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ABSTRACT

Mammography is an effective method for detecting breast cancer
at the earliest possible stage. Mass screening of mammograms
requires the development of automated systems to diagnose breast
cancer reliably and efficiently. This paper reports an approach to the
detection of one marker, circumscribed masses, using a combination
of detection criteria used by experts. The cirteria include the shape,
brightness contrast and uniform density of tumor areas.

Qur techniques employ medified median filtering to enhance
mammogram images and template matching to detect breast tumors.
In the template matching step, suspicious areas are picked by thres-
holding the cross-cormrelation values and a percentile method is used to
determine a threshold for each film. In addition, two tests are
designed to remove false alarms from the resulting candidates. The
results obtained with 24 test images are reported.

1. INTRODUCTION

Breast cancer is a leading cause of death among all cancers for women of middle
age and older [15]. Although no prevention exists at this time, early detection and sub-
sequent surgery is expected to result in lower death rates. Mammography has been
found to be an effective breast screening technigue and mass screening of mammogram
is being considered as a potential approach to detect breast cancers at the earliest possi-
ble stage [18]. A major problem in such a screening program is that it involves the
interpretation of the large volume of mammograms by expert radiologists. Due to the
shortage of radiologist and the need to improve the cost benefit ratio of such a program,
the need to construct computer-aided systems to diagnose breast cancer in mammogram

becomes apparent.

In diagnosing breast cancer, radiologists use several indicators or “markers” in
mammograms, all being defined by a set of criteria, such as area, brightness contrast
and shape. Our long-term goal is to implement an expert system for breast cancer diag-
nosis based on the same set of markers and criteria the experts use. At a first stage, we
are concerned with the reliable detection of likely tumor sites. Our major obstacle in
this approach is the fact that experts’ verbal descriptions of markers cannot be easily
translated into a set of image analysis procedures. This paper is concerned with our

approach to the detection of one marker, circumscribed masses, using a combination of




.

detection criteria considered relevant by experts.

2. BACKGROUND

The evaluation of mammograms by computer can be roughly divided into three

[5]

sequential processes

(1) enhancement of mammogram images,
(2) extraction of local descriptive features from suspicious areas, and

(3) feature-based classification of these areas (into non-tumors, benign or malignant

fumor areas).

In the past, several groups {1’17], have dermnonstrated the potential use of comput-
ers in feature extraction and classification of suspicious areas. Since human assistance
is needed to locate these areas before the computer processes the images, these systems
are not fully automated. Hand ez al. [8] have developed a method to identify and locate
abnormal areas in xeromammograms. Their approach which utilized fourteen texture
parameters and two shape parameters together with a comparison of left and right breast
images, showed a very high false alarm rate. Since xeromammograms are produced
using a different recording technique than that used for mammograms, the performance

of Hand et al.’s method with mammogram film cannot be directly determined.

Many computer-aided techniques have been developed for the analysis of medical
images, but their effectiveness is very often application dependent. This is analogous to
the fact that radiologists adopt different strategies to analyze different types of medical
images. In addition, different imaging processes produce images with different charac-
teristics which in turn affect the effectiveness of a given image processing technique.

[12]

For instance, in the detection of Pneumonconiosis Opacities in chest X-Ray , the

well defined equal-density contours within opacities provide a firm support for the logic
upon which Li, Savol and Fong’s region growing algorithm is based. Therefore, it is
obvious that the choice of technique used in locating suspicious areas in mammograms

is directly related to the criteria used by experts and to the characteristics of




mamogram images.

In the case of circumscribed masses, the criterion used by radiologist for distin-
guishing “suspicious” from “clearly normal” regions on a film mammogram is that a
suspicious area is a bright (comparing with surrounding tissues) and approximately cir-
cular area of uniform density, and of varying size [16]. Inspite of these characteristics,
locating suspicious areas in mammograms is difficult for a number of reasons. The
small differences in density between normal and tumorous tissues in human breast
create little contrast between a tumor area and its background in the image. This con-
trast is further reduced in the filming and digitization process of the mammogram
images. In addition, the presence of noise and other anatomical structures, such as
ducts and glands increases the background variations of tumor areas. The boundaries of
tumor areas are fuzzy and in some instances, boundaries may be only partially visible.
Together with the small size of early-stage tumors, théy defeat any attempt to segment
the image by global gray level thresholding technique. Also, they make some tumor
areas lose some of the well-defined characteristics mentioned above. To tackle these
difficulties, a modified median filter was designed to remove minor background noise

inside and outside tumor areas while preserving edges of tumor sites.

