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Abstract. We introduce a rule-based approach for the learning and
recognition of complex movement sequences in terms of spatio-temporal
attributes of primitive event sequences. During learning, spatio-temporal
decision trees are generated that satisfy relational constraints of the
training data. The resulting rules are used to classify new movement
sequences, and general heuristic rules are used to combine classification
evidences of different movement fragments. We show that this approach
can successfully learn how people construct objects, and can be used to
classify and diagnose unseen movement sequences.

1 Introduction

Over the past years, we have explored new methods for the automatic learn-
ing of spatio-temporal patterns [1,2,4,3]. These methods combine advantages
of numerical learning methods (e.g. [9]) with those of relational learners (e.g.
[7]), and lead to a class of learners which induce over numerical attributes but
are constrained by relational pattern models. Our approach, Conditional Rule
Generation (CRG), generates rules that take the form of numerical decision trees
that are linked together so that relational constraints of the data are satisfied.
Relational pattern information is introduced adaptively into the rules, i.e. it is
added only to the extent that is required for disambiguating classification rules.

In contrast to Conditional Rule Generation, traditional numerical learning
methods are not relational, and induce rules over unstructured sets of numerical
attributes. They thus have to assume that the correspondence between candidate
and model features is known before rule generation (learning) or rule evaluation
(matching) occurs. This assumption is inappropriate when complex models have
to be learned, as is the case when complex movements of multiple limb segments
have to be learned. Many symbolic relational learners (e.g. Inductive Logic Pro-
gramming), on the other hand, are not designed to deal efficiently with numerical
data. Although they induce over relational structures, they typically generalize
or specialize only over symbolic variables. It is thus rare that the symbolic rep-
resentations explicitly constrain the permissible numerical generalizations. It is
these disadvantages of numerical learning methods and inductive logic program-
ming that CRG is trying to overcome.

Since CRG induces over a relational structure it requires general model as-
sumptions, the most important being that the models are defined by a labeled
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Fig. 1. Example of input data and conditional cluster tree generated by CRG method.
The left panel shows input data and the attributed relational structures generated for
these data, where each vertex is described by a unary feature vector w and each edge
by a binary feature vector b. We assume that there are two pattern classes, class 1
consisting of the drinking glass and the mug, and class 2 consisting of the teapot. The
right panel shows a cluster tree generated for the data on the left. Numbers refer to the
vertices in the relational structures, rectangles indicate generated clusters, grey ones
are unique, white one contain elements of multiple classes. Classification rules of the
form U; — By; — Uj ... are derived directly from this tree.

graph where relational attributes are defined only with respect to neighbour-
ing vertices. Such assumptions constrain the types of unary and binary features
which can be used to resolve uncertainties (Figure 1).

Recently, we have successively extended the CRG method for learning spatial
patterns (for learning of objects and recognizing complex scenes) to the learning
of spatio-temporal patterns. This method, CRGgt , was successively applied
to the learning and recognition of very brief movement sequences that lasted
up to 1-2 seconds. In this paper, we describe how CRGgst can be applied to
the recognition of very long and complex movement sequences that last over
much longer time periods. Specifically, we test the suitability of CRGgr for the
recognizing how people assemble fairly complex objects over time periods up to
half a minute.

In the following, we introduce the spatial CRG method and the spatio-
temporal CRGgt method. We discuss representational issues, rule generation,



and rule application. We then show first results on the application of CRGst to
the recognition of complex construction tasks.

2 Spatial Conditional Rule Generation

In Conditional Rule Generation [1], classification rules for patterns or pattern
fragments are generated that include structural pattern information to the extent
that is required for classifying correctly a set of training patterns. CRG analyzes
unary and binary features of connected pattern components and creates a tree of
hierarchically organized rules for classifying new patterns. Generation of a rule
tree proceeds in the following manner (see Figure 1).

