
Visual Learning: An Overview

Walter F. Bischof
Department of Computing Science

University of Alberta
Edmonton, T6G 2E8

Canada
Email: wfb@ualberta.ca

Abstract

We review modern approaches to the learning and recognition of
complex patterns, including discriminant functions, neural networks,
decision trees, and hidden Markov models. We then intro duce several
relational learning systems and discuss in detail one specific tech-
nique, conditional rule generation. This technique is shown to be very
flexible and useful for the learning of static patterns, such as objects,
as well as dynamic patterns, such as movement patterns. The tech-
nique is illustrated with a number of very difficult visual learning prob-
lems.

Keywords

Visual learning, neural networks, decision trees, relational
learning, conditional rule generation

1 Introduction

Visual learning is concerned with creating systems that learn to ana-
lyze and interpret images, both static images and images that change
over time. Visual learning shares many ideas with machine learning
(Briscoe & Caelli 1996; Mitchell 1997), but many of the symbolic ma-
chine learning techniques cannot be used in visual learning because
of the ma ssive amounts of data that have to be dealt with in images.
It also shares many ideas with pattern recognition (Duda et al. 2001),
but puts a much stronger emphasis on learning rather than the design
of efficient recognition procedures.

The aim of visual learning is to generate rules for recognizing and
interpreting image data, for example rules for determining that a cer-
tain image region is a human face, or that a certain sequence of im-
ages shows a person lifting a heavy object. The process of labeling
image data can be defined by criteria that can either be known expli-
citly or can be encoded implicitly in the specific algorithms used in a
system. In both cases, learning techniques are useful for making ge-
neralizations from training data (e.g. predicting labels for newly ob-
served image data), for estimating parameters of sub-processes (e.g.
parameters controlling image segmentation), or for optimizing search
and labeling procedures.

Machine learning covers problems in inductive and deductive learn-
ing, where induction refers to the process of generalizing from known
examples, while deduction refers to learning to reason about data
from given models. Most applications in visual learning involve induc-
tive learning. In the following, we provide a brief overview over the
more popular approaches. A representative sample of general induc-
tive learning techniques used in visual learning is shown in Table 1
(Caelli & Bischof 1997). The techniques can be grouped into “super-
vised“ and “unsupervised“ learning. In supervised learning, a learning
system is presented with both, training data and classification labels,
and the goal is to find a set of rules or procedures for classifying the
training examples. In unsupervised learning, on the other hand, trai-
ning examples are not pre-classified, and the goal is to find regulari-
ties in the data, regularities that are implicitly defined in the learning
and recognition procedures.

Unsupervised Learning
 Model Applications

Parametric Bayesian classifiers
Radial basis functions

Segmentation
Image synthesis

Non-parametric K-means clustering
Self-organizing maps
Vector quantization
Conceptual clustering

Feature grouping
Segmentation
Image compression
Visual taxonomies

Supervised Learning

 Model Applications

Feature-vector learning Discriminant functions
Neural Networks
Decision trees

Classification
Recognition
Feature extraction

Relational learning Evidence-based Systems
Conditional rule generation
Symbolic learners

Recognition by parts
Symbolic descriptions

Table 1: Overview of techniques used in visual learning

1.1 Unsupervised learning
Classic examples of unsupervised learning models include clustering
techniques where input data is grouped into sets using attribute prox-
imity (Jain & Dubes 1988). The result of the grouping process de-
pends on the characteristics of the proximity models and the parame-
terization. Parametric techniques include, for example, parametric
Bayesian clustering where probabilistic cluster membership is mod-
eled using multivariate Gaussian functions. In this case, clustering
involves determining position and shape parameters of the best fitting
functions for modeling the clusters, and the algorithms for finding
them typically use gradient descent with respect to the function pa-
rameters.

Parametric clustering techniques have several drawbacks, including
the complexity of the search procedure required, the lack of unique
solutions and the fact that the modeling functions used may not fit the
data. For these reasons, non-parametric clustering techniques have
been more popular. Here, clustering is aimed at partitioning data such
that within-cluster distances are minimized and between-cluster dis-
tances are maximized. The methods shown in Table 1 are all aimed
at achieving this goal. For the K-means method, the formulation is
direct in the sense that the search for clusters is guided by the mini-

max constraint (minimizing within -cluster distances and maximizing
between-cluster distances). Kohonen maps enact a similar process
through the formation of attractors in the data-attribute space (Pao
1989), in vector quantization clustering is achieved through binning
techniques while in conceptual clustering systems partitions are cre-
ated in attribute space by maximizing category utility measures
(Briscoe & Caelli 1996).

1.2 Supervised learning
Supervised learning differs from unsupervised in so far as criteria for
labelling data (e.g. classification labels) are known explicitly. Given
training data described in terms of a set of features (attributes) and
their class labels, the goal of supervised learning is to find a (simple)
partitioning of the feature (attribute) space that allows correct classifi-
cation of all training data, as well as generalization from training data
to unseen, similar data.

Supervised learning methods differ with respect to the way they rep-
resent patterns and the way they partition feature spaces and thus
the generalizations they produce. Supervised learning methods can
be grouped into two major groups, here referred to as feature-vector
learning and relational learning. In feature vector learning, each pat-
tern is described by a vector of features that characterizes the pattern
as a whole, and thus each pattern is represented as a point in a multi-
dimensional feature space. In relational learning, on the other hand,
each pattern is considered as being composed of multiple parts, and
is thus described by feature vectors characterizing each pattern part
and each part relation. Both groups are described in detail in the fol-
lowing sections.

1.3 Problems in Visual Learning
Whatever the approach is taken by a visual learning method, is has to
address a number of questions:

Recognition of partial data: Many real image interpretation problems
involve the recognition of patterns from partial data. We claim that in
order to optimize this process, rule generation and recognition meth-
ods are required that are based on a “recognition -by-parts" approach.
In this approach, pattern fragments or individual pattern parts (and
their associated attributes) are learned to provide sufficient evidence
for the classification of patterns.

Recognition of distorted data: Most image interpretation problems
involve identification of known classes or patterns in data which is not
identical to any of the training data. Solutions involve the ability of
learning systems to generalize from training data. The problem is to
optimize generalization while retaining recognition accuracy.

