
Juan Cruz
Kevin Hessels

Ian Moon

Table of Contents
1. Introduction

¡ What is JSP?
¡ Alternative Solutions
¡ Why Use JSP?

2. JSP Process
¡ Request
¡ Compilation
¡ Example

3. Object Instantiation and Scope
¡ Scope
¡ Synchronization
¡ Session Objects

4. JSP Syntax
¡ Template Text
¡ Scripting Elements
¡ Directives
¡ Actions

5. End Notes
6. References

1. Introduction
The last decade has seen an explosion in the growth of the Internet as a medium for
information exchange and, more recently, as a place for commerce. Up until recently,
content provided on the web was presented primarily in the form of static pages. These
static web pages, while effective for presenting some types of information, lack the
functionality that is required to create a truly interactive web experience. With the
increasing demand for dynamic content on the web, from applications of on-line store
catalogues to portal sites customized to the user's preferences, there came a need to be
able change the content of these pages dynamically. Although a number of solutions
have been provided, this paper highlights the technology introduced by Sun
Microsystems, know as JavaServer Pages (JSP). In the following, we will highlight the
key advantages that JSP provides as well as a number of concepts behind the
technology. Finally, a number of examples will illustrate how JSP can be used to easily
create effective web content.

What is JSP?

JavaServer Pages

Page 1 of 14

Much like it's primary competitors, ASP and PHP, JSP is a server-side scripting language
that is used to create dynamic and interactive web content. JSP is based upon the Java
programming language, and thus, at JSP's foundation are the numerous, pre-existing
classes that comprise the Java platform. These classes, when combined with static
HTML using JSP's "XML-like tags and scriptlets" [1] allow for the rapid development of
dynamic web pages. JSP is similar, in many respects, to other technologies, such as
Microsoft's ASP or the Open Source PHP, in which executable content is embedded
within the HTML page and executed at the time the page is served to the client. Because
the Java language is able to run on virtually any platform, JSP can also be deployed on
any platform. The only requirement is a Java interpreter and the Apache/Tomcat web
server. While a number of web server applications exist that support JSP, the
combination of Apache and Tomcat is by far one of the most popular. Because most
developers are familiar with both HTML and the Java programming language, the use of
JSP is a natural solution for delivering interactive web-based applications.

Alternative Solutions

JSP is one of a number of products/technologies that enable the delivery of dynamic web
content. JSP, however, provides a number of advantages over these other technologies.
One of the main competitors is Microsoft's ASP technology which provides similar
functionality based on the VBScript language. The primary drawback to this solution is
that ASP does not provide for vendor independent deployment. Thus, in order to use
ASP, you must use Microsoft's IIS web server on the Windows platform. This solution
may not be feasible for some organizations due to the high cost of product licensing and
incompatibility with pre-existing technology infrastructure.

Another solution in this domain is the JavaScript language, used primarily on the client
side, to offer dynamic web pages. There are a number of drawbacks to using JavaScript
to create dynamic content. Primarily, because JavaScript is run on the client-side, it does
not provide any means in which the server's resources can be accessed [2]. Thus,
providing content from a database on the the server, for example, is impossible. This
poses a severe limitation of the number of applications in which JavaScript can be used,
particularly in the area of on-line commerce. Another disadvantage to using JavaScript
for creating dynamic web content is the poor adherence by a number of browsers to the
Document Object Model standards. While there has been a movement towards
compliance by the major browser vendors, it is still required to write code that supports
the myriad of legacy applications. This problem greatly increases the cost and complexity
in developing web applications based on this technology.

JSP is very closely related to the Java Servlet technology, also developed by Sun
Microsystems, and thus, provides functionality which is very similar to the Servlet and
vice versa [2]. The primary difference between these technologies, however, is their
intended application. Because the Java Servlet is written and compiled as a normal
class, they are intended to deliver content that is based primarily on content generated
by the server itself. JSP, on the other hand, is written as HTML with embedded Java,
intended for scripting small portions of the page to generate an interactive site. While
either technology can be used to create similar effects, it is up to the developer to
evaluate which one is most suitable for the requirements at hand.

Page 2 of 14

Why Use JSP?