First, the unary features of all parts of all patterns are collected into a unary
feature space U in which each point represents a single pattern part. The feature
space U is partitioned into a number of clusters U;. Some of these clusters may
be unique with respect to class membership (e.g. cluster U;) and provide a clas-
sification rule: If a pattern contains a part p, whose unary features u(p;) satisfy
the bounds of a unique cluster U; then the pattern can be assigned a unique clas-
sification. The non-unique clusters contain parts from multiple pattern classes
and have to be analyzed further. For every part of a non-unique cluster we collect
the binary features of this part with all adjacent parts in the pattern to form
a (conditional) binary feature space UB;. The binary feature space is clustered
into a number of clusters UB;;. Again, some clusters may be unique (e.g. clus-
ters UBs> and UBjz; and provide a classification rule: If a pattern contains a
part p,. whose unary features satisfy the bounds of cluster U;, and there is an
other part ps, such that the binary features b(p,,ps) of the pair (p,,ps) satisfy
the bounds of a unique cluster UB;; then the pattern can be assigned a unique
classification. For non-unique clusters, the unary features of the second part ps
are used to construct another unary feature space UBU;; that is again clustered
to produce clusters UBU ;. This expansion of the cluster tree continues until
all classification rules are resolved or a maximum rule length has been reached.

If there remain unresolved clusters at the end of the expansion procedure
(which is normally the case), the clusters and their associated classification rules
are split into more discriminating rules using an entropy-based splitting proce-
dure. The elements of an unresolved cluster (e.g. cluster UBU9;2 in Figure 1)
are split along a feature dimension such that the normalized partition entropy
Hp(T)

Hp(T) = (niH(Py) 4+ n2H(P,))/(n1 + n2). (1)

is minimizes, where H is entropy. Rule splitting continues until all classification
rules are unique or some termination criterion has been reached. This results in
a tree of conditional feature spaces (Figure 1), and within each feature space,
rules for cluster membership are developed in the form of a decision tree.

From the empirical class frequencies of all training patterns one can derive
an expected classification (or evidence vector) E associated with each rule (e.g.
E(UBU312) = [0.5,0.5]), given that it contains one element of each class). Simi-
larly, one can compute evidence vectors for partial rule instantiations, again from



empirical class frequencies of non-terminal clusters (e.g. E(UB»;) = [0.75,0.25]).
Hence an evidence vector FE is available for every partial or complete rule in-
stantiation.

3 Spatio-temporal Conditional Rule Generation: CRGgt

We now turn to CRGgr , a generalization of CRG from a purely spatial domain
into a spatio-temporal domain. Here, data consist typically of time-indexed pat-
tern descriptions, where pattern parts are described by unary features, spatial
part relations by (spatial) binary features, and changes of pattern parts by (tem-
poral) binary features. In contrast to more popular temporal learners like hidden
Markov models [5] and recurrent neural networks [6], the rules generated from
CRGgr are not limited to first-order time differences but can utilize more distant
(lagged) temporal relations depending on data model and uncertainty resolution
strategies. At the same time, CRGgt can generate non-stationary rules, unlike
e.g. multivariate time series which also accommodate correlations beyond first-
order time differences but do not allow for the use of different rules at different
time periods.

We now discuss the modifications that are required for CRG to deal with
spatiotemporal patterns, first with respect to pattern representation and then
with respect to pattern learning. This should give the reader a good idea of the
representation and operation of CRGgr .

Representation of Spatio-Temporal Patterns

A spatio-temporal pattern is defined by a set of labeled time-indexed attributed
features. A pattern P; is thus defined in terms of P; = {pi1(a : ti;),...,pin(a :
tin)} where p;j(a : t;;) corresponds to part j of pattern ¢ with attributes a that
are true at time ¢;;. The attributes @ = {u, b,, b:} are defined with respect to
specific labeled features, and are either unary (single feature attributes) or binary
(relational feature attributes), either over space or over space-time (see Figure 2).
Examples of unary attributes u include area, brightness, position; spatial binary
attributes by include distance, relative size; and temporal binary attributes by
include changes in unary attributes over time, such as size, orientation change,
or long range position change.

Our data model, and consequently our rules, are subject to spatial and tem-
poral adjacency (in the nearest neighbour sense) and temporal monotonicity, i.e.
features are only connected in space and time if they are spatially or temporally
adjacent, and the temporal indices for time must be monotonically increasing
(in the “predictive” model) or decreasing (in the “causal” model). Although this
limits the expressive power of our representation, it is still more general than
strict first-order discrete time dynamical models such as hidden Markov models
or Kalman filters.

For CRGgr finding an “interpretation” involves determining sets of linked
lists of attributed and labeled features, that are causally indexed (i.e. the tem-
poral indices must be monotonic), that maximally index a given pattern.



Fig. 2. A spatio-temporal pattern consisting of three parts over three time-points.
Undirected arcs indicate spatial binary connections, solid directed indicate temporal
binary connections between the same part at different time-points, and dashed directed
arcs indicate temporal binary connections between different parts at different time-
points.

Rule Learning

CRGgr generates classification rules for spatio-temporal patterns involving a
small number of pattern parts subject to the following constraints: First, the
pattern fragments involve only pattern parts that are adjacent in space and
time. Second, the pattern fragments involve only non-cyclic chains of parts.
Third, temporal links are followed in the forward direction only to produce
causal classification rules that can be used in classification and in prediction
mode.

Rule learning proceeds in the following way: First, the unary features of all
parts (of all patterns at all time points), w(py), ¢ = 1,...,n, t = 1,...,T,
are collected into a unary feature space U in which each each point represents
the feature vector of one part at one time point. From this point onward, cluster
tree generation proceeds exactly as described in Section 2, except that expansion
into a binary space can now follow either spatial binary relations bg or temporal
binary relations b;. Furthermore, temporal binary relations b; can be followed
only in strictly forward direction, analyzing recursively temporal changes of ei-
ther the same part, by (p;t, pit+1) (solid arrows in Figure 2), or of different pattern
parts, by (pit, pjt+1) (dashed arrows in Figure 2) at subsequent time-points ¢ and
t + 1. Again, the decision about whether to follow spatial or temporal relations
is simply determined by entropy-based criteria.

4 Rule Application

A set of classification rules is applied to a spatio-temporal pattern in the following
way. Starting from each pattern part (at any time point), all possible sequences



(chains) of parts are generated using parallel, iterative deepening, subject to
the constraints the only adjacent parts are involved and no loops are generated.
(Note that the same spatio-temporal adjacency constraints and temporal mono-
tonicity constraints were used for rule generation.) Each chain is classified using
the classification rules. Expansion of a chain S; = <p;1, pi2, . . ., Pin > terminates
if one of the following conditions occurs: 1) the chain cannot be expanded with-
out creating a cycle, 2) all rules instantiated by S; are completely resolved (i.e.
have entropy 0), or 3) the binary features bs(p;j, pij+1) or by(pij, pij+1) do not
satisfy the features bounds of any rule.

If a chain S cannot be expanded, the evidence vectors of all rules instantiated
by S are averaged to obtain the evidence vector E(S) of the chain S. Further,
the set S, of all chains that start at p is used to obtain an initial evidence vector
for part p:

E(p) = ﬁ S E(S). 2)

S€S,

where |S| denotes the cardinality of the set S. Evidence combination based on
(2) is adequate, but can be improved by noting that nearby parts (both in
space and time) are likely to have the same classification. To the extent that
this assumption of spatio-temporal coherence is justified, the part classification
based on (2) can be improved.

We use general heuristics for implementing spatio-temporal coherence among
pattern parts. one such rule is based on the following idea. For a chain S; = <
Si1, Si2, - - -, Sin >, the evidence vectors E(s;1), E(s;2), ..., E(si) are likely to
be similar, and dissimilarity of the evidence vectors suggests that S; may contain
fragments of different movement types. This similarity can be captured in the
following way (see [10] for further details): For a chain S; =< p;1,pi2, -, Din >,

w(S) =+ 3" Blpi) )
k=1

where E(p;i,) refers to the evidence vector of part pj. Initially, this can be found
by averaging the evidence vectors of the chains which begin with part p;;. Later,
the compatibility measure is used for updating the part evidence vectors in an
iterative relaxation scheme

t+1 1 t
B p) =2 |~ > w(S) @ B(S) |, (4)
SES,

where & is the logistic function #(z) = (1+exp[—20(z—0.5)])"!. Z a normalizing
factor, and where the binary operator ® is defined as a component-wise vector
multiplication [a b]T & [¢ d]T = [ac be]T. Convergence of the relaxation scheme
4 is typically obtained in about 10-20 iterations.