Finding patterns in complex data: One of the more difficult problems
in image interpretation is that of finding patterns (or objects) in co m-
plex multi-object scenes. Solutions must involve classification of dis-
tinct pattern regions in an efficient way.

Correspondence between data parts and model parts: Beyond a
mere classification of patterns or objects, it may be required to deter-
mine the correspondence between the parts of observed image data
and those of stored models. This may be required to determine the
pose of objects or in order to predict the existence of (hidden) pattern
parts. Solutions to this problem depend on whether learning or en-
coding training data also includes pattern or object part labels. Part-
indexed data structures used in relational learning implicitly solve the
pose problem while simple attribute -indexed structures used in fea-
ture-vector learning do not. The latter may have to be supplemented
by methods for additional hypothesis testing or model projection to
solve the pose problem.

2 Feature-Vector Learning

In feature vector learning, patterns are described by a vector of fea-
tures that describes the patterns as a whole. In this section, we intro-
duce two main representatives of this approach, namely discriminant
functions (and a modern incarnation in terms of neural networks) and
decision trees.

2.1 Discriminant Functions and neural networks
The non-parametric statistical literature abounds with methods for
classifying patterns (Devijver & Kittler 1980). Here, we introduce lin-
ear discriminant functions and then discuss briefly modern implemen-
tations in terms of neural networks. Given a set of patterns, each de-
scribed by a set of continuous attributes a1, a2, ..., aN, linear discrimi-
nant functions are used to separate the patterns by a linear decision
boundary. A linear discriminant function can be written as a linear
combination of components

 g(a) = w0 + w ? a = w0 + w1a1 + w2a2 + ...

where g(a) is the discriminant function, w a weight vector, a a feature
(or attribute) vector, and w0 a threshold weight. The equation g(a)=0
defines a decision boundary, and the two regions defined by g(a)<0
and g(a)>0 define the two pattern classes, respectively. The weight
coefficients are typically found using a gradient descent method.

In the case of multiple pattern classes, the feature space must be
partitioned into multiple partitions, ideally each one associated with a
single class. Using discriminant functions, this can be achieved in one
of several ways. For K classes, one can, for example, use K-1 dis-
criminant functions separating regions ? i from not(? i), or one can use
K(K-1)/2 discriminant functions separating ? i from ? j, and finally, one
can define a linear machine that assigns a to ? i if gi(a)>g j(a) for all i?j.
Other combination schemes are possible, and their usefulness de-
pends precisely on the distribution of pattern classes in feature space.

More recently, neural networks, and in particular, multi-layered per-
ceptrons have become very popular for pattern learning (Hertz et al.
1991). A closer inspection reveals a very close relationship between
these networks and discriminant functions, so neural networks are
comparable in their pe rformance to discriminant functions.

This is illustrated with the following simple neural network, consisting
of an input layer I, and hidden layer H, and an output layer O. A pat-
tern with features a1,a2,...,a N is presented at the input nodes I, and the
output nodes correspond to the classifications c1,c2,...,cK. The activity
of the hidden units Hi is defined as

j
j

H
iji Iw(fH ??

where H

ijw is the weight of the j-th input of the i-th hidden unit, and f is
a non-linear function, typically a sigmoid function. The activity of the
output units is defined similarly, namely

j
j

O
iji Hw(fO ?? ,

where O

ijw and f are defined as before. The expressions

j
j

H
ij Iw? and j

j

O
ij Hw?

are discriminant functions in the input space and the hidden layer
space, respectively. An analysis of learning in neural networks shows
that they are typically equivalent to simple gradient descent methods.

In these approaches to pattern learning, patterns are represented by
characteristic feature vectors a. Pattern learning consists of finding a
partitioning of the feature space such that, ideally, each partition cor-
responds to a single pattern class, and pattern classification is based
on combinations of discriminant functions.

2.2 Decision Trees
Decision trees have become very popular for inductive learning of
patterns (Quinlan 1992). Given a number of patte rns, each described
by a set of attributes a1, a2, ..., aN, and a partitioning of the patterns
into a number of classes c1, c2, ..., cK, the decision tree method is
aimed at ordering the patterns in a tree such that each tree node
specifies a test of some attribute, and each child corresponds to a
possible value of the attribute. Each leaf node of the decision tree
corresponds to a set of patterns belonging to a single class. A path
from the root of the tree to a leaf thus represents a hierarchically or-
dered sequence of decisions for classifying the patterns.

Figure 1 illustrates a one decision tree generated for the data shown
in Table 2. In this example, a decision is made whether the weather
conditions are suitable for playing tennis. Each of the trainin g exa m-
ples is described by four attributes, outlook, temperature, humidity
and wind, and each training instance belongs to one of two classes,
yes or no. Classification of each example is achieved by traveling
through the decision tree from the root to a leaf. At each node, a par-
ticular attribute is tested, and, depending on the value of the attribute,
a different branch is selected. Leaf nodes are either associated with
patterns of a single class, or tree expansion was stopped (Quinlan
1992). For day 4, for example, the rightmost path through the deci-
sion tree would be followed, and for day 8 the leftmost.

Day Outlook Temperature Humidity Wind Play
1 Sunny hot high weak no

2 Sunny hot high strong no

3 overcast hot high weak yes
4 Rain mild high weak yes

5 Rain cool normal weak yes

6 Rain cool normal strong no
7 overcast cool normal strong yes

8 Sunny mild high weak no

9 Sunny cool normal weak yes
10 Rain mild normal weak yes

11 Sunny mild normal strong yes

12 overcast mild high strong yes
13 overcast hot normal weak yes

14 Rain mild high strong no

Table 2: Decision tree data. Each line describes weather conditions
and whether tennis should or should not be played. Each pattern is
described by four features (outlook, temperature, humidity, and wind)
and belongs to one of two classes (play or do not play tennis).

Figure 1: Example of a decision tree generated for a the data shown
in table 2. A pattern is classified by traveling through the decision tree
from the root to a leaf. At each node of the tree, a particular attribute
is tested (indicated by a box), and, depending on the value of the at-
tribute, a particular child in the decision tree is selected. Each leaf
node is associated with a single class, in this case the class yes / no.