3. IMAGE ENHANCEMENT

There are two possible approaches to enhance mammographic features. One is to
increase the contrast of suspicious areas and the other is to reduce their background
variations. Some techniques for contrast enhancement of film mammograms have been
suggested earlier [4’7}. Their method is based on adaptive neighbourhood processing
with a set of contrast enhancement functions or an optimal one to enhance the contrast
of mammographic features. In our research, we take the other approach and enhance
the images by reducing the background variations while preserving the contrast of

suspicious areas in the images.




3.1. Median Filtering

Conventional low-pass filtering techniques are inappropriate for enhancing mam-
mograms, because they tend to blur the image and cause further loss of the fuzzy tumor
edges. It is suggested in [10] that a non-linear filter, the median filter, is particularly
suitable for enhancing medical images due to its ability to provide both noise reduction

and edge preservation.
The two-dimensional median filter is defined as follows :

For a window W (i,j) centered at image coordinates (i,j) the median filtering out-
put is
P.

i = median { Py : () € W(i,j) [1]

where P,-j is the gray level of the pixel at image coordinate (i ,j ). (See [14], vol 1,
p. 261-264)

By considering the diversity of information in an image and the features we want
to select, enhance, suppress or uncover, it is believed [10] that non-linear filtering tech-
niques are sometimes advantageous over linear techniques because they are versatile
and adaptable to local conditions of noise level and object structure. Some theoretical
background about median filters can be found in [3’6]. Huang et al. presented a fast
algorithm for two-dimensional median filtering, the algorithm was reported as much
faster than conventional sorting methods. For a window size of nxn, the computing
time required is O (n) [9]. In addition, modifications of median filter which combine
desirable properties of both linear and non-linear filters have been developed by Lee and

Kassam [11].

3.2. Selective Median Filtering

Experimental results showed that the edge preservation power of a pure median
filter is not sufficient enough for enhancing mammogram images due to the fuzziness of

the tumor boundaries. In order to further preserve the tumor boundaries, a modification
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of the median filter is introduced and is termed as Selective Median Filter (SMF). The

two-dimensional Selective Median Filter is defined as follows :
For a window W (i ,j) centered at image coordinates (i,j), the selective median

filtering output is

A

P = median P,-~j- : (i',j') e W(i,j) and

Pip=Py | < T] 2]

where T is a threshold and Pj; is the gray level of pixel at image coordinate (i,f).

Thus, in computing the median, the set of pixels is restricted to those with a
difference in gray level no greater than T'. By adjusting T, the amount of edge smearing
can be controlled. This modification of the median filter is related to selective averag-
ing schemes developed for linear filters [14] that have shown good results in improving

the edge preserving power of linear low-pass filters.

In general, to achieve sufficient noise suppression, one needs either a filtering tech-
nique allowing a large window size, or the filter has to be applied repeatedly to the data
[11]. Median filters act as low-pass filters in homogeneous areas and as their window
size increases, they respond with increasingly narrow pass-bands. Huang has shown
that as the window size increases, noise is reduced but distortion is introduced into the
actual signal [6]. Therefore in using the SMF, we are forced to iterate the filtering

operation to achieve sufficient noise reduction.

The pure median filter has no design parameters other than the window size and
cannot be adjusted to the given signal and noise characteristics.  Such filtering may
degrade important information in some type of images or possibly introduce artifacts
[10}. The selective median filter, SMF, has three design parameters that can be varied to
adjust the filter to the noise characteristics of all mammogram images. The parameters
are the window size W, the gray level difference threshold T and the number of itera-
tions. The effect of the SMF is mainly controlled by the threshold 7. If T is small, the
edge preserving power of SMF is strong, but its smoothing effect will be small. If T is

large, the SMF behaves the other way round.




3.3. Experimental Results

To evaluate our approach, a test set of 24 mammogram films was used. The suspi-
cious area(s) on each film was marked according to the diagnosis of expert radiologists.
Images of the 24 film mammograms were digitized by a TV camera into a square array
of 512x512 pixels with 256 possible gray levels at each pixel. To save processing time,
each 512x512 array was further reduced to a 256x256 array by a neighbourhood-
averaging method with a window size of 3x3 pixels. All images, except one, contained
circumscribed masses. But in evaluating the SMF performance, other sites which were

classified as “suspicious” by the experts were included as objects to be detected.

