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Abstract. We introduce a rule-based approach for learning and
recognition of complex actionsin terms of spatio-temporal attributes
of primitive event sequences. During learning, spatio-temporal deci-
sion trees are generated that satisfy relational constraints of the train-
ing data. Theresulting rules, in form of Horn clause descriptions, are
used to classify new dynamic pattern fragments, and general heuristic
rules are used to combine classification evidences of different pattern
fragments.

1 Introduction

Most current techniques for the encoding and recognition of actions
use numerical machine learning models which are not relational in
so far as they typically induce rules over numerical attributes which
are not indexed or linked via an underlying data structure (e.g. arela-
tional structure description or adirected acyclic graph, DAG). There-
fore most learning models assume that the correspondence between
candidate and model featuresis known before rule generation (learn-
ing) or rule evaluation (matching) occurs. This assumption is dan-
gerous when large models or test data are involved, asisthe casein
complex actionsinvolving, for example, thetracking of multiplelimb
segments of human operators. On the other hand well known sym-
bolic relational learners like Inductive Logic Programming (ILP) are
not designed to apply efficiently to numerical data. So, although they
are suited to induction over relational structures (e.g. Horn clauses),
they typically generalize or specialize over the symbolic variables
and not so much over numerical attributes. More specifically, it is
very rare that symbolic representation explicitly constrains the types
of permissible numerical learning or generalizations obtained from
training data.

Over the past six years we have explored methods for combin-
ing the strengths of both sources of model structures [1, 2, 3] by
combining the expressiveness of ILP with the generalization mod-
els of numerical machine learning to produce a class of numerical
relational learning which induce over numerical attributes in ways
which are constrained by relational pattern or shape models. Our
approach, Conditional Rule Generation (CRG), generates rules that
consist of attributed linked lists of pattern (shape) features which,
together, completely cover the training data but the generated rules
are ordered with respect to their discriminatory power with respect
to both attributes and features (see Figure 1).

Since CRG induces over a relational structure it requires gen-
eral model assumptions, the most important being that the models
(shapes) are defined by a labeled graph where relationa attributes
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Figurel. Example of input data and conditional cluster tree generated by
CRG method. The left panel shows segmented input data with a sketch of
the relational structure descriptions generated for these data. The right panel
shows a cluster tree generated for the data on the left. Classification rules of
theform U; — B;; — U; ... are derived directly from thistree [6].

are defined only with respect to neighboring vertices. Such assump-
tions constrain the types of unary and binary features which can be
used to resolve uncertainties (Figure 1).

In this paper, we describe CRGs, a spatio-temporal extension of
CRG for learning dynamic patterns and its application to animated
scenes. We discuss representational issues, rule generation models
and rule application. Theinclusion of time makes modeling and algo-
rithmic issues more challenging and requires the addition of further
assumptions to make the problem tractable.

2 Conditional Rule Generation

In Conditional Rule Generation [1], classification rules for patterns
or pattern fragments are generated that include structural pattern in-
formation to the extent that is required for classifying correctly a
set of training patterns. CRG analyzes unary and binary features of
connected pattern components and creates atree of hierarchically or-
ganized rules for classifying new patterns. Generation of arule tree
proceeds in the following manner (see Figure 1).

First, the unary features of all partsof all patterns are collected into
aunary feature space U in which each point represents a single pat-
tern part. The feature space U is partitioned into anumber of clusters
U;. Some of these clusters may be unique with respect to class mem-



bership and provide a classification rule: If a pattern contains a part
pr Whose unary features @(p,) satisfy the bounds of a unique clus-
ter U; then the pattern can be assigned a unique classification. The
non-unique clusters contain parts from multiple pattern classes and
have to be analyzed further. For every part of anon-unique cluster we
collect the binary features of this part with al adjacent partsin the
pattern to form a (conditional) binary feature space UB;. The binary
feature space is clustered into a number of clusters UB;;. Again,
some clusters may be unique and provide a classification rule: If a
pattern contains a part p, whose unary features satisfy the bounds
of cluster U;, and there is an other part ps, such that the binary fea-
tures E(pr, ps) of the pair {(p,,ps) satisfy the bounds of a unique
cluster UB;; then the pattern can be assigned a unique classification.
For non-unique clusters, the unary features of the second part ps are
used to construct another unary feature space UBUj; that is again
clustered to produce clusters UBU ;. This expansion of the cluster
tree continues until all classification rules areresolved or amaximum
rule length has been reached.

If there remain unresolved rules at the end of the expansion pro-
cedure (which is normaly the case), the generated rules are split
into more discriminating rules using an entropy-based splitting pro-
cedure where the elements of a cluster are split along a feature
dimension such that the normalized partition entropy Hp(T) =
(niH(Py) + naH(P2))/(n1 + n2) is minimized, where H is en-
tropy. Rule splitting continues until al classification rules are unique
or some termination criterion has been reached. This results in a
tree of conditional feature spaces (Figure 1), and within each fea-
ture space, rulesfor cluster membership are developed in the form of
adecision tree. Hence, CRG generates atree of decision trees.

CRG generates classification rules for pattern fragments in the
form of symbolic, possibly fuzzy Horn clauses. When the classifi-
cation rules are applied to some new pattern one obtains one or more
(classification) evidence vectors for each pattern fragment, and the
evidence vectors have to be combined into a single evidence vector
for the whole pattern. The combination rules can be learned [12],
they can be knowledge-guided [7], or they can be based on general
compatibility heuristics[2]. In thelatter approach, sets of instantiated
classification rules are analyzed with respect to their compatibilities
and rule instantiations that lead to incompatible interpretations are
removed. Thisis particularly important in scenes composed of mul-
tiple patterns where it is unclear whether achainp; —p; —... —pn
of pattern parts belongs to the same pattern or whether it is “cross-
ing the boundary” between different patterns. Through application
of these compatibility heuristics, we solve two problems at the same
time, namely classification of pattern parts and segmentation of dif-
ferent patterns, eliminating the requirement of having to group the
image into regions corresponding to single objects before the image
regions have been classified.

3 CRGgr

We now turn to CRGs, ageneralization of CRG from a purely spa-
tial domain into a spatio-temporal domain. Here, data consist typ-
icaly of time-indexed pattern descriptions, where pattern parts are
described by unary features, spatia part relations by (spatial) bi-
nary features, and changes of pattern parts by (temporal) binary fea-
tures. In the following sections, we discuss representational issues,
rule generation models, learning paradigms and applications of the
CRGst approach. In contrast to more popular temporal learners like
hidden Markov models [11] and recurrent neural networks [4], the
rules generated from CRGst are not limited to first-order time dif-

ferences but can utilize more distant (lagged) temporal relationsasa
function of the data model and uncertainty resolution strategies. At
the same time, CRGgr alows for the generation of non-stationary
rules, unlike stationary models like multivariate time series which
also accommodate correlations beyond first-order time differences
but do not allow for the use of different rules at different time peri-
ods.

3.1 Representation of Spatio-Temporal Patterns

A spatio-temporal pattern is defined by a set of labeled time-indexed
attributed features. A pattern P; is thus defined in terms of P; =
{pi1(@ : tir),-..,pin(@ : tin)} Where p;;(@ : t;;) corresponds
to part j of pattern ¢ with attributes @ that are true at time 5. The at-
tributes @ are defined with respect to specific labeled features, and are
restricted to arity 1 (unary, i.e. single feature attributes) or 2 (binary,
i.e. relational feature attributes), that is, @ = {, bs, li} (seeFigure2).
Examples of unary attributes 4 include area, brightness, position;
spatial binary attributes b, include distance, relative size, and tempo-
ra binary attributes b; include changesin unary attributes over time,
such as size, orientation change, long range position change, etc. Our
data model and consequent rules are subject to spatial and temporal
adjacency (in the nearest neighbor sense) and temporal monotonic-
ity, i.e. features are only connected in space and time if they are spa-
tially or temporally adjacent and that the temporal indices for time
must be monotonically increasing (“predictive’ model) or decreas-
ing (“causal” model). Although this limits the expressive power of
our representation, it is still more general than strict first-order dis-
crete time dynamical models such as, for example, hidden Markov
models or Kalman filters.

Figure 2. Illustration of a spatio-temporal pattern consisting of three parts
over three time-points. Undirected arcs indicate spatial binary connections,
solid directed indicate temporal binary connections between the same part at
different time-points, and dashed directed arcs indicate temporal binary
connections between different parts at different time-points.



For CRGgt an “interpretation” then involves determining the
smallest set of linked lists of attributed and |abeled features, causally
indexed (i.e. the starting times must be monotonically indexed) over
time, which maximally index a given pattern, and it is defined by di-
rected paths within the directed acyclic graph (DAG) which covers
all examples and classes in the training set as,illustrated in Figure 2.

3.2 RulelLearning

CRGs generates classification rules for spatio-temporal patternsin-
volving asmall number of pattern parts subject to the following con-
straints: 1) The pattern fragments involve only pattern parts that are
adjacent in space and time, 2) the pattern fragmentsinvolve only non-
cyclic chains of parts, 3) temporal links are followed in the forward
direction only to produce causal classification rules that can be used
in classification and in prediction mode.

Rule learning proceeds in the following way: First, the unary fea-
tures of all parts (of dl patterns at al time points), @(pit), ¢ =

1,...,n,t =1,...,T, are collected into a unary feature space U
in which each each point represents a single pattern part at any time
pointt = 1,...,T. From this unary feature space, cluster tree ex-

pansion can proceed in two directions, in the spatial domain and in
the temporal domain. In the spatiadl domain cluster tree generation
proceeds exactly as described in Section 2 following spatial binary
relations, etc. In the temporal domain, binary relations can be fol-
lowed only in strictly forward (predictive) or backward (causal) di-
rections, analyzing recursively temporal changes of either the same
part, by (pit, pit+1) (solid arrows in Figure 2), or of different pattern
parts, by (pit, pje+1) (dashed arrowsin Figure 2) at subsequent time-
points. This leads to a conditional cluster tree as shown in Figure 1,
except that the relational attribute spaces B can be either spatial or
temporal, in accordance with the usual Minimum Description Length
(MDL) criterion for Decision Trees[9].

CRGsr produces classification rules of theform U; — B;; — U; —
Bj, — ... involving spatial and/or temporal binary relations. The

resultant Horn clause rules are of the form:
class«<  part(i at timej with attributes k) AND

part relations(ij at time j+n with attributes u) AND
part(l at time j+m: with attributes s) AND

These rules cover all training examples and define a path in the DAG
discussed above.

From the empirical class frequencies of al training patterns one
can derive an expected classification vector, or evidence vector Eas
sociated with each rule. We can also compute evidence vectors for
partia rule instantiations, again from empirical class frequencies of
non-terminal cluster spaces. Hence, an evidence (classification) vec-
tor E is available for every partial or complete rule instantiation, as
discussed in the next section.

3.3 RuleApplication

A set of classification rulesis applied to a spatio-temporal patternin
thefollowing way. Starting from each pattern part (at any time point),
all possible sequences (chains) of parts are generated using parallel,
iterative deepening, subject to the constraints the only adjacent parts
are involved and no loops are generated. Note, again, that spatio-
temporal adjacency and tempora monotonicity constraints are used
for rule generation. Each chain is classified using the classification
rules. Expansion of each chain S; = < p;1,pi2,...,pin > termi-
nates if one of the following conditions occurs: 1) the chain cannot

be expanded without creating a cycle, 2) all rules instantiated by S;
are completely resolved, or 3) the binary features b, (p;;, pij +1) O
be(pij, pij+1) do not satisfy the features bounds of any rule.

If achain S cannot be expanded, the evidence vectors of al rules
instantiated by S are averaged to obtain the evidence vector E(S) of
thechain S. Further, the set S, of all chains that start at p is used to
obtain an initial evidence vector for part p:

Ep) =z > ES). M

SeS,

where #(S) denotes the cardinality of the set S. Evidence combina-
tion based on (1) isadequateif itisknown that asingle patternisto be
recognized. However, if the test pattern consists of multiple patterns
then this simple scheme can easily produce incorrect results because
some some part chains may not be contained completely within asin-
gle pattern but “cross’ spatio-temporal boundaries between patterns.
This occurs when actions corresponding to different types cross can
intersect in time and/or space. These chains are likely to be classi-
fied in a arbitrary way. To the extent that they can be detected and
eliminated, the part classification based on (1) can be improved.

We use general heuristics for detecting rule instantiations involv-
ing parts belonging to different patterns. They are based on mea-
suring the compatibility of part evidence vectors and chain evidence
vectors. More formally, the compatibility measure can be character-
ized asfollows. For achain S; =< pi1, pi2, ---, Pin >,

(8 = = 3 B(pa) @
k=1

where B (pir) refersto the evidence vector of part p;s. Initialy, this
can be found by averaging the evidence vectors of the chains which
begin with part p;,. Then the compatibility measure is used for up-
dating the part evidence vectors using an iterative relaxation scheme
(8l
By =a | X aeeEs) ). @
€5p

where @ is the logistic function, Z a normalizing factor Z =
Yses, w®(S), and the binary operator ® is defined as a
component-wise vector multiplication [a )" ® [c d]T = [ac bc]T.
The updated part evidence vectors then reflect the partitioning of the
test pattern into distinct subparts.

4 Example

The CRGgs approach isillustrated in an example where three differ-
ent variations of grasp movements were learned: 1) where the hand
moved in a straight path to the object, 2) where an obstacle in the
direct path was avoided by moving over it, and 3) where the obstacle
was avoided by moving around it.

The movements were recorded using a Polhemus system [10] run-
ning at 120Hz for three sensors, one on the upper arm, one on the
forearm, and one on the hand (see Figure 3). Each movement type
was recorded five times. From the position data (z(t), y(¢), z(t)) of
these sensors, 3-D velocity v(t), acceleration a(t), curvature k(t),
and torsion 7 (t) were extracted. Sample time-plots of these measure-
ments are shown in Figure 4.

For these data, the definition of the spatio-temporal patterns is
straightforward. At every time point, the patterns consist of three



Figure3. Grasping movement around an obstacle. The movement sensors
were placed on the upper arm, the forearm, and the hand.
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Figure4. Sample timeplots of the movement sequences illustrated in
Figure 3. The left column shows traces for the upper arm, the middle column
for the forearm and the right column for the hand. The first row shows
time-plot for velocity (for a straight grasp movement), the second for
acceleration (for agrasp movement over an obstacle), and the third for
curvature (for agrasp movement around an obstacle). Each graph shows five
samples for each action type. All measurements have been normalized for

display purposes.

parts, one for each sensor, each part being described by unary at-
tributes 4 = [z,y,z,v,a,k,7]. Binary attributes were defined
by simple differences, i.e. the spatia attributes were defined as

—

bs(pit, pje) = @(pit) — u(pje), and the temporal attributes were
defined as by (i, pjt41) = @(pjer1) — @pit)-

Performance of CRGst was tested with aleave-one-out paradigm,
i.e. in each run, movement classes were learned using all but one pat-
terns, and the resulting rule system was used to classify the remain-
ing pattern. Pattern learning and pattern classification proceeded ex-
actly as described in Sections 3.2 and 3.3. Results of these tests are
shown in Table 1 for different attribute combinations for unary, spa-
tial binary and temporal binary relations. The last column indicates
what percentage of pattern points was classified correctly on aver-
age. Although each test pattern consisted of a single movement, this
was not assumed by the classification algorithm in order to show the
basic classification performance. Using the "single-movement” as-
sumption, e.g. in awinner-take-all scheme, would lead to somewhat
higher classification percentages.

The results show that classification performance varies, not un-
expectedly, with the choice of attribute sets. For the ssimple move-
ment patterns used here, position information, possibly enhanced by
velocity and acceleration information, was clearly sufficient for en-
coding and learning the movement patterns. Curvature and torsion
information alone was insufficient, which is not surprising given that
the movements were fairly linear.

i bs by  correct
Xyz Xyz Xyz 95.4%
- Xyz Xyz 96.3%

- - Xyz 43.1%
va va va 52.2%
- va va 46.6%

- - va 28.3%
kT kr kr 34.6%
- kr kr 40.7%
- - kT 28.9%
Xyzva xyzva xyzva 90.8%
- Xyzva xyzva  96.5%

- - xyzva  33.1%

Table1l. Performance of CRGg for learning three different types of
grasping actions. The first three columns indicate what attributes were used
for unary, spatial binary and temporal binary relations, and the last column

indicates the percentage of test pattern points that was classified correctly.
Dashes indicate that no feature was used. xyz: position in 3D; v: velocity: a
acceleration; k: curvature; 7: torsion.

An example of a classification rule generated by CRGsr is the
following rule, which happensto be of theformU —B;—U — B, —U,
with V = velocity; A = acceleration; A X = displacement (over time)
in X; AY = displacement (over time) in Y:

if U(t) -134 <V <79and
—2.93< A<1.54

and T(t,t+1) —0.16 < AX < 0.07 and
—6.51 < AY <5.37

and U(t+1) any value

and T(t+1t+2) —5.39 < AX < 0.08
and —6.51 < AY < 5.37

and U(t+2) 4.74 <V < 5.04 and

—78 < A< —0.06
then thisis part of agrasping action
moving over an obstacle



The results show that CRGs is a promising technique for the learn-
ing of motion patterns. Obviously, the movement patterns used here
were very simple, but work is currently in progress on the encoding
and learning of much more complex movement sequences, aswell as
on extensions of temporal coding to allow temporal interval model-

ing.

5 Conclusions

We have considered an extension of a spatial relational learning
model to learning of spatio-temporal patterns such as complex hu-
man actions and gestures. What differentiates our CRGst approach
from models like hidden Markov modelsis that the rules are capable
of generalizing over higher-order spatial and temporal relations. Fur-
ther, the resultant rule forms are Horn clauses whose structures and
lengths are constrained by the general topology of the underlying
models and by a Minimum Description Length criterion.

REFERENCES

[1] W. F. Bischof and T. Caelli, ‘Learning structural descriptions of pat-
terns: A new technique for conditional clustering and rule generation’,
Pattern Recognition, 27, 1231-1248, (1994).

[2] W.F. Bischof and T. Caelli, ‘ Scene understanding by rule evaluation’,
|EEE Transactions on Pattern Analysis and Machine Intelligence, 19,
12841288, (1997).

[3] Machine Learning and Image Interpretation, eds., T. Caelli and W. F.
Bischof, Plenum, New York, NY, 1997.

[4] T.Cadlli, L. Guan, and W. Wen, ‘Modularity in neural computing’, Pro-
ceedings of the |EEE, 87, 1497-1518, (1999).

[5] T. Cedli, A. McCabe, and G. Binsted, ‘On the 3D measurement and
representations of human actions’, (2000).

[6] T. Cadli, G. West, M. Robey, and E. Osman, ‘A relationa learning
method for pattern and object recognition’, Image and Vision Comput-
ing, 17, 391401, (1999).

[7] C. Dillon and T. Caelli, ‘Cite — scene understanding and object recog-
nition’, in Machine Learning and Image Interpretation, eds., T. Caelli
and W. F. Bischof, 119-187, Plenum, New York, NY, (1997).

[8] B. McCane and T. Caelli, ‘Fuzzy conditional rule generation for the
learning and recognition of 3d objects from 2d images’, in Machine
Learning and Image Interpretation, eds., T. Caelli and W. F. Bischof,
17-66, Plenum, New York, NY, (1997).

[9] J. R. Quinlan, ‘Mdl and categorical theories (continued)’, in Proceed-
ings of the 12th International Conference on Machine Learning, pp.
464-470, (1995).

[10] F H.Raab, E.B.Blood, T.O. Steiner, and H. R. Jones, ‘Magnetic posi-
tion and orientation tracking system’, | EEE Transactions on Aerospace
and Electronic Systems, AES-15, 709—, (1979).

[11] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition,
Prentice Hall, New York, NY, 1993.

[12] D.H. Wolpert, ‘ Stacked generalization’, Neural Networks, 5, 241-259,
(1992).