For each training set, a number of decision trees can be generated,
and the problem is to find a decision tree that is as shallow as possi-
ble, so that classification of patterns can be achieved in a small num-
ber of decisions. To this end, one should select at each node the
attribute that is most useful for classifying all the patterns associated
with the node. Attribute selection is typically based on classification
entropy H(S) of a node S, defined as

 ?

?

??
K

1k
k2k plogp)S(H

where pk is the proportion of elements of node S in class ck. So, for
example, in the decision tree in Figure 1, there are 5 elements asso-
ciated with the node labeled “wind” (namely elements 4,5,6,10, and
14), three in class "yes" and two in class "no". Hence the classifica-
tion entropy of that node is 0.971. On the basis of classification en-
tropy, Quinlan (1992) introduced a number of selection criteria, in-
cluding the information gain measure G(S,A), defined as

 ?

?

??
)S(childrenT

T)T(Hp)S(H)A,S(G

where pT is the proportion of patterns that be long to child T . Using
this measure, one chooses at each node of the decision tree the at-
tribute that maximizes G(S,A). The decision tree in Figure 1 was gen-
erated using this measure. In addition to G(S,A), a number of other
selection criteria have been introduced, but it is difficult to determine
under what conditions each of the criteria leads to an optimal decision
tree.

3 Relational Learning

In relational pattern recognition, patterns are considered as being
composed of constituent parts, and pattern are described by (unary)
part features, and (binary) features of part relations. These part and
part relation features can be linked together into an attributed rela-
tional structure (graph) that defines a pattern uniquely. A simple ex-
ample of a relational gra ph representation is show in Figure 2. In an
attributed relational graph, each of the vertices is described by a
unary feature vector and each of the arcs is described by a binary
feature vector. More formally, an attributed relational graph is defined
as a tupel <P,R,U,B>, where P={p i,i=1,...,n} is a set of vertices (pat-
tern parts), R={rij,i=1,...,n,j=1,...,n} a set of arcs (part relations),
U={u i,i=1,...,nU} a set of vertex attributes (part attributes), and
B={b i,i=1,...,nB} a set of arc attributes (part relation attributes).

Figure 2: Example of a relational structure. The left hand shows a
sketch of a chair consisting of seven image regions, the right hand
side shows the corresponding relational structure. Each of the image
regions (pattern parts) is represented by a vertex, and relations be-
tween image regions (pattern relations) are represented by arcs be-
tween vertices. Every vertex and arc is described by a set of features,
corresponding to the features of the pattern parts and part relations.

Pattern classification is achieved using relational graph matching
where a sample pattern is matched to a model pattern. This is
achieved by searching for a label assignment (a mapping of vertices
in the sample pattern to vertices in the model pattern) that maximizes
some objective similarity function. Pattern classes are usually repre-
sented by enumerating all training (or model) instances, and classifi-
cation of a sample pattern is achieved by searching through all model
patterns to determine the one producing the best match. This repre-
sentation and the associated graph matching approach have been
the preferred architecture for object recognition (Flynn & Jain 1993).

The relational graph matching approach to pattern and object recog-
nition has several problems. First, the computational complexity is
exponential, i.e. matching time increases exponentially with the num-
ber of vertices in the sample and model graphs. Second, pattern gen-
eralizations are difficult to represent. One solution has been to repre-
sent pattern classes by a typical class member and a distance meas-
ure (Shapiro & Haralick 1982), but it is difficult to capture both, nu-
merical feature differences and differences in the pattern structure
into a single numerical similarity measure. Third, pattern learning has
been considered only rarely in the literature. In most methods for
generating relational structures for visual recognition, prior informa-
tion about class membership is provided, and it is not clear how the
model descriptions can be learned.

Below, we describe approaches that attempt to overcome these prob-
lems in different ways, by combining numerical learning techniques
with limited structural pattern learning. The two examples described in

detail, evidence-based systems (EBS) and conditional ru le generation
(CRG), learn rules which are defined by regions in unary and binary
feature spaces. The approaches differ in the way they ensure com-
patibility between unary and binary rules. In CRG, consistency be-
tween unary and binary features is explicitly represented, whereas in
EBS this is done only implicitly.

3.1 Evidenced-Based Systems
EBS is aimed at learning to recognize visual patterns and objects in a
supervised learning paradigm (Caelli & Dreier, 1994). Pattern descrip-
tions are given in the form of attributed relational graphs, and the goal
of EBS is produce a set of rules that, given a sample pattern, produce
evidence for a pa rticular pattern class. To this end, EBS proceeds in
the following way:

First, all unary feature vectors ui of all patterns are collected into a
unary feature space U, and all binary feature vectors bi are collected
into a binary feature space B. In the context of 3D object recognition,
unary features may include measures such as local surface curvature
or perimeter of local patches, and binary features may include meas-
ures such as distances, angles or boundary relationships.

Both (unary and binary) feature spaces are then clustered using
standard clustering algorithms, and the resulting clusters are bound
by simple rectangles that are oriented along the feature space axes.
The clusters need not be disjoint, and complex combinations of clus-
ters could be constructed. For example, non-convex regions can be
defined by rules which include some regions of feature space but
exclude others. Each unary cluster U i or binary cluster B i can provide
some evidence about the presence of a particular pattern class in the
following way: If a sample pattern contains a part with unary features
within the bound of Ui then there is certain evidence that the pattern
belongs to each of the pattern classes c1, ... ,cK. The same is true if a
pattern contains a part relation with binary features within the bounds
of a cluster Bi. With each cluster, an evidence weight E is associated
which corresponds to the likelihood that activation of the rule contrib-
utes evidence for the existence of a particular pattern class.

The evidence vectors E could be derived from the relative frequen-
cies of class samples in each cluster. However, EBS takes this one
step further and uses supervised learning to solve the evidence esti-
mation problem and, at the same time, to learn the relationships be-
tween unary and binary features. This relationship can be learned by

a neural network with input nodes I corresponding to clusters, output
nodes O corresponding to classes, and with one hidden layer, with
the number of nodes being the larger of the input or output node
numbers (see Figure 3).

