

Microsoft .NET

A C499 Presentation Report

Authors:
Billy Yeung

Victor Salamon

Instructor: Osmar Zaiane

 2

Introduction

 The best way to understand Microsoft .NET is to analyze its goals. It has been observed that
today’s computing shifts to distributed applications. This is mostly due to the impressive advent of
cheap and relatively high-speed networking Over the last few years, the cable and high-speed phone
lines have brought Internet in the homes of much more users than it used to in the past. This
combined with the effect of Moore’s Law (predicting a doubling of processing power every eighteen
months and a drop in price by a factor of two) makes distributed computing fully available to the
common user for the first time.

 There are many examples of distributed applications today. Napster uses a rich client talking
to a directory service in the "Internet cloud," with all of the participating computers on the network
acting as servers. Communication gadgets such as "Messenger" make use of web services to
maintain "buddy list", schedule and personal information somewhere in the Internet cloud and
communicates over the network directly with other clients in a peer-to-peer fashion. These
distributed applications take advantage of the computing power at the edge of the network-on client
machines-while providing services that are inherently connected. However, there is no common
ground in developing these applications; this makes it difficult to produce applications in a manner
that is as easy as producing them for the desktop.

 The .NET technology is aimed at accelerating, unifying and integrating this next generation
of distributed computing. Ideally, everything service becomes a Web service, so that it can
participate in the connected network. This applies to both applications and to resources like storage.
Web services must be easy to aggregate and integrate so that developers can quickly and efficiently
create applications. Users must have a simple and compelling experience working with Web services
so that they will adopt the new applications and services.

 Another goal is to have any application run on any device. Applications and data need to
seamlessly flow from one device to another, in order to satisfy user’s demands for running their
applications on their favorite (mobile or not) devices. Thus, the platform on which .NET is going to
run on is going to be a virtual one (Internet). Across this platform, software delivery will be a service
in itself, in the sense that applications will be easily delivered into the user’s device and integrated
seamlessly.

What does it mean for users?

 Have you ever been bothered by the fact that you can’t have access to a specific application
on your Palm, application that was originally developed for a desktop? Furthermore, don’t you hate it
when your friends have all these cool applications for their cell-phones, but you can’t use them,
because your phone’s OS does not support them?

 .NET is important to end users it frees them from the artificial constraints of hardware: user
data will live on the Internet, not on the local machine. In addition, it can be accessed seamlessly
from any desktop, laptop, cell phone, or PDA. It can even be interchanged between devices. Thus, it
makes computers easier to use and far more functional.

Another declared goal of Microsoft .NET is creating a unified architecture for Internet
services. Many web pages today offer different services that are more or less efficient. It happens
many times that finding a specific product or information on a known company site is a frustrating
and time-consuming activity. Even though the searched item is there, it is often hard to find it
because the site might not be organized properly. .NET architecture will free users from the

 3

limitations imposed by the data chaos that exists on the Web today. Users will have access to their
data, however they want to view it, however they want to use it.

 There is currently a market move tendency towards fully featured devices such as smart
phones, PDAs and internet-ready televisions. Not only they have many features, but also their user
interface is - or at least, is intended to be - easy to adapt to. However, the existence of a multitude of
manufacturers implies an extreme heterogeneity in hardware and the software services they offer.
This leads to a whole set of applications that overlap in functionality but have very different
interfaces, installation and connectivity procedures.

 .NET increases the reach of applications and enables the continual delivery of software. To
the casual user, software is currently viewed as something that you have to install from a CD. A
much more natural approach is to provide the software as a service-like caller ID or pay-per-view
television-to subscribe to through a communications medium. This subscription should be enough to
make the newly installed software integrate with your current setup, no matter what hardware it runs
on. Microsoft’s .NET philosophy says that software should integrate on your television or your cell
phone just as easy as it would on your desktop.

What does it mean for business?

The driving force behind Microsoft .NET is a silent shift of focus from individual Web sites,
applications, and devices to new constellations of computers, devices, and services that work
together to deliver a solution that can serve a broader range and gives richer solutions. Under this
scheme computers, devices, and services are able to communicate and collaborate with each other.
Businesses will be able to offer their products and services in a way that lets customers embed them
in their own electronic fabric.

To see what businesses can benefit from .NET, first consider some of the deficiencies in
today's computing environment.

• The human –computer interaction mechanisms are mainly limited to keyboard and

mouse for input, and monitor or paper for output. The communication between
computer and humans is not giving a comfortable and sound experience to some users;

• User information is sited on the machine where he/she is using. Users cannot directly
load their preferences or data file in any other machines (Previous solutions to this
problem exist, such as Xdrive; however, this is not a unified, integrated solution.);

• It is hard to transform and integrate data from one application to another;
• Applications designed for particular devices - whether it's a PC, a pager, a cell phone,

or a PDA - cannot be directly transferred to other devices.

.NET promises to solve these deficiencies by enabling access to all of a user's data and

applications anywhere and from any device. In addition, .NET technology provides mechanism to
enable applications linked in logical ways by extensive use of XML.

As stated above, .NET is a vision of making information available any time, any place, on

any device. .NET enable users to interact with their computer and data through various input
methods like handwriting, speech, and vision technologies. User's data is located in a common
repository where they can access to their data anywhere on any machine. The common repository is
connected to the Internet in order to satisfy this condition. For example, user's data will live securely
on the Internet so that they can access it from their PCs at work and at home, from their cell phones
or pages, from their PDAs, and even from combination of page/cell phone/PDA-PC device that's on

 4

the market horizon. Applications will be able to gracefully adapt the functionality they offer to the
limitations (e.g. screen size) and opportunities presented by the device with which the user is
interacting. As user profile and preferences is stored on the Internet, applications will be able to
present an adaptive user interface on a user’s behalf.

.NET makes users more productive. Since .NET enhances human computer interaction,

people do not need to worry about how to interact with computers; or how to synchronize data from
one application to another. Rather, people are lead to a place where they can focus on what to do
with their computers to perform their tasks and accomplish their goals.

Businesses will thus benefit from dramatic increase of efficiency and productivity. As well,

the cost to educate customers or employees on the user of any software would decrease, since the
user interface is drawn from the user experience and preferences that is stored on the Internet. .NET
brings employees, customers, data, and business applications into a coherent and intelligently
interactive whole. ".NET promises a world of business without boundaries."

What does it mean for developers ?

 Microsoft attempts to extend the current view of what an operating system is and expand it
beyond the limits of a device, regardless of whether this is a desktop or mobile one. The .NET
technology allows distributing and integrating operating-system specific services over the Internet.
Ultimately, this will allow developers to create programs that are independent of the device they run
on.

 It used to be hard enough to write portable applications and services for a relatively small
number of device types (computers, mainly). It was even harder to port existing applications from
one device to another, from one OS to another. Now imagine this task growing exponentially,
together with the explosion of device types being invented these days (devices such as cell-phones,
PDAs etc). By benefiting from a common framework, maintenance and development that is
independent from hardware will be a much more gain than it would have been in the past.

 Historically, developers built applications by integrating local system services. This model
gave developers access to a rich set of development resources and precise control over how the
application would behave. However, developers have already largely moved beyond this model.
Today, developers are building complex n-tier systems that integrate entire applications together
from all over their networks and then add unique value on top. This enables developers to focus on
the functionality of the application rather than on building infrastructure. The result is a shorter
development time, higher developer productivity, higher integration and, ultimately, higher-quality
software.

 However, there is no unifying technology that brings these development resources together.
The closest thing to a unified infrastructure is the Internet; but this doesn’t imply the existence of a
unified development resource. .NET is important to developers because it will both change the way
the development process takes place. Code developed with .NET technology will benefit fully from
the other services and applications available on the Internet in their applications. One could even say
that this would be the birth of a first Internet-scale operating system.

 In order to accommodate as many developer classes as possible, Microsoft is planning on
offering support for most programming languages available out there. This means that the transition
to the .NET development will be seamless for most programmers.

 5

What’s the different from what we have today?

This discussion is best started by the words of Charles Fitzgerald, Director of .NET Platform
Strategy:

"It’s kind of interesting to go back and look at how we build software
over probably the last ten or twenty years. And we really have kind of
harnessed ourselves to this economic engine of growth known as Moore’s Law,
where the code we wrote this year, next year is going to run faster, is going to
run more cheaply. And that’s been a great phenomenon for really Microsoft and
other companies to hitch their business to. And sort of the moral equivalent of
having the wind at your back in terms of the set of investments you make. And
we now live in this world where there actually are now two very powerful
economic engines. Moore’s Law still has at least five to ten years left on it, but
there’s another very powerful economic force, which is the plummeting cost of
communications, and obviously we’ve seen a phenomenal amount of
investment going to building up the Internet over the last five or six years. And
we really are in a position where we have global connectivity. It’s very, very
low cost relative to everything that came before us. And the question we really
started to ask was, how do you start to build really interesting applications in
an environment where you have both abundant processing and also abundant
communications capabilities. And at the very highest level, a lot of what we’re
trying to do with .NET, is figure out how to build a platform that harnesses
both of these economic forces. We want to have the equivalent of the wind at
our back, and also be running downhill. That’s sort of where we start as we
think about how to package software in a .NET environment."

.NET is about services. This new idea of software as a service and how do people build,

deploy, operate, integrate, aggregate, consume this new set of software services that are delivered
over the Internet.

Current technologies like IAS and ASP enabled the server-side functionality; however, they
are different from .NET in the sense that they are particular and singular technologies that are not
integrated.

When looking at what’s happened over the last five or six years, there’s really a revolution in
the way users interact with applications, in the sense that users can now sit down, type in a URL,
click on a link, go visit tens of millions of different sites. Going one step further, given this global
connectivity, .NET will revolutionize the way applications talk to applications, or the way software
talks to other software.

This idea is based on the fact that Internet itself is extremely distributed. This is the inherent
nature of Internet; historically, it was built to preserve connectivity when one site is bombed during
the war, the rest of the sites can still communicate with each other. Therefore, the Internet is a very
distributed architecture.

Many applications these days do not take advantage of a distributed architecture, in the sense
that we do all of our processing on the server, and we pretty much use all the power at the edge of
the network as a terminal. And that terminal model, where you do all the processing on the server
and periodically you ship out a picture of what happened on the server, when the user wants to do
something, you send everything back to the server, that model really made sense in a world where
processing power was scarce.

 6

However, there’s abundant processing power around the edge of the net. In 1999, Intel

shipped on the order of two trillion MIPS. That's a phenomenal amount of processing power, most of
which is sitting out on the edge of the network.

The question now, is, given the fact that communications fabric of the Internet is distributive,
how to start to build applications in a distributed and very Internet native fashion? The end point is
the idea of .NET, starting to build things as Web services, where users can still have very rich
software content, but also take advantage of that near ubiquitous communications capability that
currently exists in the world.

Moreover, .NET is more than just taking a frame based site, and one of the frames is another
website that you fetch information from their website and make use of it. One of the challenges with
HTML is it doesn't really give you information. It gives you a picture of the information. .NET wants
to go beyond content aggregation, beyond screen scraping, and allow people to start
programmatically build applications that stitch these different things together. Today, developers can
build things on top of screen scraping, but it turns out to be very brittle. Once the site changes, the
information that used to be meaningful may not be meaningful anymore.

For example, your bank has a Web site with some of your information. I can build an

application today that goes out and screen scrapes those different sites and pulls the information
together, and allows you to look at your complete financial situation. The problem with that solution
is it's very brittle. The reason is the following. It might be the case that one day one might grab their
account balance out of their bank's Web site; the next day after the bank gets bought or it redesigns
its Web page, one may find oneself actually grabbing a different account number. So briefly, I may
think I'm doing really well financially, but it makes for a very brittle mechanism on top of which to
build these interactions between different systems. And .NET wants to have something that gives
developers a real solid programmatic infrastructure to build on top of.

How does .NET accomplish these goals ?

 At the core of the new development paradigm is the concept of a Web service. Web services
are discoverable services in the sense that one can query what kinds of services are provided out
there. Once these services are discovered, one can query their functionality. All this is achieved over
the Internet through the Simple Object Access Protocol (SOAP), which is based on Extensible
Markup Language (XML).

 Conceptually, developers integrate Web services into their applications by calling Web
application programming interfaces (APIs) just as they call local services (application or system
calls). This is the reason for which the web will be viewed as an Internet-scale operating system.
Instead of making the service calls to the local machine, programs will do it across the Internet to a
service residing on a remote system. For example, a service such as Microsoft Passport could enable
a developer to provide authentication for an application. By programming for the Passport service,
the developer can take advantage of Passport's infrastructure and rely on Passport to maintain the
database of users, make sure that it is up and running, backed up properly, and so on.

 .NET is founded on this principle of Web services, and Microsoft is providing the
infrastructure to enable this evolution to Web services through each of the pieces of the .NET
platform. The next generation of development tools and infrastructure, including Visual Studio.NET,
the .NET Framework, Windows.NET, and the .NET Enterprise Servers, have been designed for
developing applications on the Web services model. The .NET Building Block Services, the new

 7

.NET device support, and the forthcoming .NET user experience will provide the remaining pieces of
the puzzle to enable the development of applications that take full advantage of the Web services
model.

Figure 1. .NET Applications

 By making use of the services provided on the Internet, developers will have the opportunity
to share their work through components. Following the concepts used with products such as Delphi
and Cbuilder components, Java classes as well as ActiveX, the idea of web components is taking
shape. Developers will be able to make use of these components in a unified and OS-integrated way.

 8

Figure 2. .NET Device Vision

 In order for these goals to be achieved, Microsoft proposes an architecture of this
development framework. This environment contains a set of building block services for the Internet
operating system. For example Passport.NET will be used for user authentication. Other services will
include anything that an OS normally offers: file storage, user preference management, calendar
management, and many others.

 For the developers, infrastructure and tools will be provided. Among the most important tools
are Visual Studio.NET (a .NET extension of the already-popular Visual Studio suite, already in use
by an estimated 6 Million developers), the .NET Enterprise Servers, the .NET Framework, and
Windows.NET

 Another .NET internal is CLR (Common Language Runtime). Basically, CLR is a runtime
component responsible for code execution, security, component plumbing and dependencies. CLR
will support most programming languages that exist out there (the list contains about 20 languages
that are aimed at porting, including the most popular ones such as Perl, Jscript, C++, Java,
SmallTalk). This will make sure that developers will find it easy to switch to this framework. ��

 9

Figure 3. Inside the .NET Framework

 A special framework will be provided for small devices developers. This framework is called
.NET Compact. The architecture is lightweight while compatible with its desktop counterparts. The
same development tools can be used for development. Another goal is to make it work across
multiple OS’s (not only Windows).

What do we already have?

As a reminder, there are three conditions that must be met in order to make the next generation
of distributed computing a reality:

1.Everything needs to be a Web service, so that it can participate in the connected network.
This applies to both applications and to resources like storage.

2.Web services must be easy to aggregate and integrate so that developers can quickly and

efficiently create applications.

3.Users must have a simple and compelling experience working with Web services so that they

will adopt the new applications and services.

In order to meet these conditions, Microsoft has developed some tools to enable developers
start building the new software paradigm.

 10

.NET Framework and Microsoft Visual Studio.NET developer tools.

These two tools are used for developing software and web services. The .NET Framework is
a multi-language component development and execution environment.

Windows and the Microsoft .NET Enterprise Servers. Windows® and the .NET
Enterprise Servers

These two tools are designed to aggregate and deliver Web services. Servers like Windows
2000 Server Family, Microsoft Exchange 2000 using XML as its core. The use of XML ensures that
data will be unique among applications and vendors.

.NET Foundation Services.

One of the principal aims of .NET Foundation Services is to make .NET-enabled user

experiences both simple and compelling. In order to enhance user experience, Microsoft has built
services like identify, notification that enables users to switch from one service to another and
decrease the user’s overhead when switching (e.g. Re-login).

Device software.

As one of the philosophies is to access any device, Microsoft is building services for devices
that people uses in their everyday lives. Microsoft is engaged in building software for everything
from phones to PDAs, to whole other sets of devices like the tablet PC.

.NET-compatible applications.

Microsoft is not only investing in the infrastructure for .NET, but it is also developing
applications built on that infrastructure. These applications integrate Web services with their own
functionality to deliver a targeted user experience. For consumers, Microsoft is building the MSN
network of Internet services.

Below is a big picture of the tools and services that are currently available or will be available
by 2002.

 11

Figure 4. The present and future of .NET

.NET concerns and issues.

.NET sounds promising in the sense that it can provide a better computing experience to
users. However, some concerns arise with the .NET vision.

First of all there is the privacy. As stated above, user data are all stored on the Internet. The
data includes personal information, health information, bank statement, VISA number, and other
confidential information. It is then a big issue of the privacy of the information. Which company can
store the information? Microsoft or any other company that the user can choose? Can government
access this information? Can a user erase all these information permanently? What kind of
mechanism ensures that no hackers can steal the information? Is web security all that secure? A user
using a centralized data system would have these concerns and all .NET services must address these
problems.

The ability to communicate between services is one of the main points of .NET. This point
suggests that each service has some form of openings for other services to consume. Security
mechanism must then be used in order to ensure correct use of services. Issues like a service trying to
hack into other service must be addressed.

A third issue is about market acceptance. .NET will revolutionize the way people use and
develop software. The revolution is so great that it would take a lot of time for the market to swallow
and for developers to accommodate this new developing strategy. As an illustration, a bank may be
using a certain system for more than 20 years. The bank has spent millions of dollars to develop that

 12

system 20 years ago. Would the bank dump its old system and start to develop a system using .NET,
or should it rewrite all its code ? Would the cost of transitioning to.NET outweigh the benefit? If the
benefit were not greater than the cost, most business would not bother switching to .NET.

A forth issue is about networking. Currently people access the Internet using 56K or
broadband. In either case, there is still not enough bandwidth to transfer large amounts of data. One
philosophy of .NET is that it is an “Internet wide Operating System." Thus, it is not hard to image
that the size of the services that would be transmitted over the network would be large. Additionally,
if everyone is using .NET services, the network could be overloaded. Possible solutions to this would
be either an advance in networking technology or distribution of server software in many places.

The last issue is dealing with hardware failure handling. What would happen if a network
were down? Since data and services are all on the network, users cannot access her data in this
situation. Similarly, not even the Operating System will work. