savings.

• Cost-effectiveness.
The investment of time and effort used to decide
whether to prune a node should be kept low. In
any case, the savings achieved through pruning must
exceed the additional effort introduced.

• Domain-independency.
Ideally, we want a pruning method that can be ap-
plied equally well in other search domains.

The above factors are by no means independent, im-
proving one usually involves compromising another. For
example, reducing the risk factor often means limit-
ing the applicability. Also, improving cost-effectiveness
can introduce other risks, and finally the more general
(domain-independent) methods tend to be less effective.
A useful forward pruning heuristic needs to find the ap-
propriate trade-off between the above factors, and this
process may require a careful tuning effort.

3.1 Risk-assessment

When using forward pruning there is always some danger
of overlooking good moves. We would like to minimize
the risk of doing so. Basically, the question we need
to answer when deciding whether to examine a node v

is: how likely is the sub-tree below v to include a con-
tinuation that, if searched, would yield a new principal
variation. For a new principal variation to emerge two
things must occur; first the value returned by v must
exceed the best value found so far, and second the value
must propagate to the root of the tree. This in turn
implies that the pruning method should be able to:

• predict with reasonable accuracy the range of values
for node v, and

• measure the likelihood that the anticipated value
will back up to the root of the tree.

Existing forward pruning methods address the first issue
while generally ignoring the second one.

Error introduction

For most subtrees we are not so much interested in know-
ing the exact value of each particular node, but rather
whether the value lies outside the bounds of the α-β
window. This is because we know that continuations
which result in values outside the window can never be-
come a part of the principal variation. When using a
null-window search the bound is the value of the current
principal variation, so when comparing node values to
the bound we are determining whether a better contin-
uation is found. In that case we are simply interested in
knowing if a value returned by searching a node further
is as good as the β-bound, thereby causing a cutoff.

When predicting where the value of a node v lies rela-
tive to the α-β bounds, most pruning methods perform
a shallow search, and use the value returned by it to es-
timate the range in which the actual value of node v is
likely to be, should the node be searched more deeply.
For example, a 5-ply-deep search is used to predict the
outcome of a 6-ply-deep search. The outcome of the shal-
low search decides whether to search node v further. If
we are confident enough that further search will not yield
an improvement, node v is not expanded. The exact cri-
teria used to relate the value of the shallow search to the
anticipated return value of the deeper search varies with
the pruning technique. Some approaches use statistical
methods to define confidence intervals, while others sim-
ply use ad-hoc heuristics. Error is introduced into the
search when a wrong pruning decision is made.

Although, shallow searches are generally reasonable
indicators of the values returned by deeper searches, ad-
ditional information can enhance the overall prediction
capabilities of the pruning heuristics, thereby reducing
the risk involved. For example, look at the tree in Figure
1. The shaded area marks the parts of the tree searched

m1 m... ...
v

a b
n

...

Figure 1: Different risk-assessment.

2

to decide whether to prune nodes a and b. Each pruning
decision is made independently of the other, based only
on the outcome of the local search. However, by looking
at each node in isolation information is lost. For exam-
ple, when looking at move mn existing methods might
be interested in knowing if the move will lead to value
that causes a cutoff, that is, the probability

P (v(mn) ≥ β).

But having already searched moves m1,...,mn−1, and
knowing they all failed to cause a cutoff, is a strong in-
dicator that move mn will also fail to do so, especially
because according to the move ordering scheme move mn

is no better than the moves already searched. Instead we
should be asking for the probability of move mn causing
a cutoff given that moves m1,...,mn−1 have failed to do
so, that is:

P (v(mn) ≥ β | v(m1, ...,mn−1) < β).

The values of the moves are not independent of each
other, and by assuming they are we are ignoring po-
tentially useful information. Existing pruning methods
and probability based best-first search algorithms to-
tally ignore the dependencies or unrealistically assume
the search values (or the error in the values) to be inde-
pendent of each other. Instead, the fact that the values
tend to be dependent should be used to make more in-
formed pruning decisions.