Figure 3: EBS System. The feature vectors of all pattern parts and
part relations are collected into the unary and binary feature spaces,
respectively. Membership of a feature vector in a cluster produces
some evidence for the class membership of pattern. An optimal com-
bination of evidence is learned by a neural network whose input
nodes correspond to clusters in the feature spaces and whose output
nodes correspond to classes.

The evidence weights are determined by the connections between
input-hidden-output layer nodes. In particular, each hidden layer node
is connected to every unary and binary rule. This allows for the rein-
forcement of co-occurrences between unary and binary feature val-
ues and thus allows implicit learning of relational structures. It does,

however, not guarantee label-compatibility in a strict sense since no
specific model parts and relations are encoded in a given hidden unit.

The EBS approach differs from direct neural net implementations in
two respects. First, feature space partitioning is not the same as that
obtained with multi-layered perceptrons, and second, constraints are
added on the hidden layer to determine evidence weights that are in
accordance with a conjunctive rule form. For these reasons, the rules
and weights are guaranteed to satisfy representational constraints,
something which is not guaranteed in direct neural net implementa-
tions.

The main limitation of the EBS approach is that the representation is
not unique, i.e. rules are generated without explicitly considering the
relationships between specific unary and binary feature values that
define specific objects. In other words, unary and binary rules are
generated but not linked together into a label-compatible representa-
tion of each model. This is attained implicitly via the hidden units in
the neural network (Figure 3) but it does not guarantee a unique rep-
resentation of structural relations in the data. In the approach pre-
sented in the next section, this compatibility is explicitly built into the
rule generation stage.

3.2 Conditional Rule Generation
We have explored methods for pattern learning that combine the ex-
pressiveness of symbolic machine learning techniques (inductive
logic programming) with the generalization models of numerical ma-
chine learning (Bischof & Caelli 1994). This led to a class of numeri-
cal relational learners that induce over numerical attributes in ways
which are constrained by relational pattern models. Our approach,
CRG, generates rules that are linked together to satisfy relational
constraints of the training data (see Figure 4). These relational con-
straints are introduced adaptively, i.e. they are added if they are re-
quired to improve the classification rules.

The goal of CRG is to derive a set of classification rules for pattern
fragments on the basis of a set of training patterns in a supervised
learning paradigm. Rather that work with fixed-size pattern fragments,
CRG attempts to find the simplest classification rules, and then ex-
pands the rules to the extent that is required to achieve correct classi-
fication of all training data. Hence, for very simple patterns, CRG may
produce classification rules that rely on isolated pattern parts only and
thus are equivalent to rules produced by feature-vector learning. At

the other extreme, CRG may produce very complex classification
rules that rely on features of all pattern parts and their relations, and
thus may produce rules equivalent to those produced by the relational
graph matching a pproach.

Figure 4: Example of input data and conditional cluster tree generated
by CRG method. The left panel shows input data and the attributed
relational structures generated for these data, where each vertex is
described by a unary feature vector u and each edge by a binary fea-
ture vector b. In this example, we assume that there are two unary
and two b inary features. We further assume that there are two pattern
classes, class 1 consisting of the drinking glass and the mug, and
class 2 consisting of the teapot. The right panel shows a cluster tree
generated for the data on the left. Numbers refer to the vertices in
the relational structures, rectangles indicate generated clusters (de-
fined by lower and upper bounds on each feature), gray ones are
unique, white one contain elements of multiple classes. Classification
rules are derived directly from this tree.

CRG produces classification rules for patterns described by an attrib-
uted relational graph where, as before, U i are sets of unary features
describing pattern parts and Bij are sets of features describing part
relations. For a set of patterns described by attributed relational

graphs, classifica tion rules are generated for pattern fragments, i.e.
for each chain of pattern parts P i – Pj – Pk ..., CRG generates classifi-
cation rules by partitioning the Cartesian feature product spaces Ui ?
Bij ? Uj ? Bjk ? Uk ? This partitioning is done incrementally, starting
with the unary feature space Ui and expanding it into conditional fea-
ture spaces Bij, U j, ... if it is required for correctly classifying the train-
ing data. Generation of a cluster tree proceeds as described in the
following example (see F igure 4).

First, the unary features of all parts of all patterns are collected into a
unary feature space U in which each point represents a single pattern
part. The feature space U is partitioned into a number of clusters Ui.
In the example in Figure 4, we assume that there are two unary fea-
tures and that each cluster is defined by lower and upper bounds for
each of these features. Some of these clusters may be unique with
respect to class membership (e.g. cluster U1) and provide a classifi-
cation rule: If a pattern contains a part pr whose unary features u(p r)
satisfy the bounds of a unique cluster Ui then the pattern can be as-
signed a unique classification. The non-unique clusters contain parts
from multiple pattern classes and have to be analyzed furthe r. For
every part of a non -unique cluster we collect the binary features of
this part with all adjacent parts in the pattern to form a (conditional)
binary feature space UBi. The binary feature space is clustered into a
number of clusters UB ij. In the example in Figure 4, we assume that
there are two binary features and, as before, each cluster is defined
by lower and upper bounds for each of these features. Again, some
clusters may be unique (e.g. clusters UB22 and UB31) and provide a
classification rule: If a pattern contains a part p r whose unary features
satisfy the bounds of cluster Ui, and there is an other part ps, such
that the binary features b(p r,ps) of the pair <pr,ps> satisfy the bounds
of a unique cluster UBij then the pattern can be assigned a unique
classification. For non-unique clusters, the unary features of the sec-
ond part ps are used to construct another unary feature space UBU ij
that is again clustered to produce clusters UBUijk. This expansion of
the cluster tree continues until all classification rules are unique or a
maximum rule length has been reached.

If there remain unresolved rules at the end of the expansion proce-
dure (which is normally the case), the rules are split into more dis-
criminating rules using an entropy-based splitting procedure. Con-
sider the cluster tree in Figure 4 with the non-unique cluster UBU212.
One way to proceed would be to re-cluster feature space UBU21 into
a larger number of clusters. Alternatively, one can simply split cluster

UBU212 along one of the fea ture dimensions. The latter method is
used here.

