

Microsoft .NET

By

Robert Turner

Justin Mah
Peter Luong

Table of Contents:

Part 1: Overview
n What is Microsoft’s .NET?
n What are .NET’s smart devices?
n What do I need to use .NET?
n What are the benefits of .NET

– For Individuals
– For Businesses
– For Developers

n Why should you learn .NET?
n What should you might avoid .NET for now.

Part 2: The .NET Framework
n Introduction to the .NET Framework
n NET and Web Services
n ASP.NET
n Visual Studio .NET

Overview

What is .NET?

Microsoft’s definition of .NET:

“Microsoft® .NET is the Microsoft XML Web services platform, which will
significantly change how people interact with applications and devices via the Web.”

This is not very enlightening. At best Microsoft tells us that .NET is it’s new XML
platform. Delving deeper into .NET however, reveals a more enlighten idea of .NET
really is: a concept. It is the concept of a true distributed computing environment. Any
“smart device” anywhere can connect to the internet accesses your own information at
any time. .NET is an Internet-based platform of Next Generation Windows Services
accessed through smart devices. Specifically,

n .NET is a new Internet and Web based infrastructure
n .NET delivers software as Web Services
n .NET is a framework for universal services
n .NET is a server centric computing model
n .NET will run in any browser on any platform
n .NET supports dynamically reconfiguration.
n .NET is built on HTTP, XML, SOAP (standard format for web services), &

UDDI (standard search format to discover web services)

.NET and Smart Devices

Microsoft aims for .NET to be used with smart devices. A smart device is any piece of
hardware that contains a CPU and a connection to the internet, E.G. Personal computers,
cell phones, tablets, PDA’s, even the Microsoft X-Box (and theoretically the Sony
Playstation as well). Perhaps the best way to understand the concept of .NET is to look at
the way smart devices are supposed to behave:

n Smart about you.

A smart device uses your .NET identity, profile, and data to simplify your
experience. It is smart about your presence, tailoring notifications in response to
your presence or absence.

n Smart about the network.
A smart device is responsive to bandwidth constraints, provides support for both
online and offline use of applications, and understands which services are
available.

n Smart about information.
A smart device can be used anywhere anytime! Your information is accessible to

you no matter where you are, as long as you have a smart device and remember
your login and password.

n Smart about other devices.
A smart device discovers and announces other smart devices, knows how to
provide smart services. Think USB on a software scale.

n Smart about software and services.
A smart device presents applications and data optimally for form factor; enables
input methods and connectivity appropriate for great end-user interaction.

What do you need to run .NET?

All you need is a smart deice, and a .NET server. It’s that simple. Specifically,
on the client end, Microsoft is aiming at needing only a web browser (Internet Explorer)
and active connection to the internet. On the server side, .NET was built with the current
standards in mind: ASP, ADO, and SQL. As well, they hope to show off IIS.

What are Individuals Benefits to .NET?

Individual benefits are incredible! Think of it – being able to access your
computer desktop from home, work, or anywhere you want with a cell phone or PDA –
and having them all run appropriately the same way – it’s like living in the future!
Microsoft terms this as the Personal and integrated experience that .NET has to offer.

On top of that, if everything works like it’s supposed to, users can experience
the same .NET through smart devices. Each of these devices generates a different
interface for the .NET experience. Each appropriate to the type of device you are using.

As well, Privacy has been a very important issue to Microsoft during the

development of .NET, and they have gone to great lengths to make sure everything is
secure and protected.

What are Business Benefits to .NET?

 Since .NET is Microsoft’s next generation XML platform, it features XML
Integration for easy transactions . Weather it’s between partners in business to business
transactions, between customers through web servers & smart devices, or within
organizations getting specific views of files – a single XML sheet is all that’s needed.
The XML translators do the rest!

If Microsoft is right, and the benefits of using smart devices are as large as they
claim then XML Web services offers a huge incentive to businesses. Since uses will no
longer be forced through a PC, you could get much better targeted advertising on

something like a smart PDA (say advertising extra PDA pens). And, if .NET catches on,
we are sure to see more of these smart devices taking new forms we haven’t even though
of yet.

Savings in development costs are also touted to be quite high. Development should
be much more rapid, implying cheaper development costs, and faster time to market!

What are Developers Benefits to .NET?

Through .NET’s common language runtime any developer should be able to use his
favorite language (or combination of languages) to quickly get the project done. This
Rapid development can done through recompiled existing code (involving only minor
changes to incorporate .NET procedures), or through easily finding available XML
Web Services. If you don’t have time to build pieces of your project, you can buy pieces
of your applications rather than build everything from scratch. This also implies that
someone will be selling XML Web Services, meaning more jobs for independent
developers.

Why should you learn .NET?

With the abundance of XML products quickly entering the market, why should
you choose to develop with .NET rather then something else? Well, there are several
reasons.

The first is that .NET is backed by Microsoft. They will not give up no matter
how bad there technology looks and will do everything in there power to crush any and
all competition in order to monopolize the XML product market.