Error propagation

Figure 2 shows two different game trees. The solid lines
identify the parts of the tree that have already been vis-
ited, while the dotted lines show nodes that have not
been expanded. Assume that the search is currently situ-

m1
... ...

v
m1 m

v
5

...
...

Figure 2: Error propagation.

ated at node v and that the sub-tree resulting from play-
ing move m1 has already been searched. Furthermore,
assume that a part of that sub-tree has been pruned
off using some forward pruning technique, and that the
value returned is greater or equal to the β-bound used
at node v (because node v is a cut-node this is what
we would expect). Therefore, a β-cutoff occurs and the
value returned by move m1 will backup to the root. From
the root’s perspective this branch is inferior to the cur-
rent principal variation and the search therefore contin-
ues to expand the other children of the root without
switching the principal variation.

If the part of the sub-tree that was pruned does not
contain a better continuation than the current princi-
pal variation, no harm is done and some search effort is
saved. The case of interest here is: what happens if the
subtree does contain a better line of play? In the first
tree given in Figure 2, the error introduced by the prun-
ing propagates all the way to the root, thereby affecting
the move decision. Instead of a new principal variation
emerging (as would happen if no pruning were done),
the line is discarded as being inferior. However, in the
second tree the scenario is not so clear. As with the first
tree, it is again true that a new principal variation will
not emerge. The difference here is that a search without
pruning will not necessarily result in a change of prin-
cipal variation. What might happen, and what indeed
often happens in practice, is that even if the first move
at a cut node fails to cause a cutoff, one of the alter-
native moves will do so. This implies that even though
we make an erroneous pruning decision in the sub-tree
below move m1, the risk of affecting the move decision
at the root is less than in the first tree, because if one
of the other moves m2, ..., mn causes a cutoff then the
move decision at the root will not be affected. Thus,
even though an erroneous pruning is made it will not
necessarily affect the move decision at the root. Hope-
fully, this illustrates that when assessing risk pruning
methods should not only take into account the expected
return value of a pruned node, but also assess the likeli-
hood that an erroneous pruning decision will propagate
up the tree.

3.2 Applicability

The most popular pruning heuristics used in two-person
game-playing programs have one thing in common: they
apply frequently, though not without restriction. The
more frequently a pruning heuristic is applied in the
search, especially at places where there is a high proba-
bility of big savings, the more potential it has for being
effective. However, the applicability is restricted, since
pruning can only be done where it is expected to be safe.
Depending on the heuristics used, this can differ substan-
tially. Some heuristics need additional pre-requirements

3

for them to be applied. An example of such pruning
method is the special cutoff introduced by the NegaS-
cout [Reinefeld, 1983] algorithm. Although the cutoff is
risk-free when search extensions are not used, the sav-
ings are very small. This is because the necessary pre-
requirement (that is, a change in the principal variation
is occurring two or less plies from the search horizon) for
the cutoff is met infrequently.

3.3 Cost-effectiveness

Although some pruning methods offer low risk pruning
and substantial savings in terms of nodes searched, the
overhead needed to implement them is often prohibitive.
The effort expended gathering and tracking in real-time
the information required by the heuristics may outweigh
the potential time-savings introduced by the pruning.
An example of such a heuristic is the method of analo-
gies. Although, the method offers almost risk-free prun-
ing, the overhead of tracking how pieces influence each
other proved too high for practical use in a competi-
tive chess playing program [Adelson-Velskiy et al., 1975].
However, changes in software and hardware technology
may improve the efficiency of such methods. It might
also be possible to approximate the original heuristic by
another that is less costly to maintain, and yet achieves
most of the savings. Therefore the method of analogies
is again a topic worthy of investigation.

3.4 Domain-dependency

It is desirable for a pruning method to be domain-
independent. This implies that such methods not use
such domain specific knowledge as: is a king in check,
or whether a corner square is occupied. Such domain-
specific knowledge, if used, should be incorporated in a
domain independent way, for example externally state
the knowledge in a language that can be compiled and
used by the search in a general way.

The only information revealed to the search by the
evaluation function is a numerical estimate of how good
a problem state is. This clear separation of the search
and the problem domain encourages more domain-
independent pruning methods. On the other hand the
methods are then denied access to potentially useful in-
formation about the problem domain, thereby restricting
their pruning capabilities. However, there is a wealth of
information to be gathered about the domain by simply
looking at the shape of the expanded search tree. This
knowledge is accessible without having to uncover any
additional domain-specific knowledge. We have already
mentioned a few cases of interest in the risk-assessment
discussion.

In practice, it is extremely difficult for pruning meth-
ods to become domain independent. As we mentioned
before there is a trade-off between generality and effec-
tiveness, and to achieve the full pruning capability we

have to exploit some special characteristics of the search
space. Most existing forward pruning methods are there-
fore domain specific. Even though methods like null-
move and ProbCut do not use explicit knowledge about
their domain, they make implicit assumptions that tie
them down for use in one, or at best very few, two-
person games. For example, the null-move heuristic is
very effective in chess, but completely useless in Othello.
Conversely, ProbCut is the pruning heuristic of choice
in Othello but has not yet been shown useful in chess or
checkers.

4 Existing Forward Pruning Methods

Here we describe some existing forward pruning methods
and see how well they meet the factors we have discussed
so far.

4.1 The Null-move heuristic

In some games, such as Go, one legal move is to pass;
that is, to make no move. This is called a null-move.
The only change to the game state is which side has to
move. In games like chess the null-move is not legal, but
even so, it can be useful to assume that a null-move can
be played. The idea of a null-move has been known for a
long time [Adelson-Velskiy et al., 1975], and is now used
in most chess programs. However, the method did not
get much attention in the literature until later [Palay,
1983; Goetsch and Cambpell, 1988; Beal, 1990].

When searching a position to depth d, instead of mak-
ing a legal move in that position a null-move is made.
The position is then searched to a depth less than d, most
often d−1 or d−2. If the resulting score is greater than
β, a cutoff is made based on the shallow search. The
null-move can be applied recursively in the tree. The
underlying idea in chess is that it is almost always bet-
ter to make a move rather than to pass. Therefore, if the
score received by giving up a move is still good enough
to cause a cutoff, it is very likely that some of the legal
moves will also cause a cutoff. Because the position was
searched using a shallower search than we would other-
wise, considerable effort is saved. In chess it is usually
safe to assume that making a move will improve the po-
sition, but there are special cases where this is not true.
These cases are most likely to arise in the endgame and
are called zugzwang positions. Thus many chess pro-
grams turn off the null-move heuristic upon entering the
endgame phase. Some other less used forward pruning
schemes like razoring and futility-cutoff are based on the
same idea as the null-move, but these heuristics are more
restrictive and can only be applied close to leaf nodes.
They can be considered as a special case of the null-move
heuristic.

While the null-move heuristic works well in chess, it is
inappropriate in many other game-tree domains, either

4

because the null-move is legal in some games, or if it was
a legal move then it would be a good move.

4.2 ProbCut

The ProbCut [Buro, 1995] heuristic uses shallow searches
to predict the result of deep searches. In Othello, where
the score of a position generally does not change sig-
nificantly by searching deeper, this heuristic works well.
Therefore, if a shallow search predicts with a high confi-
dence that a deeper search will produce a value outside
the α-β window, a node is not expanded further. The
heuristic is applied, as formulated, at one pre-determined
depth level in the tree.

A confidence interval of how well a shallow search pre-
dicts the value of a deeper one is calculated off-line by
searching a database of positions that were pre-classified
depending on the phase of the game. A separate confi-
dence interval is calculated for each class.