The key advantage to using JSP over the alternatives is the fact that JSP is completely
platform-independent, enabling them to run on any platform supported by the
Apache/Tomcat web server. This platform independence is due to the fact the JSP is
based on Sun's Java technology which is availably for virtually any operating system.
According to Sun, this has the advantage of allowing the content provider to "extend the
capabilities of a web server with minimal overhead, maintenance, and support." [1]
Although JSP is closely related to Sun's Java Servlet technology, JSP provides addition
benefits. The primary advantage that JSP provides over Servlets is the fact that JSP
code can be directly embeded within static HTML pages to provide dynamic content from
the server [2]. This embedding is provided by an XML markup to define the Java code, a
standard which should be familiarto all web developers. Another advantage of JSP is the
ability of JSP to integrate with pre-existing applications. Because JSP emphasizes the
separation of content and functionality, pre-existing code can be integrated through the
use of a JavaBean interface to extend its functionality.

2. JSP Process

Request

There are three fundamental components to the JSP process, the web browser, web
server, and a container. A web server receives an HTTP requests from a browser, and
responds by sending an http response and document to the browser to be displayed.
When a web server is sent a request for a .jsp file it passes the request to the container.
"Tomcat is the servlet container that is used in the official Reference Implementation for
the Java Servlet and JavaServer Pages technologies. The Java Servlet and JavaServer
Pages specifications are developed by Sun under the Java Community Process." 1
Tomcat is one example of a container but there are many others. The container handles
the request and passes HTML back to the web server that sends the response to the
browser to be displayed.

Compilation

JSP is an extension of another sun technology Java Servlets. The actions of the
container demonstrate this relationship. Once a JSP request has been forwarded to the
container from the web server, "the container looks for a servlet class with the requested
file name in the appropriate package." 2 If the servlet is found it is run. A Java Servlet like
a CGI writes out an HTML document that is passed back to the web server. "If the
container doesn't find the servlet class, it looks for the same file name, but with a .jsp
extension." 3 If it finds a match, the JSP is converted to a to a class that extends
HttpJspBase, which in turn implements the Servlet interface. This is the core of the
relationship between Java Servlets and JavaServer Pages. The new class is compiled
and run as a servlet, creating a document for the web server.

Page 3 of 14

"Note that the JSP 1.1 specification also allows for JSP pages to be pre compiled into
class files. Pre- compilation may be especially useful in removing the start-up lag that
occurs when a JSP page delivered in source form receives the first request from a
client." 4

HttpJspBase consists of mainly three methods, jspInit(), jspDestroy(), and _jspService().
"jspService() cannot be overridden, the developer can describe initialization and destroy
events by providing implementations for the jspInit() and jspDestroy() methods within
their JSP pages."5 Once the class file is compiled and loaded within the servlet
container, "the _jspService() method is responsible for replying to a client's request. By
default, the _jspService() method is dispatched on a separate thread by the servlet
container in processing concurrent client requests, as shown below:"6

Page 4 of 14

Figure 2 from "JavaServer Pages Fundamentals" [5]

Example

Figure 1 from "JavaServer Pages Fundamentals" [5]

package jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;
import org.apache.jasper.runtime.*;
import java.beans.*;
import org.apache.jasper.JasperException;
import java.text.*;
import java.util.*;

public class _0005cjsp_0005cjsptest_0002ejspjsptest_jsp_0 extends HttpJspBase {

static { }
public _0005cjsp_0005cjsptest_0002ejspjsptest_jsp_0() { }
private static boolean _jspx_inited = false;
public final void _jspx_init() throws JasperException { }
public void _jspService(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {
JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;

Page 5 of 14

Object page = this;
String _value = null;
try {

if (_jspx_inited == false) {
_jspx_init();
_jspx_inited = true;