Consider splitting the elements of an unresolved cluster C along a
(unary or binary) feature dimension F . The elements of C are first
sorted by their feature (attribute) value f(c), and then all possible cut
points T midway between successive feature values in the sorted
sequence are evaluated. For each cut point T, the elements of C are
partitioned into two sets, P1={c|f(c)=T} with n1 elements and
P2={c|f(c)>T} with n2 elements. We define the normalized pa rtition
entropy HP(T) as

 HP(T) = (n1H(P1)+n2H(P2))/(n1+n2).

The cut point TF that minimizes HP(TF) is considered the best point for
splitting cluster C along feature dimension F . The best split of cluster
C is considered the one along the feature dimension F that minimizes
HP(TF). Further, rather than splitting an unresolved leaf cluster CL,
one can split any cluster Ci in the parent chain of CL. For each cluster
Ci, the optimal split TF is computed, and the cluster Ci that minimizes
TF is considered the optimal level for refining the cluster tree.

Cluster splitting continues until all clusters are unique or some termi-
nation criterion has been reached. This results in a tree of conditional
feature spaces. Classification rules are derived directly from the final
cluster tree. For the cluster tree shown in Figure 4, the classification
rule derived for cluster UB32, for example, can be described as fol-
lows: If there is a part p i with unary features u(p i) within the bounds
defined by cluster U3, and part pi is connected to some other part pj
such that the binary features of their relation, b(pi,pj), are within the
bounds defined by cluster UB32, then the pattern fragment pi – pj be-
longs to class 1. From the empirical class frequencies of all training
patterns one can derive an expected classification (or evidence vec-
tor) E associated with each rule (e.g. E(UBU212)=[0.5,0.5], given that it
contains one element of each class). Similarly, one can compute evi-
dence vectors for partial rule instantiations, aga in from empirical class
frequencies of non-terminal clusters (e.g. E(UB21)=[0.75,0.25]). Hence
an evidence vector E is available for every partial or complete rule
instantiation.

Again, for the cluster tree in Figure 4, the classification rule derived
from cluster UBU212 can be described as follows: If there is a part pi
with unary features u(pi) within the bounds defined by cluster U2, and

part pi is connected to some other part pj such that the binary features
of their relation, b(pi,pj), are within the bounds defined by cluster
UB21, and part pj has unary features u (pi) within the bounds defined
by cluster UBU212, then the pattern fragment pi – pj belongs to classes
1 and 2 with probabilities [0.5,0.5].

CRG has been used successfully for the learning of objects and their
recognition in complex scenes (Bischof & Caelli 1997a, 1997b). Many
issues arise in the application of classification rules and in the combi-
nation of classification evidence by multiple rules. These are dis-
cussed in the next section, after learning of spatio-temporal patterns
has been introduced.

4 Spatio-temporal Learning

We are now considering patterns that vary over time, such as, for
example, a sequence of images of a person lifting a box, or an image
sequence showing an arial view of a forest taken at weekly intervals.
Our goal is to develop a system that can learn to recognize such spa-
tio-temporal patterns in a supervised learning paradigm. The introduc-
tion of an additional (time) dimension leads to an increased data
complexity with an ensuing need to increase the efficiency of learning
and classification procedures.

Figure 5: A spatio-temporal pattern consisting of three parts over
three time-points. Undirected arcs indicate spatial binary connections,
solid directed indicate temporal binary connections between the same
part at different time -points, and dashed directed arcs indicate tempo-
ral binary connections between different parts at different time -points.

In general, a spatio -temporal pattern is defined by a set of labeled
time-indexed attributed features. A pattern P i is thus defined in terms
of Pi = {pi1(a :ti1), ..., pi n(a :tin)} where pij(a:tij) corresponds to part j of
pattern i with attributes a that are true at time tij. The attributes a are
defined with respect to specific labeled features, and are either unary
(single feature attributes) or binary (relational feature attributes, either
over space or over space-time), that is, a = {u,bs,bt} (see Figure 5).
Examples of unary attributes u include area, brightness, position; spa-
tial binary attributes bs include distance, relative size; and temporal
binary attributes bt include changes in unary attributes over time, such
as size, orientation change, or long range position change.

In the following, we discuss very briefly hidden Markov models, and
then introduce a generalization of the CRG approach to the learning
of spatio-temporal patterns.

4.1 Hidden Markov Models
Recently, hidden Markov models (HMMs, Rabiner & Juang 1993)
have become very popular for modeling time series data in applica-
tions such as speech or gesture recognition, computational biology,
and in computer vision applications such as object tracking and mod-
eling of changes in images.

HMMs are used for modeling sequences of observations Ot over time.
These observations are assumed to be generated by some process
whose (discrete) states S are hidden from the observer. Further, the
state of the hidden process is assumed to satisfy the Markov prop-
erty: the process state at time t, St, depends only on the process state
at time t-1 , St-1, but not on previous ones, i.e. Pr (St|St-1,S t- 2, ..., S1) =
Pr (St|St-1). The probability of a sequence of observations O1,O2,...OT
is then given by

?
?

??
T

2t
1tttt111T21)S|SPr()S|OPr()SPr()S|OPr()O,...,O,OPr(

i.e. it can be factored into a internal state transition component and an
output component. This added flexibility permits to model a much
larger range of temporal data than was possible with older models.
Recent extensions to factorial HMM, tree-structured HMMs and
Baye sian nets have further expanded the usefulness of HMMs for
modeling spatio-temporal pattern, but the added complexity of these
extensions often leads to problems in inference and learning (For a
review, see Bunke & Caelli, 2001). We believe that the approach pre-
sented in the next section overcomes some of these problems.

4.2 Condition Rule Generation CRGST
We now turn to CRGST, a generalization of CRG from a purely spatial
domain into a spatio -temporal domain (Bischof & Caelli, 2000, 2001).
Here, data consist typically of time-indexed pattern descriptions,
where pattern parts are described by unary features u , spatial part
relations by (spatial) binary features bs, and changes of pattern parts
by (temporal) binary features bt. In the following sections, we discuss
rule learning, rule generation models and applications of CRG ST. In
contrast to other temporal learners like hidden Markov models, the
rules generated by CRGST are not limited to first-order time differ-
ences but can utilize more distant (lagged) temporal relations. At the
same time, CRGST allows for the generation of non-stationary rules,
unlike models like multivariate time series, which also accommodate
correlations beyond first-order time differences but do not allow for
the use of different rules at different time points.

Figure 6: Left: Grasping movement around an obstacle. The move-
ment sensors were placed on the upper arm, the forearm, and the
hand. Right: Sample time-plots of the movement sequences. The left
column shows traces for the upper arm, the middle column for the
forearm and the right column for the hand. The first row shows time-
plot for velocity (for a straight grasp movement), the second for ac-
celeration (for a grasp movement over an obstacle), and the third for
curvature (for a grasp movement around an obstacle). Each graph
shows five samples for each action type. All measurements have
been no rmalized for display purposes.

In the following, we illustrate each component of CRGST with an ex-
ample where three different variations of grasp movements were
learned: One where the hand moved in a straight path to the object,
another where an obstacle in the direct path was avoided by moving
over it, and a third where the obstacle was avoided by moving around
it.

The movements were recorded using a Polhemus system running at
120Hz for three sensors, one on the upper arm, one on the forearm,
and one on the hand (see Figure 6). From the position data
(x(t),y(t),z(t)) of these sensors, 3-D velocity v(t), acceleration a(t), cur-
vature k(t), and torsion ?(t) were extracted. Sample time-plots of
these measurements are shown in Figure 6.

4.3 Representation of Spatio -Temporal Patterns
For the “grasp” example, the definition of the spatio-temporal patterns
is straightforward. At every time point, the patterns consist of three
parts, one for each sensor, each part being described by unary attrib-
utes 3D-position, velocity, acceleration, curvature and torsion, i.e.

??u ,() [, , , , , ,]i tp x y z v a k . Binary attributes were defined by simple dif-
ferences, i.e. the spatial attributes were defined as

? ?b u u, , , ,(,) () ()s i t j t j t i tp p p p , and the temporal attributes were defined
as ? ?? ?b u u, , 1 , 1 ,(,) () ()t i t j t j t i tp p p p .

Our data model, and consequently our rules, are constrained to spa-
tial and temporal adjacency (in the nearest neighbor sense) and tem-
poral monotonicity, i.e. features are only connected in space and time
if they are spatially or temporally adjacent, and the temporal indices
for time must be monotonically increasing. Although this limits the
expressive power of our representation, it is still more general than
strict first-order discrete time dynamical models such as hidden
Markov models.

For CRGST, finding an “interpretation” involves determining sets of
linked lists of attributed and labeled features, that are causally in-
dexed (i.e. the temporal indices must be monotonic), that maximally
index a given pattern.

4.4 Rule Learning
CRGST generates classification rules for spatio-temporal patterns in-
volving a small number of pattern parts subject to the following con-
straints: First, the pattern fragments involve only pattern parts that are

adjacent in space and time. Second, the pattern fragments involve
only non-cyclic chains of parts. Third, temporal links are followed in
the forward direction.

Rule learning proceeds in the following way: First, the unary features
of all parts (of all patterns at all time points), u(p it), i=1,...,n; j=1,...,T,
are collected into a unary feature space U in which each point repre-
sents the feature vector of one part at one time point. From this point
onward, cluster tree generation proceeds exactly as described in Sec-
tion 3.2, except that expansion into a binary space can now follow
either spatial binary relations bs or temporal binary relations bt. Fur-
thermore, temporal binary relations bt can be followed only in strictly
forward direction, analyzing recursively temporal changes of either
the same part, ?b , , 1(,)t i t i tp p (solid arrows in Figure 5), or of different
pattern parts, ?b , , 1(,)t i t j tp p (dashed arrows in Figure 5) at subsequent
time-points t and t+1. The decision about whether to follow spatial or
temporal relations is simply determined by entropy-based criteria.

For the “grasp” movement, an example of a classification rule gener-
ated by CRGST is the following rule, which happens to be of the form
U - Bt - U - Bt - U, with v = velocity; a = acceleration; ? x = displace-
ment (over time) in x; ? y = displacement (over time) in y:

if u (p i,t) with 1.34 = v = 7.9 and -2.93 = a =1.54
and bt(p i,t,pj,t+1) with -0.16 = ? x = 0.07 and -6.51 = ? y =5.37
and u(p i,t+1) with any value
and bt(p i,+1,p j,t+2) with -5.39 = ? x =0.08 and -6.51 = ? y =5.37
and u(p i,t+2) with 4.74 = v =5.04 and -0.78 = a =-0.06
then pattern fragment p i,t- pj,t+1 – pk,t+2 is part of

a grasping action moving over an obstacle.

In plain language, this classification rule reads as follows: If there is
any sensor at any time point t with instantaneous velocity in the range
[-1.34,7.9] and acceleration in the range [-2.93,1.54], and the sensor
position changes by ? x in the range [-0.16,0.07] and by ? y in the
range [-6.51,5.37] to the next time step, etc. then this is part of a
grasping action over an obstacle. Note that the rules do not refer to
particular sensors, even though this would be possible, and indeed
helpful in this particular example. In general, however, identification
of particular pattern parts may not be possible. As discussed earlier,
it is one of the fundamental assumptions of CRG ST that the corre-
spondence between pattern parts and model parts is not known a

priori, and this is what sets it apart from approaches such as recurrent
neural networks or hidden Markov models.

4.5 Rule Application
A set of classification rules is applied to a spatio-temporal pattern in
the following way. Starting from each pattern part (at any time point),
all possible sequences (chains) of parts are generated subject to the
constraints the only adjacent parts are involved and no loops are
generated. (Note that the same spatio-temporal adjacency constraints
and temporal monotonicity constraints were used for rule generation.)
Each generated chain S i = <pi1, p i2, ..., pin>, is then classified using
the classification rules, and the evidence vectors of all rules instanti-
ated by S i are averaged to obtain the evidence vector E(Si) of the
chain S i. Further, the set Sp of all chains that start at p is used to ob-
tain an initial evidence vector for part p:

 ?

?

?
pSp

)S(
1

)p(
S

E
S

E

where |Sp| denotes the cardinality of the set Sp. Evidence combination
based on this equation is adequate if it is known that a single pattern
is to be recognized. In the “grasp” example, this would be the case if
it is known that a single movement is being presented.

However, CRGST is designed to work in more general situations
where different pattern types overlap in space and time. This is the
case, for example, when two or more different movement patterns are
presented at the same time, or when the movement type changes
over time. In this case, the simple scheme based on the equation
above can produce incorrect results because some chains of parts
may not be contained completely within a single pattern but “cross'”
different pattern types. Such “crossing” chains are likely to be classi-
fied in a arbitrary way, and to the extent that they can be detected
and eliminated, part classification can be improved.

We use general heuristics for detecting rule instantiations involving
parts belonging to different patterns. One such heuristic is based on
the following idea. If a chain Si = <p i1, pi 2, ..., pin> does not cross
boundaries of objects then the evidence vectors E(Si1), ..., E(Sin) are
likely to be similar, and dissimilarity of the evidence vectors suggests
that Si may be a “crossing” chain. This similarity can be captured in
the following way (McCane 1997): For a chain Si = <pi1, p i2, ..., p in>,
we compute the compatibility vector

 ?

?

??
n

1k
ik

1
i)p(n)S(Ew

This compatibility measure can be used directly in an iterative relaxa-
tion scheme (Rosenfeld & Kak 1982) for updating the part evidence
vectors:

 (1) 1 ()() (() ())

p

t t

s S

p Z S S? ?

?

? ? ??E w E

where ? is the logistic function ? (z)=(1+exp(-20(z-0.5))-1, Z a normal-
izing factor, and the binary operator ? is defined as a component-
wise vector multiplication TTT]bdac[]dc[]ba[?? . Con-
vergence of the above relaxation scheme is typically obtained in
about 10-20 iterations, and the updated part evidence vectors then
reflect the pa rtitioning of the test pattern into distinct subparts.

In summary, application of CRGST rules to a spatio -temporal pattern
Pi (as shown in Figure 5) proceeds as follows:

?? For all pattern parts p i, extract all part chains pi – p j – pk - ... start-

ing at p i, up to a specified maximal length.
?? Classify all part-chains Si using the CRG ST rules, each producing

an evidence vector E(S).
?? Compute initial compatibility vectors w(Si).
?? Run the iterative relaxation scheme until convergence. This pro-

duces a final evidence vector E(Si) for each part.

4.6 Performance of CRGST
Performance of CRGST was tested with the “grasp” example in a
leave -one-out paradigm, i.e. in each run, movement classes were
learned using all but one patterns, and the resulting rule system was
used to classify the remaining pattern. Results of these tests are
shown in Table 3 for different attribute combinations for unary, spatial
binary and temporal binary relations. The last column indicates what
percentage of pattern parts was classified correctly on average. Al-
though each test pattern consisted of a single movement, this was not
assumed by the classification algorithm. Using the “single-movement”
assumption, e.g. in a winner-take-all scheme, would lead to some-
what higher classification percentages.

u bs bt correct
xyx xyz xyz 95.4 %

- xyz xyz 96.3 %

- - xyz 43.1 %
va va va 52.2 %

- va va 46.6 %

- - va 28.3 %
k? k? k? 34.6 %

- k? k? 40.7 %

- - k? 28.9 %
xyzva xyzva xyzva 90.8 %

- xyzva xyzva 96.5 %

- - xyzva 33.1 %

Table 3: Performance of CRGST for learning three different types of
grasping actions. The first three columns indicate what attributes
were used for unary, spatial binary and temporal binary relations, and
the last column indicates the percentage of test pattern points that
was classified correctly. Dashes indicate that no feature was used.
xyz: position in 3D; v: velocity: a: acceleration; k: curvature; ?: torsion.

The results show that classification performance varies, not unex-
pectedly, with the choice of attribute sets. For the simple movement
patterns used here, position information, possibly enhanced by veloc-
ity and acce leration information, was clearly sufficient for encoding
and learning the movement patterns. Curvature and torsion informa-
tion alone was insufficient, which is not surprising given that the
movements were fairly linear.

The results show that CRGST is a promising technique for the learning
of motion patterns. Obviously, the movement patterns used here were
very simple, but work is currently in progress on the encoding and
learning of much more complex movement sequences.

4.7 Incorporating Model Constraints into Rule Generation
The definition of spatio-temporal patterns introduced in this section is
very general and applies to situations where no domain knowledge is
available. Learning of patterns may be made more efficient through
introduction of relational constraints based on domain knowledge. For
example, for the recognition of human body movements, the spatial
relation between hand and elbow may be much more diagnostic than

the relation between hand and knee, or, more generally, intra-limb
spatial relations are more diagnostic than inter-limb spatial relations.
For these reasons, arbitrary model-based constraints can be intro-
duced into the underlying relational structure, thus covering the range
from fully-connected non-directed relational models to specific di-
rected relational models (Bischof & Caelli, 2001). Obviously, in situa-
tions where no domain knowledge is available, the most general
model should be used, and learning is consequently slower and sub -
optimal. Conversely, when sufficient domain knowledge is available,
strong constraints can be imposed on the relational model, and
learn ing is consequently more efficient.

Figure 7: Left: Lifting a heavy object. The movement sensors were
placed on the hip, above the knee, above the foot, on the upper arm,
on the forearm, and on the hand of the left body side. Right: Sample
time-plots of the movement sequences. The first row shows time-
plots for the vertical position of the sensor placed on the hand, the
second row the acceleration of the sensor placed above the knee.
The four columns show traces the four movement classes.

The model-based CRGST approach is illustrated in an example where
the classification of four different variations of lifting movements were
learned, two where a heavy object was lifted, and two where a light
object was lifted. Both objects were either lifted with a knees bent and
a straight back (“good lifting”), or with knees straight and the back
bent (“bad lifting”). Thus there were four movement classes, 1) good
lifting of heavy object, 2) good lifting of light object, 3) bad lifting of a
heavy object, and 4) bad lifting of a light object. The movements are
quite difficult to discriminate, even for human observers. This was
done in order to test the limits of the movement learning system.

The movements were recorded using a Polhemus system running at
120Hz for six sensors, located on the hip, above the knee, above the
foot, on the upper arm, on the forearm, and on the hand of the left
body side (see Figure 7). From the position data (x(t),y(t),z(t)) of
these sensors, 3-D velocity v(t) and acceleration a(t) were extracted,
both with respect to arc length ds(t)=(dx2(t)+dy2(t)+dz2(t))1/2, i.e. v(t) =
ds(t)/dt and a(t) = d2s(t)/dt2.

The spatio-temporal patterns were defined in the following way: At
every time point, the patterns consisted of six parts, one for each
sensor, each part being described by unary attributes ?u [, , , ,]x y z v a .
Binary attributes were defined by simple differences, i.e. the spatial
attributes were defined as ? ?b u u, , , ,(,) () ()s i t j t j t i tp p p p , and the tem-
poral attributes were defined as ? ?? ?b u u, , 1 , 1 ,(,) () ()t i t j t j t i tp p p p .

Figure 8: Sketch of the four pattern models used for the recognition of
lifting movements. From left to right, the sketches show the fully con-
nected relational model, the non-directional intra -limb model, the di-
rectional intra-limb model and an inter-limb model. See text for further
explanations.

Performance of CRGST was tested with a leave -one-out parad igm, i.e.
in each test run, movement classes were learned using all but one
sample, and the resulting rule system was used to classify the re-
maining pattern, as described in Section 4.3. The system was tested
with three attribute combinations and four pattern models. The three
attributes combinations were 1) u=[x,y,z], 2) u=[v,a], and 3)
u=[x,y,z,v,a]. The four pattern models were 1) a fully connected rela-
tional model (i.e. binary relations were defined between all six sen-
sors), 2) a non-directional intra-limb model, i.e. binary relations were
defined between hip - knee, knee - foot, upper arm - forearm, and
forearm - hand, 3) a directional intra -limb model (i.e. binary relations
were defined as in 2) but only in one direction), and finally 4) an inter-

limb model (i.e. binary relations were defined between hip - upper
arm, knee - forearm, and foot - hand) (see Figure 8).

Results of these tests are shown in Table 4, for the attribute subsets
and the pattern models just described. The results show that per-
formance is fairly high, in spite of the fact that the movement patterns
are not easy to discriminate for human observers. Best performance
is reached for the intra-limb directional model (see Figure 8) and the
full feature combination xyzva . Even though performance for feature
combination va is very low, the two features improve, performance for
the xyz feature combination.

Model xyz va xyzva
fully connected 85 % 30 % 75 %

intra-limb non-directional 75 % 32 % 75 %

intra-limb directional 85 % 20 % 90 %
inter-limb non-directional 60 % 5 % 70 %

Table 4: Performance of CRGST for learning four different types of
lifting actions. The first column indicates what relational model was
used, and the three remaining columns give average performance for
three different attributes combinations (xyz = position in 3D; v = ve-
locity: a = acceleration). Each cell shows percentage correct identifi-
cations under the assumption that a single movement pattern is pre-
sent.

5 Conclusions

Visual learning is concerned with systems that learn to recognize
complex spatial and spatio -temporal patterns. We have presented a
number of such learning approaches, from simple discriminant func-
tions over decision trees nad evidence -based systems to advanced
learning systems like HMMs and CRGST.

Although these systems are fairly effective in learning moderately
sized data sets as they arise in vision, their efficiency, their flexibility
and their power is still a far cry from what is required to match human
performance in visual learning.

6 References

Bischof, Walter F & Caelli, Terry (1994). Learning structural descriptions of patterns: A new
technique for conditional clustering and rule generation. Pattern Recognition, 27, 689-
697

Bischof, Walter F & Caelli, Terry (1997a). Visual learning of Patterns and objects. IEEE Trans-
actions on Man, Machine, and Cybernetics, 27, 907-917.

Bischof, Walter F & Caelli, Terry (1997b). Scene understanding by rule evaluation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19, 1284-1288.

Bischof, Walter F & Caelli, Terry (2000). Learning complex action patterns with CRGst. In S.
Singh, N. Murshed and W. Kropatsch (Eds.) Advances in Pattern Recognition - IACPR
2001, pp. 280-289.

Bischof, Walter F & Caelli, Terry (2001). Learning spatio-temporal relational structures. Journal
of Applied Intelligence, 15, 707-722.

Briscoe, Gary & Caelli, Terry (1996). A Compendium of Machine Learning. Norwood, NJ: Ablex.
Bunke, Horst & Caelli, Terry (Eds.) (2001). Hidden Markov Models: Applications in Computer

Vision. Singapore: World Scientific.
Caelli, Terry & Bischof, Walter F (Eds.) (1997). Machine Learning and Image Interpretation.

New York: Plenum.
Caelli, Terry & Dreier, Ashley (1994). Variations on the evidence-based object recognition

theme. Pattern Recognition, 27, 185-204.
Devijver, P. A. & Kittler, J. (1980). Pattern Recognition: A Statistical Approach. Englewood

Cliffs, NJ: Prentice-Hall.
Duda, Richard, Hart, Peter & Stork, David (2001). Pattern Classification. New York: Wiley.
Flynn, Patrick & Jain, Anil (1993). Handbook of Pattern Recognition and Image Processing.

New York: Academic.
Hertz, John, Krogh, Anders & Palmer, Richard (1991). Introduction to the Theory of Neural

Computation. Redwood City, CA: Addison-Wesley.
Jain, Anil & Dubes, Richard (1988). Algorithms for Clustering Data. Englewood Cliffs, NJ: Pren -

tice-Hall.
Mitchell, Tom (1997). Machine Learning. New York: McGraw-Hill.
Pao, Y. (1989). Adaptive Pattern Recognition and Neural Networks. Reading, MA: Addison-

Wesley.
Quinlan, Ross (1992). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauf-

mann.
Rabiner, Lawrence & Juang Biing-Huang (1993). Fundamentals of Speech Recognition, Chap-

ter 6. Englewood Cliffs, NJ: Prentice-Hall.
Rosenfeld, Azriel & Kak, Avi (1982). Digital Picture Processing, 2nd Edition. New York: Aca -

demic.
Shapiro, Linda & Haralick, Robert (1981). Structural descriptions and inexact matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 3, 501-519.