Initial attempts to get this heuristic to work for other
games, such as chess, have been unsuccessful. There are
several reasons for that. One is that in chess it is dif-
ficult to classify positions into equivalence classes based
on desired attributes. By creating these classes off-line
based on a database of positions, there is a high risk
that we are generalizing too much. Another reason is
that chess is a more tactical game, thus shallow searches
are not as good predictors of deep searches as they are
in Othello. We think that this method still has potential
in games like chess, but for it to work the heuristic must
consider the dynamic features of the search space. For
these reasons it is worth studying this topic further.

4.3 Fail-high reductions

Fail-high reductions [Feldmann, 1997] is a new forward
pruning heuristic. It is still too early to judge how ef-
fective it is, but preliminary experiments in chess show
some promise. The idea is to search to shallower depth
positions that are seemingly quiet and where the side to
move has established a substantial advantage, according
to a static evaluation. Apart from the evaluation func-
tion, the heuristic requires an additional function that
returns a value indicating the quietness of a position.
This function returns a value in the range (0,∞), where
a high value indicates a position with many threats. Var-
ious positional attributes are used in the scoring, such
as is the side to move in check, or a piece is hanging.

More formally: let e() be the evaluation function, and
t() be the function that scores threats against the side to
move. A node v is called a fail high node if e(v)− t(v) ≥
β, where β is the upper-bound used when v is searched.
In a null-window search to depth d, fail-high nodes are
searched only to depth d − 1. The fail-high heuristic is
applied recursively in the null-window search.

4.4 Method of Analogies

The method of analogies [Adelson-Velskiy et al., 1975]

is a unique search reduction technique. It was imple-
mented in the KAISSA chess program. Given that a
move m loses material in position p, then it is possi-
ble to find necessary conditions, although they might be
insufficient, for move m to also lose material in other po-
sitions. Therefore, those positions need not be searched
further. The necessary conditions are derived by observ-
ing some geometrical relationship between positions and
knowing how pieces influence each other.

Although the method offers savings in terms of nodes
visited, the gain is largely offset by the time-costs of
computing the additional information needed to apply
the method. However, since the method was first pro-
posed tree-search techniques and software tools have ad-
vanced, possibly making it viable in a simplified form.
This method is well worth experimenting with.

5 A Case Study - Variable Null-move

Bound

Having looked at some existing forward pruning meth-
ods a natural next question to ask is how can they be
improved based on the observations we discussed ear-
lier? In this section we describe a new enhancement to
the null-move heuristic, variable null-move bound search,
that utilizes some of the aforementioned observations to
search more efficiently.

5.1 Idea

Goetsch and Campbell [1988] mention as a future re-
search idea the possibility of permitting a null-move cut-
off not only when a null-move search returns a value
greater or equal to β, but also if the returned value is
slightly less. For formally, a cutoff is done if v ≥ β − t,
t ≥ 0, where v is the value returned by the null-move
search and t is a small positive number that can be in-
terpreted as the value of a tempo. This allows null-move
cutoffs to be applied more frequently thereby reducing
the tree-size even further, although at the cost of intro-
ducing additional errors. Furthermore, they state that
the value of t must be lower than the actual value of a
tempo to avoid inadvertent cutoffs, and that the value
of t would be dependent on the evaluation function and
could vary during the course of the game. Both these
factors help reduce the risk of erroneous pruning.

The method we introduce here is based on the same
idea. However, we use a different approach for approxi-
mating t. Instead of having the value of t dependent on
the evaluation function, we let t vary according to how
likely we think an erroneous pruning decision affects the
principal variation. Also, in some parts of the tree we
allow the value of t to exceed what would normally be
considered an appropriate value for a tempo.

5

5.2 Implementation

First we need a metric to show how likely it is that a
pruning error affects the principal variation. The more
alternative moves a player has to refute the opponent’s
play, the less likely it is that an oversight in assessing
an individual node will affect the move decision at the
root (see the discussion with Figure 2). This suggests
that one metric is the number of potentially good alter-
native moves a player has on the path leading from the
root to the current node in the search tree. However,
there are a couple of difficulties. First, at cut-nodes only
one, or at most few, moves are considered, leaving us
with no information about the remaining ones. Second,
since programs commonly employ a null-window search,
for most nodes in the tree we have only bounds on the
actual value of a node, making it difficult to compare
the merits of any two moves. One approach would be
to perform additional shallow searches to estimate the
value of each move, but this would imply a consider-
able extra search overhead, possibly offsetting any gains.
Fortunately, there are more cost-effective means of ap-
proximating the number of potentially good alternative
moves. Most programs use the history-heuristic [Schaef-
fer, 1989] for move ordering. This heuristic gives a credit
to moves that cause a cutoff. We simply define a move
to be a potentially good alternative if it has a positive
history heuristic value. Although this is not the most
accurate approximation it is a cost-effective one.

We implemented the variable null-move bound heuris-
tic in The Turk2. The program uses principal variation
search, and null-moves are applied recursively with a
search reduction of 2. Several restrictions apply where
and when the null-move heuristic is done. For example,
a null-move is not allowed on the principal variation or if
the side to move is in check. Neither are two consecutive
null-moves allowed. Figure 3 shows how the null-move
heuristic is applied in the variable bound scheme. The
variable no pgam is the number of potentially good al-
ternative moves (as defined above) that are found on the
path from the root, but are still unexplored. A separate
count is kept for each player and is updated incremen-
tally as the tree is traversed.

In the current implementation the number of poten-
tially good alternative moves is recorded during a zero-
window search, with the exception of the first move ex-
panded at each node. The main reasons for this is that
the first move is most often taken from the transposi-
tion table and expanded before any legal moves are gen-
erated. Since we count the number of good alternative
moves for each level in the tree at the time of move gener-
ation, that information is not available to pass down for

2The Turk is a chess program developed at University of
Alberta by Yngvi Björnsson and Andreas Junghanns.

the first move. Since the no pgam count is not updated
for that level, this makes the program less aggressive in
pruning along these paths3.

if (NULLMOVE_OK()) {

int bound, t = 0;

if (!InNullMoveSearch()) {

if (no_pgam > 15) {

t = 20;

}

else if (no_pgam > 0) {

t = 10;

}

}

bound = beta - t;

Make (Nullmove);

score = -NWS (depth+1,-bound+1,max_depth-2);

Retract (Nullmove);

if (score >= bound) {

return (beta);

}

}

Figure 3: Variable bound null-move cutoff decision.

5.3 Experimental results

We did preliminary experiments to assess the viability of
the new heuristic. Three different variants of the chess
program (TTt) were matched against an unmodified ver-
sion of the program (TT), each using a different value for
the tempo, t. For two of the variants, TT10 and TT20, t

was set to a fixed constant, 10 and 20 respectively. The
third, TTvariable, varied the value of t using history data
(see above). The relationship between no pgam and t is
as shown in Figure 3, and was chosen based on some trial
and error tests. In a future implementation a more ap-
propriate relationship must be empirically determined.
Each match consisted of 40 games, with the time controls
set to 40 moves in 5 minutes. To prevent the programs
from playing the same game over and over, twenty well
known opening positions were used as a starting point.
The programs played each opening once from the white
side and once as black. The match results are shown in
Table 1. Of the three variants, TTvariable performed the
best, outplaying the original version with a 60% winning
percentage.

Although the preliminary results are encouraging, care
must be taken in interpreting them. First, more than 40
games are needed to reliably determine a difference in
playing strength between any two programs, and sec-
ond, games with actual tournament time controls also

3As the first move expanded is often the most critical one,
this implementation compromise might actually be beneficial.

6

Match Score Winning %
TT vs. TT10 20 - 20 50
TT vs. TT20 20.5 - 19.5 49
TT vs. TTvariable 16 - 24 60

Table 1: Match results

must be played. The preliminary results indicate that
this method has some potential and is definitely worth
refining and experimenting with, but more study is def-
initely needed to reach a final verdict.

6 Conclusions and Future Work

Important characteristics of forward pruning methods
such as risk-assessment, applicability, cost-effectiveness,
and domain-independency were discussed. We tried to
assess how well existing methods address these issues,
what the shortcomings are, and where to look for im-
provements.

Risk-assessment is one factor we think can be im-
proved. We proposed two ways of improving it, by con-
sidering:

• move dependency information, and

• the likelihood that erroneous pruning decisions in-
fluence the principal variation.

Pruning heuristics should be concerned with the ques-
tion: What is the likelihood of making an erroneous prun-
ing decision, and if an erroneous decision is made how
likely is it to affect the principal variation? Existing
forward-pruning methods generally do not consider the
second part of this question. When assessing risk, prun-
ing methods should not only speculate whether a subtree
contains a good continuation, but also if there are alter-
natives to any potentially overlooked continuation that
could preserve the principal variation. To answer these
questions the methods have to consider each node in the
context of its location in the game-tree, instead of look-
ing at each node (and the subtree below it) in isolation.

Because this work is still in a preliminary stage, there
are still many implementation details to be worked out.
However, some problems can be anticipated. One is that
such methods may require additional computing over-
head, which might result in having to restrict their ap-
plication to the upper part of the tree. Another is the use
of a transposition table. Because pruning will be done
partially depending on where the move is located in the
game-tree, transpositions complicate the issue; a move
pruned in one context might not be pruned in another,
and vice versa. In might be necessary to store additional
information in the transposition table to overcome this
lack of consistency.

We feel that there is still considerable scope for im-
provement in selective depth-first search, and we in-

tend to develop new forward-pruning methods based on
the observations mentioned in this paper. Hopefully,
some of the existing pruning methods can also be im-
proved. Some preliminary experiments with the null-
move heuristic indicate that it is possible.

References

[Adelson-Velskiy et al., 1975] G. M. Adelson-Velskiy,
V. L. Arlazarov, and M. V. Donskoy. Some meth-
ods of controlling the tree search in chess programs.
Artificial Intelligence, 6(4):361–371, 1975.

[Beal, 1990] D. F. Beal. A generalized quiescence search
algorithm. Artificial Intelligence, 43:85–98, 1990.

[Buro, 1995] M. Buro. ProbCut: An effective selective
extension of the alpha-beta algorithm. ICCA Journal,
18(2):71–76, 1995.

[Feldmann, 1997] R. Feldmann. Fail high reductions. In
Advances in Computer Chess 8, June 1997. To appear.

[Goetsch and Cambpell, 1988] G. Goetsch and M.S.
Cambpell. Experimenting with the null move heuris-
tic in chess. In AAAI Spring Symposium Proceedings,
pages 14–18, 1988.

[Junghanns et al., 1997] A. Junghanns, J. Schaeffer,
M. Brockington, Y. Björnsson, and T. Marsland. Di-
minishing returns for additional search in chess. In
Advances in Computer Chess 8, June 1997. To ap-
pear.

[Nau, 1980] D. S. Nau. Pathology on game trees: A sum-
mary of results. In Proceedings of the ACM National
Conference on Artificial Intelligence, pages 102–104,
1980.

[Palay, 1983] A. J. Palay. Searching with probabilities.
PhD thesis, Carnegie-Mellon Univ., Boston, Mass.,
1983. See also (1985), book same title, Pitman.

[Reinefeld, 1983] A. Reinefeld. An improvement to the
Scout tree search algorithm. ICCA Journal, 6(4):4–14,
1983.

[Schaeffer, 1989] Jonathan Schaeffer. The history
heuristic and alpha-beta search enhancements in prac-
tice. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11(1):1203–1212, 1989.

[Smith and Nau, 1994] S. J. J. Smith and D. S. Nau.
An analysis of forward pruning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94), volume 2, pages 1386–1391, 1994.

7