To estimate the maximum value for parameter 7', the contrast between pixels in
many tumor areas was checked. It was noted that the contrast ranged from 5 to 15 grey
levels. Although the use of a large threshold value can remove noise more effectively, a
smaller threshold value was used to preserve edges of all suspicious areas. Best perfor-
mance of the SMF was found for window size W = 9x9, number of iteration = 5 and

edge threshold T = 5.

With selective median filtering, background variation is reduced in the filtered
images while the boundaries of all suspicious areas are preserved. It is noted that the
filtered images have mottled appearance and this is caused by the iteration of the filter,
This effect is not desirable and it may produce false alarms in the tumor detection pro-
cess. However, this problem can be easily overcome by applying a false alarm test using

the original unfiltered image. This test is discussed in detail in section 4.

To see the effect of the SMF, a high-pass filter (Laplacian) was applied to the
filtered images and the result for the best case (with a prominent tumor area) and the
worst case (with a tumor area which is difficult to detect even by radiologists) are
shown in Figures 5 and 6. In Figure 5, the boundary of the tumor area appears as a
closed ring and the rest of the image is quite clear. But in Figure 6, the boundary of the
tumor area appears as a broken ring and there is a lot of noise both inside and outside

the tumor area. The original images are shown in Figures 1 and 2 and the SM-filtered




images are shown in Figures 3 and 4.

The performance of SMF does not improve much after the 5th iteration if the other
two parameters (W and T') are kept constant. This is in agreement with Gallarger
and Wise’s observation that every signal can only be reduced down to a certain point no
matter how many times we apply the median filter [4]. This suggested the concept of a
filtered passband and stopband. At its stopband the filter is invariant to subsequent

filtering.

4. Locating Tumor Areas

By examining the criteria used by radiologist to extract suspicious areas from film
mammograms, we notice that the approximately circular shape and the brightness
homogeneity of tumor areas are important characteristics used in detecting suspicious
areas. (Note that edge fuzziness is an additional indicator of circumscribed masses, but
it is not used in our present work yet.) Among the technigues developed for object
detection, two approaches which make use of the shape characteristic of the target
object are being considered. One is to use the region information by applying algo-
rithms to search for a homogeneously-dense region with circular shape. The other
approach is to use the boundary information on a high-pass filtered image and to detect
ring like structures. The result reported in this paper is based on the first approach.

To find regions of uniform density and approximately circular shape, we use a
template matching technique. Template matching is a classical approach to object
detection. To locate an object, an image or a search area is searched for the object
represented by a small image “window” or “template”. In the case of tumor detection,
the search area is a SM-filtered mammogram image and the template is an integer array

which represents an “ideal’ tumor.

4.1, Template Definition

The template used to match tumors with a diameter of 5 pixels is shown in Figure

7. The templates are designed so as to ascribe varying weights to points within the
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templates. The circular patch of 1’s in the centre of the template represents a tumor
area having uniform density. To allow tumor shape to deviate slightly from a perfect
circle, the paich of 1’s is bounded by a ring of 0’s. This is a “don’t care” area in the
match. The background of the patch is filled with -1’s instead of 0’s, because we are
looking for a light object on a dark background. The size of the ring of 0’s and the
background in each template increase in proportion to the size of tumor the template
represents. In addition, the shape of the template is circular instead of squared, so as to
increase the sensitivity of the match. By using a circular template, all the neighboring

pixels which locate evenly around the tumor are checked in the matching process.

4.2, Similarity Measure

The measure most widely used for the similarity measure between two subimages
is cross-correlation. Let S be the filtered image, an L XL array of pixels each taking one
of K grey levels; W be the template, which is M xM with M « L. Each MxM subim-
age of § can be uniquely referenced by its upper left corner coordinates (i,7). There are
(L =M+ L~M+1) such (i,j)’s.

The unnormalized cross-correlation between image and template is defined as

M M

RGjY=TF I Wkm)S(i+k—1,j+m—1) 3]
k=1 m=1

and tumor locations can be deﬁﬁed as peaks of R ({,,j) over the whole image area.

One disadvantage of using unnormalized cross-correlation is that it is sensitive to
properties of the image that may vary with the offset, such as its average brightness. As
a result, the maximum of the unnormalized correlation does not always yield the real
location with the exact match [2]. Improved detection performance is achieved by

using normalized cross-correlation, which is defined as L14] :

EE(W — Hy )ZE(S - M;)
VEZW —1,)° T3S ~ 1)

where n is the radius of the circle in a template, [, is the mean of the template

(4]

Rn(iaj) =
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and i, 1s the mean of subimage.

This normalized cross-correlation is designed to handle both a constant gain and a
constant offset. To illustrate this, suppose the pixel intensities from the subimage are
equal to a constant factor (gain) times the intensities from the template, plus a constant
offset. Let the gain be a and the offset be b. Subtracting the means removes the prob-
lem of the offset; dividing by the variance takes care of the gain, As a result its absolute
value equals one if and only if W(i,j) = axS(i,j} + b. This can lead to muitiple match
candidates if several areas of different relative gains and offsets resemble each other.
However, this merely introduces false alarms, but does not discard true suspicious

areas.

One disadvantage of using correlation as the similarity measure is that the orienta-
tion and size of the target object may disturb the match {13]. However, the shape of the
tumor area is circular, therefore, the match is orientation invariant. To cope with size
variations of the object, twelve templates with different sizes are used to match against
each of the 24 images. The circle in the smallest template has a radius of two pixels,

where as that of the largest template has a radius of fourteen pixels.

4.3, Criteria For Selecting Suspicious Areas

Due to the design of the templates, a circular dark object on a bright background
will produce a large negative cross-correlation value. Hence, locations in the images

which have negative cross-correlation values are not considered as suspicious areas.
To pick suspicious areas, the following criteria are considered:
(1) pick the location with the maximum cross-correlation value,

(2) pick the locations with the maximum cross-correlation value for each of

the twelve templates used,
(3) pick all the locations with cross-correlation value exceeding a threshold.

Although most suspicious areas have the maximum cross-correlation value when
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being matched with one of the twelve templates, it is not possible to use the first two
criteria in this application. This is due to the fact that 2 mammogram film may contain
more than one suspicious area, and several suspicious areas in the same mammogram
film may have the same size. Hence, a more relaxed criterion must be used. The third
criterion requires a threshold to be found for each image film. A single threshold for all
images is not sufficient, because of the following reason. It is observed that the breast
image in some mammograms, such as the one shown in Figure 2, contain a lot of glands
and fatty tissues which produce a very rich texture in the images. As a result, these
images create many false suspicious areas that have large cross-correlation values.
Some of these values are even greater than those of the suspicious areas in other images.
Therefore, a single threshold will either produce too many false alarms or miss some

true suspicious areas.

A percentile method (5] is used to determine a threshold for each image. We
assume that suspicious areas only occupy a fixed percentage of the breast area. Hence,
by analyzing the normalized cross-correlation distribution of an image, we choose a
threshold value, R, such that q percent of the locations in the image having a correlation
larger than R are considered as suspicious areas. This corresponds to mapping q per-

cent of the locations into suspicious areas and the value of q is constant for all images.

To implement this scheme, the largest among the twelve cross-correlation values
(corresponding to the twelve templates) computed for each image coordinate was stored
in a two-dimensional array and the corresponding radius was stored as well. To save
processing time, locations which had a cross-correlation value less than 0.2 were dis-
carded as insignificant locations. Then the centre of each “significant” locations in the
array was determined based on the given radius and cross-correlation value. Among
these locations, q percent, having the largest cross-correlation value were picked as
suspicious areas in each image. The x,y-coordinates and radius of each suspicious area

were stored in a list for further examinations.
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4.4. False Alarm Tests

Two tests are designed to discriminate false alarms produced by the template
matching method from true suspicious areas picked by experts. The first test is con-
structed based on the fact that at the centre of a true suspicious area, the cross-
correlation value will not fall off significantly in its immediate neighborhood. In other
words, in a true suspicious area, there must be a cluster of pixels that produce high
cross-correlation value when being matched with a template having the same size as the
suspicious area. Recall that there is a “don’t care” ring of (s in each template ensuring

such a clustering phenomenon.