 The second is that Microsoft has already built a very strong base for .NET XML
platform: the .NET passport integrated into Hotmail, the MSN browser, and MSN
Messenger. 75% of all Microsoft Windows based platforms out there are running at least
one of the three. If you want an idea of just how big the .NET passport has already
gotten, try their web page:
 http://www.passport.com/Directory/Default.asp?PPDir=C&lc=1033

Thirdly, the .NET software development kit is free. There is a tremendous
amount of software available already, not to mention lots of info and help available on
the web.

 Fourthly, and finally, .NET development will be big business. This is where the
big bucks are going to be!

Why should you avoid .NET

At the moment, .NET is unproven. While it looks very good on paper, there has yet to
be any powerful .NET programs released (beyond the Microsoft trio of .NET Passport,
MSN Messenger, and MSN Explorer). Since .NET is meant to run through a browser
there is no guarantee it will be cross browser compatible. In theory, it should be cross
browser compatible, but in theory Java is cross platform compatible, and we all know
how that turned out. The most important unproven aspect of .NET however, is privacy.
Although Microsoft promises it, there is always a risk theft…

 .NET is meant to run on a network, which means the network must be up, must
not crash, and must not overload. Any breakdown would have very harsh repercussions,
as users would have many problems with each and every one of their smart devices.

 As well, the costs may be prohibitively expensive. At the moment, .NET is
meant to run on a Microsoft Windows 2000 server. While these days a Windows 2000
server is not very expensive, it is compared to one running a free copy of Apache.

Finally, the full concept of .NET represents a threat to all existing programming
languages - executables, C++, and Java too must die! Since Microsoft is trying to escape
platform specific programs with .NET they want everything made to run on a standard
browser! Guess which one…

.NET Framework

Introduction to the .NET Framework

The .NET framework is the underlying architecture of Microsoft’s software
development suite. It is responsible for compiling any supported code into a common
language, handling communication with web clients and smart devices by using the
lowest common denominator language through HTTP and XML, handling memory,
security, processes and threads, as well as providing a rich set of services based and built
on the existing operating system that the framework resides on.

Three major components make up that which is called the .NET framework.
They are the common language specification layer, the unified core and presentation
classes, and the common language runtime (CLR) layer. These components work
together to make up the .NET framework, and are illustrated on the next page:

Windows COM+ Services

Common Language Runtime

Base Class Library

Data and XML

ASP.NET Windows Forms

Common Language Specification

VB C++ C#

V
isu

al S
tu

d
io

.N
E

T

JScript …

Figure X: The .NET Framework

The middle layer in the figure above, which is not as explicitly obvious, are the

unified core and presentation classes. It includes ASP.NET for web development, Web
Services for providing specific web services to clients, and Windows Forms for creating
and developing Windows-based and/or smart client applications. These classes provide
the XML support, networking and data access that allow any web service or application
to talk to any device that has internet capabilities. They provide so much functionality in
their libraries, such as shopping cart functionality or the ability to create tree-view objects
that software developers and businesses can smile. It will greatly reduce a project’s time-
to-market, as well as a developer’s code, making the application reliable and robust.

The common language specification layer allows developers to create their code
in any of the major or supported languages, which effectively reduces software language
training and allows a choice of languages to choose from to develop code based on a
language’s strengths and weaknesses. The layer converts the source code that it was
developed in and converts it into an intermediate language. At this point, no matter what
language you use to develop the software, it becomes a ‘common language’, meaning
that it is indistinguishable which language the code was originally from. This language is
called the Microsoft Intermediate Language (MSIL or IL for short). Now the compilation
job is easier because it only needs to deal with the IL. The IL source code is compiled
using the Just-In-Time (JIT) compiler that is specific to the platform and operating
system that the framework resides on. The whole process is illustrated below:

 Code compiled into MSIL Just-In-Time compiler

Figure X: Common Language Specification Layer

The common language runtime (CLR) is able to talk to this managed code. The
CLR is the layer that handles memory management, security, and the execution of
applications, threads and processes. Some say that the CLR is an operating system, but
rather, it only provides a rich set of services and features that are built on top of the
existing operating system that it resides on. The memory manager now has a
sophisticated garbage collection feature, similar in idea to Java’s garbage collector. It
keeps track of all memory being used, and is able to detect when allocated memory is no
longer in use or is lost, and is able to free up that memory. Normally on a Windows-
based machine, memory is managed very poorly, and there is constant memory leakage.
If the leakage continues for an extended period of time, eventually there will be no
available memory left and the system will crash. Managing memory properly is
extremely important especially if the computer is running a web service in which the
computer is required to be on for days and weeks. The memory manager in the CLR
provides extremely effective control over memory and prevents leaks from occurring.
The CLR also controls security of applications. In order to do so, applications can or
cannot perform certain tasks based on things such as who is running the application, who
authored it, where it came from, what it is trying to do, and many other such criteria.

With all this functionality, ease of development and robustness, it is obvious that
a lot of work has been dumped on Microsoft to build such complex software. The
amount of work on their .NET framework shows, because it comes delivered on 5 CDs!

.NET and Web Services

Web services make up one of the cornerstones of Microsoft’s .NET strategy.
Essentially, applications will be broken up to simpler and smaller components that are
reusable. These components are what Microsoft defines as Web Services that any can
access through the network. Basically a Web Service is a dedicated application running
on a server. Therefore, applications can be created that use several Web Services from
different sources. One of the benefits of this architecture is that the Client application
does not need to be updated constantly as the bulk of the work is performed from the
Web Service. Therefore, it is up to the Web Service provider to keep these services up to
date.

Web Services “expose” their functionality to clients using a XML document
called a WSDL (Web Services Description Language). Inside of this XML document are
interfaces for calling and invoking procedures defined by the Web Service. The structure

Source code such
as Visual Basic,
Visual C++,
COLBOL, etc.

Code transformed
into Microsoft
Intermediate
Language (MSIL)

Platform specific
code

for the communication for sending and receiving SOAP requests are shown in the WSDL
document. Any client can receive this information by adding a “?WSDL” to the Web
Service URL such as shown:

http://www.webservices.com/Services/WebService1.asmx?WSDL

The architecture that Microsoft has devised is a simple communication stack
involving several industry standardized protocols. Locating services is done through the
UDDI (Universal Discovery Description and Integration) protocol. One of the protocols
that will be discussed in more detail is the SOAP protocol. SOAP is a simplified
communication protocol similar to CORBA and DCOM (Another Microsoft initiative).
Initially, Microsoft and several other companies set out to push SOAP as an industry
standard. SOAP defines the XML format of the exchange of messages between the client
and Web Service.

Data exchange is done through the markup language XML which essentially
describes the structure of data. Unlike HTML, which details how the information is
presented, XML encapsulates data inside the tags (<BOOK>Introduction to
.NET</BOOK>).

An example of a Web Service class is shown above

ASP.NET

What is ASP.NET? A lot of web developers are familiar with the scripting
language ASP that allows the generation of dynamic pages. ASP.NET is the next
generation of server side scripting on the Microsoft platform. Some of the benefits of
ASP.NET include increased performance increase, separation of content and code, full
Visual Basic support, and simplified programming model.

One of the downsides of traditional ASP was that it was a pure scripting language.
Every time a client accessed the ASP page, the script is executed and the corresponding
HTML output is generated. ASP.NET resolves this issue by compiling the ASP.NET
script into MSIL (Microsoft Intermediate Language) when the page is access the first

Public Class MathService : Inherits WebService

 <WebMethod()> Public Function RRSP(Income As System.Single) As
System.Single

 If (Income > 75000)
 Return (13500)
 Else
 Return(Income * 0.18)
 End Function

End Class

time. Upon every other request to the ASP.NET page, the compiled MSIL version is
executed instead. This leads to better performance as the compiled code is already
optimized. Benchmarks have been conducted and they show that ASP.NET code
executes 3-4 X faster than ASP and JSP.

ASP.NET now has support for full Visual Basic as oppose to VBScript in ASP.
Web objects can be created at run time at the server side using the “runat = server”
attribute. With the support of the .NET framework, objects such as datalists, datatables,
and dropdown lists have methods and function calls. Therefore, there is less code in
ASP.NET than ASP to perform common tasks. To serve up a ASP.NET page simply
place the “.aspx” file into the Microsoft Internet Information Server directory and ensure
the framework is installed. The Microsoft .NET framework allows both ASP.NET and
ASP to run cooperatively. However, the ASP script will not enjoy the optimizations of
ASP.NET pages.

An Example of ASP.NET code is shown below.

Visual Studio .NET

Microsoft has developed Visual Studio .NET to allow developers to deploy .NET
applications and services more easily and efficiently. All of Microsoft’s development
environments have been synchronized into one development product. Now VB
developers will be accessing the same tools and features of Visual C++ developers. The
Web Services and ASP.NET pages can all be written in a simple application such as

<html>
 <head>
 <link rel="stylesheet" href="Sample.css">
 </head>

 <body>

 <center>

 <<h3> Car: <asp:textbox id="Car" runat="server"/>

 Manufacturer: <asp:dropdownlist id="Make" runat=server>
 <asp:listitem >Honda</asp:listitem>
 <asp:listitem >Nissan</asp:listitem>
 <asp:listitem >Toyota</asp:listitem>
 </asp:dropdownlist>
 </h3>

 <asp:button text="Lookup" OnClick="SubmitBtn_Click"
runat="server"/>

 <p>

Notepad. However, Visual Studio simplifies the development by offering integrated
MSDN (Microsoft Developers Network) help, Intellisense feature, etc.

Web development projects can now be developed using a broad range of
languages. The compiled code once compiled as MSIL is standardized and can interact
with each other. Visual Studio supports the development of more than 20 languages using
the Command Language Runtime. However, only C++, C, C#, Visual Basic, and Jscript
Command Language Runtime Compilers are included with the Visual Studio .NET.