}
_jspxFactory = JspFactory.getDefaultFactory();
response.setContentType("text/html");
pageContext = _jspxFactory.getPageContext(this, request,response, "", true, 8192,
true);
application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();
// begin
out.write("\r\n<html>\r\n<body>\r\n");
// end
// begin [file="E:\\jsp\\jsptest.jsp";from=(3,2);to=(5,0)]
Date d = new Date();
String today = DateFormat.getDateInstance().format(d);
// end
// begin
out.write("\r\nToday is: \r\n ");
// end
// begin [file="E:\\jsp\\jsptest.jsp";from=(7,8);to=(7,13)]
out.print(today);
// end
// begin
out.write(" \r\n</body>\r\n</html>\r\n");
// end

} catch (Exception ex) {
if (out.getBufferSize() != 0)
out.clear();
pageContext.handlePageException(ex);

} finally {
out.flush();
_jspxFactory.releasePageContext(pageContext);

}
}

}

Code Listing 1 from "JavaServer Pages Fundamentals" [5]

3. Object Instantiation and Scope

Scope

Member objects of the JSP class that is created can be created implicitly using JSP
directives, explicitly through actions, and directly in a scriplet. The syntax will be
discussed later in this document. "The instantiated objects can be associated with a
scope attribute defining where there is a reference to the object and when that reference
is removed. The following diagram indicates the various scopes that can be associated
with a newly created object:"7

Page 6 of 14

Figure 5 from "JavaServer Pages Fundamentals" [5]

Synchronization

JSP variables can be created in a jspPage by declaring them in the page using the
declaration syntax tags, <%! %>. These variables, when converted from JSP to servlets,
become member variables of the servlet class. Objects created through other means are
members of the _jspService() method. This is an important differentiation when it comes
to synchronization. By default, each servlet is instantiated only once within the container,
and rely on multi-threading of _jspService to handle multiple requests. Therefore, the
member variables of the servlet are shared to multiple pages, causing concurrence
problems.8

"There are a couple of different ways to ensure that the service methods are thread-safe.
The easy approach is to include the JSP page directive:

<%@ page isThreadSafe="false" %>

This causes the JSP page implementation class to implement the SingleThreadModel
interface, resulting in the synchronization of the service method, and having multiple
instances of the servlet to be loaded in memory. The concurrent client requests are then
distributed evenly amongst these instances for processing in a round-robin fashion.
"9This of course can lead to very poor response times while under high request volume.
"A better approach is to explicitly synchronize access to shared objects (like those
instances with application scope, for example) within the JSP page, using scriptlets: "10

<%
synchronized (application) {

SharedObject foo = (SharedObject)

Page 7 of 14

application.getAttribute("sharedObject");
foo.update(someValue);
application.setAttribute("sharedObject",foo);

}

%>

Session Objects

JSP's participate in sessions with the browser client. A cookie is used to identify the
session of the browser. The HttpSession object is an implicit object that does not have to
be declared by the developer. However, other objects or cookies can be stored and
retrieved from this scope.

"There is no limit on the number of objects you can store into the session. However,
placing large objects into the session may degrade performance, as they take up
valuable heap space. By default, most servers set the lifetime of a session object to 30
minutes, although you can easily reset it on a per session basis by invoking
setMaxInvalidationInterval(int secs) on the session object. The JSP engine holds a live
reference to objects placed into the session as long as the session is valid. If the session
is invalidated or encounters a session timeout, then the objects within are flagged for
garbage collection."11

4. JSP Syntax

JSP is composed of HTML or XML code embedded with constructing code written in
Java. The HTML code contained in a JSP is called fixed-template data or fixed-template
text. There are three key components to JSPs: scripting elements, directives, and
actions. [2]. Scripting Elements enable programmers to insert Java code that interacts
with other JSP components, directives control the overall structure of the servlet, and
actions specify existing components that can be used with the JSP.

Page 8 of 14

Template Text

The servlet generated from the JSP code passes the HTML syntax directly to the client
with no modifications. This one follows the regular HTML syntax rules. HTML comments
of the form <!-- HTML comment --> are passed to the client, yet JSP comments of the
form <%-- JSP comment --%> are not passed.

Scripting Elements

Scripting elements allows you to insert java code into the generated servlet, and there
are three forms:

Expressions

Expressions evaluate a java statement and converts the result value into a string. The
result is inserted directly into the output. The expression is evaluated at request time.
Expressions have the following form:

<%= Java Expression %>

For example, the following expression generates the current date and time:

<%= new java.util.Date() %>

Scriplets

Scriplets are blocks of code delimited by <% and %> , and they permit the execution of
more complex tasks than a simple expressions. Scriplets can perform tasks like
executing loops, conditional statements, updating a database or setting up response
headers (i.e.. html or plain text). The scriplet code is inserted into the _jspService
method.

For example, the following page BGColor.jsp [2] reads the background color of a page
from a form field "bgColor" and outputs the background color selected by the user;
otherwise, it displays a plain white background as default.

<html>
<head>
 <title> Color Testing </title>
</head>

 <%
 String bgColor = request.getParameter("bgColor");
 boolean hasExplicitColor;
 if (bgColor != null) {

Page 9 of 14

 hasExplicitColor = true;
 } else {
 hasExplicitColor = false;
 bgColor = "white";
 }
 %>
 <body bgcolor="<%= bgColor %>">
 <h2 align="center">Color Testing</h2>

 <%
 if (hasExplicitColor) {
 out.println("User background color= " + bgColor);
 } else {
 out.println("Using default backgroundcolor of WHITE.");
 }
 %>
 </body>
</html>

Scriplets are not required to contain complete java statements, they can include static
html sections. The following example [2] contains mixed template text and scriplets:

<% if (Math.random() < 0.5) { %>
 Have a nice day!
<% } else { %>
 Have a lousy day!
<% } %>

Example Listing 10.2, "Core Servlets and JavaServer Pages"

As you can see, the example mixes scriplet code and html output code, this is due to the
fact that the code will be converted to servlet output in the end. The same condition also
applies to while or for loops.

Declarations

Declarations allow the programmers to define variables and methods, and they are
delimited by <%! and %>. Declarations get inserted into the main body of the servlet
class (outside of the _jspService method). The variables become instance variables of
the servlet.
Note, that in multiple client requests to the same servlet, a single servlet receives the
calls of multiple threads, thus instance variables are shared by multiple requests [2]. The
following example displays the number of times that the same page has been accessed
by different users, for this, an instance variable accessCount keeps track of the number
of requests to the servlet:

Page 10 of 14

<body>
 <h1> JSP Declarations </h1>
 <%! private int accessCount = 0; %>
 <h2> Access to page since servlet reboot:
 <%= ++accessCount %></h2>
</body>

Predefined Variables

There is eight predefined variables that provide JSP pages with servlet capabilities and
they are called implicit objects. These objects are accessible through expressions and
scriplets. Yet, they are not accessible through declarations since declarations are defined
outside of the _jspService method. There are four scopes in which implicit objects are
defined, these scopes are: request, page, application and session [3].

Objects with page scope exists only in the page that defines them, and they are:
- response: this variable sets the response header to the client, for example it can be
html or plain text.
- out: variable is used to send output to the client and stores the output in a buffer before
it is sent.
- config: represents the JSP configuration options.
- pageContext: provides access to page attributes and provides a place to store shared
data.
- page: represents the this reference for the current JSP instance.

Objects with request scope:
- request: it gives you access to the request parameters, the request type (GET or
POST), and incoming; http headers (i.e. cookies).

Objects with session scope exist for the entire client's session:
- session: represents the client session information, and it is available only in pages that
participate in a session.

Objects with application scope can be manipulated by any servlet or JSP container:
- application: the data stored in these variables is shared by all servlets in the servlet
engine.

Directives

Directives are messages that enable the programs to set the overall structure of the
resulting servlet. They are delimited by the tags <%@ and %>. There is three types of
directives: page, include and tag libraries (taglib).

Page Directive

A page directive specifies global settings for the JSP in the JSP container. The page
directive defines the following attributes:

Page 11 of 14

import, contentType, isThreadSafe, session, buffer, autoflush, extends, info, errorPage,
isErrorPage and language [2].

Examples of page directives follow:

- import: specifies the library packages that will be imported to the servlet generated from
the JSP. The following directive gives access to the classes in the java.util package:

 <%@ page import ="java.util.*" %>

- contentType: sets the Content-Type response header indicating the MIME type of the
document. For example, to set the content type to plain text:

 <%@ page contentType="text/plain" %>

Note, that the content type could have been set with an implicit object from a scriplet:

 <% response.setContentType("text/plain"); %>

Include Directive

The include directive allows the insertion of external files in to the JSP page at translation
time (this is the first time that the document is accessed). These files can be html code or
extra jsp functions [2]. The include directive has the following form:

<%@ include file="Relative URL" %>

Tag Library Directives

Tag Libraries allow the access of custom tags that provide complex functionality to
modify JSP or text context. They are useful for Web page designers who don't know
much about java programming[3]. Example:

<%@ taglib uri = "advjhtp1-taglib.tld" prefix="advjhtp1" %>

The tag specifies the uri of the tag library descriptor file and the prefix for each tag
"advjhtp". The tags can be inserted into the jsp as follows:

<advjhtp1:welcome> </advjhtp1:welcome>

Actions

Page 12 of 14

Actions are predefined tasks that are processed by the JSP container at request time.
Actions are delimited by <jsp: action> and </jsp:action>, where action is the predefined
task to execute [3].

Standard actions are:

<jsp: include> Used to insert other jsp or html pages into the current JSP page. The
inserted page is processed at request time (that is when the user access the page).
Example:

 <jsp: include> page="banner.html" flush = "true" />

Page indicates the html page to include and flush indicates that the buffer must be
flushed.

<jsp: forward> Used to forward the request process to other JSP page or servlet. The
action terminates the current JSP execution and starts the new one.

<jsp: plugin> Used to add a plug-in component to a page as a browser specific object.
For a Java-Applet, it allows the downloading and installation of the java plug-in.

Java Bean Manipulation actions:
<jsp: useBean> Declares a Java Bean instance for use in the JSP page. It assigns the
bean an id to access the bean through scripting elements and it specifies the scope of
the bean (ie. page or session). Example:

 <jsp:useBean id="courseBean" class="coursepack.CourseListBean" />

Where the id courseBean is the object name to access the JavaBean, and class points to
the package "CourseListBean.class".

<jsp: getProperty> Gets a property in the specified JavaBean instance. Example:

 <jsp:getProperty name="courseBean" property="courseColor" />

Other way to get bean properties is using an expression as follows:

 <%= courseBean.getCourseColor(courseNumber) %>

<jsp: setProperty> Sets a property in the specified JavaBean instance. Example:

 <jsp:setProperty name="courseBean" property="courseColor" value="blue" />

The above expression is the same as:

 <% courseBean.setCourseColor("blue")%> ~

5. End Notes

Page 13 of 14

1. http://jakarta.apache.org/tomcat/index.html
2. http://www.jspinsider.com/content/rcarnes/jspb_1.view
3. http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html
4. Ibid.
5. Ibid.
6. Ibid.
7. Ibid.
8. http://pdf.coreservlets.com/chapter10.pdf
9. http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html

10. Ibid.
11. Ibid.

6. References:
[1] JavaServer Pages: Dynamically Generated Web Content
Sun Microsystems, 14 March 2002, <http://java.sun.com/products/jsp/>

[2] Core Servlets and JavaServer Pages, Hall, Marty
Sun Microsystems Press/Prentice Hall, 2000
<pdf.coreservlets.com>

[3] Internet & World Wide Web: How to Program, 2nd Edition,
Deitel, H. M., Deitel P. J., and Neito T. R., Prentice Hall, Upper Saddle River, N. J., 2002

[4] Bodoff, Stephanie, Java Servlet Technology
<http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html> (13 Mar. 2002)

[5] jGuru.com (1999), JavaServer Pages Fundamentals Short Course
<http://developer.java.sun.com/developer/onlineTraining/JSPIntro/contents.html> (24
Mar. 2002)

[6] Saegesser, Marc A. (2002), The Jakarta Site - Jakarta Tomcat
<http://jakarta.apache.org/tomcat/index.html> (14 Mar. 2002)

[7] Carnes, Ray (2000), JSP: THE SHORT COURSE - Lesson 1
<http://www.jspinsider.com/content/rcarnes/jspb_1.view> (24 Mar. 2002)

Page 14 of 14