As mentioned earlier, some false alarms are due to artificial phenomenon ¢reated
by the filtering process. In the original image, a cluster of high correlation values will
not exist in these areas. Hence, by using the original images instead of the filtered ones,
this type of false alarms can be removed by this test as well. In this test, the immediate
neighborhood of the centre of a suspicious area is defined by a 3x3 cross-shaped win-
dow. To detect the cluster at the centre of each suspicious area, the window is centred
at the area in the original image and the cross-correlation value of the pixels inside the
window are calculated using the known tumor radius. Then the average of these
cross-correlation values are taken. If this average value is less than the threshold, R, of

;he particular image, the suspicious area is discarded as false alarm.

Tt is observed that many of the false alarms are caused by the presence of noise and
anatomnical structures in the image and their contrast is very small when compared with
that of the true suspicious areas. A second test is designed to discriminate these false
alarms. In this test, a gray level histogram is constructed in each suspicious site using
the known tumor radius. After subsequent smoothing of the histogram, locations which
have a single-peaked histogram are rejected as possible suspicious areas. This test
relies heavily on the structure of the gray level histogram, which contains peaks and
valleys corresponding to gray level subpopulations of the image. A tumor and its sur-

rounding area (represented by histogram peaks) are assumed to differ in average gray
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level. Hence, a true suspicious area must have at least two peaks in its gray level histo-

gram and the peaks should remain after subsequent smoothing of the histogram.

4.5. Experimental Results

In determining the value of q, it was noted that 2.5 percent is a reasonable cut off
point for most percentile method of this kind. Also, investigations showed that our

technique performed well using such q value.

The cross-correlation distribution curves built for the images shown in Figure 3
and 4 are shown in Figure 8 and 9 respectively. Comparing the threshold values chosen
for the images in Figure 3 and 4, we can see that the percentile method is capable of
choosing thresholds that adapt to characteristics of different images. For example, the
image in Figure 4 has very rough background texture whicn prodyce Anany locations
with high correlation value. Therefore, a large threshold vaiue 1s thesen to reduce the

number of suspicious area reported.

After applying our technique to the enhanced images, all suspicious areas were
found, but six false alarms were reported, on average, in each of the 24 images. How-
ever, the two false alarm tests reduced the average number of false alarm found to 1.5.
In addition, no suspicious area was reported in the image which contains no tumor. The

results are summarized in table 1.

5. Discussion

The result we have obtained with our approach is quite encouraging. By combin-
ing three criteria, namely the contrast, the uniform density and the circular shape of
tumor areas, the detection algorithm is capable of locating all the tumor areas with a
few false alarms. Nevertheless, work is in progress to further improve the tumor detec-

tion algorithm and further testing on a large number of samples will be conducted.

The computational cost of our template matching method is very high. Some

efforts are presently devoted to find ways to speed up the computation at each test loca-
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tion in a mammogram image. One way to speed up the computation is to use the Fast
Fourier Transform algorithm. However, the cost in normalizing the images before
applying the transformation may dwarf the benefit in- computing the correlation in the

frequency domain. But the feasibility of this method still awaits further investigation.

In addition to improving the present techniques, we are extending the techniques
developed for detection of circumscribed mass to the detection of other markers. Even
though the criteria in detecting circumscribed mass and other markers are closely
related, we expect the need to incorporate additional criteria for detecting other markers

reliably.
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Figure 1. Mammogram with easily detectable circumscribed
mass at position indicated by markers on edge of the figure.

Figure 2. Mammogram with circumbscribed mass that is
difficult to detect. Its position is indicated by markers on edge

of the figure.




Figure 3. Selective Median filtered version of Figure 1.

Figure 4. Selective Median filtered version of Figure 2.




Figure 5. Laplacian of Figure 3 showing tumor boundary as a
closed ring.

Figure 6. Laplacian of Figure 4 showing partial tumor boundary
and many "false alarm" edges.




Figure 7. A template with a circle of diameter 5
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Table 1. Experimental results

Number of film tested =24
Total number of true suspicious areas =29

Average number of true suspicious areas per film =1.2

Hit-rate of our technique = 100%

Average number of false alarms found per film* =6

*  After applying two false alarm tests, the average

number of false alarms is reduced to 1.5
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Figure 9. A distribution curve of normalized cross-correlation
values computed for the image in Figure 4. Using a q value of
2.5, the correlation threshold of this image is 0.67.
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