5 Learning to Recognize Complex Construction Tasks

Learning and recognition was tested with an example where a person constructed
three different objects (a “sink”, a “spider” and a “U-turn”) using pipes and
connectors (see Figure 3). Each construction took about 20-30 s to finish, and was
repeated five times. Arm and hand movements were recorded using a Polhemus
system [11] with four sensors located on the forearm and hand of both arms.
The sensors were recording at 120 Hz, and the system was calibrated to an
accuracy of £5 mm. From the position data (z(t),y(t), 2(t)) of the sensors, 3D
velocity v(t), acceleration a(t), and curvature k(t) were extracted, all w.r.t. arc
length ds(t) = (da?(t) + dy?(t) + dz*(t))'/? [12]. Sample time-plots of these
measurements are shown in Figure 4. These measurments were smoothed with
a Gaussian filter with o = 0.25s (see Figure 4) and then sampled at intervals of
0.25s.

Fig. 3. Pictures of the construction tasks learned by CRGsrt . The leftmost image
shows the starting position. The Polhemus movement sensors can clearly be seen on
the left and right forearms and hands. The other three images show one stage of the
three construction tasks used, the “sink” construction, the “spider” construction, and
the “U-turn” construction. Each construction took about 20-30 seconds to finish.

The spatio-temporal patterns were defined in the following way: At every
time point ¢, the patterns consisted of four parts, one for each sensor, each part
being described by unary attributes u = [v, a, k]. Binary attributes were defined
by simple differences, i.e. the spatial attributes were defined as bs(pi, pji) =
u(pjt) — w(pi), and the temporal attributes were defined as b;(pit, pji+1) =
w(pjt+1) — w(pit)-

Performance of CRGgr was tested with a leave-one-out paradigm, i.e. in
each test run, the movement of all construction tasks were learned using all but
one sample, and the resulting rule system was used to classify the remaining
instance. Learning and classification proceeded exactly as described Sections 3
and 4, with rule length restricted to five levels (i.e. the most complex rules were
of the form UBUBU). For the parameter values reported before, 73.3% of the
tasks were correctly recognized on average.

An example of a classification rule generated by CRGgr is the following rule
that has the form U — B, — U — B; — U, where V = velocity, A = acceleration,
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Fig. 4. Time plots for v(¢) of the right hand, for “sink” construction, “spider” con-
struction and “U-turn construction” from left to right. The time range is 22 seconds
and velocity has been normalized. The top row shows the raw input data, the bottom
row the same data after filtering with a Gaussian filter with o = 0.25s. Each plot shows
five replications.

and AA = acceleration difference over time, and AK = curvature difference over
time:

if U;(¢) —1.65<V <243

and By;(t,t+ 1) —0.57T< AK <1.14

and U;(t + 1) -165<A<0.78

and Bj(t+1,t +2) —2.49 < AK <0.73 and 1.56 < AA <2.92
and Uy (t + 2) 1.7<V <24

then this is part of a “spider” construction

CRGgr makes minimal assumptions about the data. First, given that it clas-
sifies data within small temporal windows only, it can classify partial data (e.g.
a short subsequence of a construction task). Second, it can easily deal with
spatio-temporal mixtures of patterns. In other words, it can equally well classify
sequences of different construction tasks (e.g. a person starting one task and
continuing with another, or a person starting one task and then doing some-
thing completely different) or even two persons doing different constructions
at the same time. Obviously, one could incorporate stronger constraints into
CRGgr (e.g. incorporating the assumption that only a single construction task
is present) and thus improve classification performance further. This is, however,
not our intent, as we plan to use CRGgst to detect and diagnose tasks that are
only partially correct, i.e. where some parts of the construction task are done
incorrectly or differently.



6 Conclusions

Most current learners are based upon rules defined iteratively in terms of ex-
pected states and/or observations at time ¢ + 1 given those at time ¢. Examples
include hidden Markov models and recurrent neural networks. Although these
methods are capable of encoding the variations which occur in signals over time
and can indirectly index past events of varying lags, they do not have the explicit
expressiveness of CRGgr for relational time-varying structures.

In the current paper, we have extended our previous work on the recogni-
tion of brief movements to the recognition of long and very complex movement,
sequences, as they occur in construction tasks. We have shown that CRGgr can
successfully deal with such data. There remains, however, much to be done. One
obvious extension is to extend CRGgr to the analysis of multiple, concurrent
time scales that would allow a hierarchical analysis of such movement sequences.
A second extension will involve an explicit representation of temporal relations
between movement subsequences, and a third extension involves introducing
knowledge-based model constraints into the analysis.

In all, there remains much to be done in the area of spatio-temporal learning,
and the exploration of spatio-temporal data structures which are best suited to
the encoding and efficient recognition of complex spatio-temporal events.
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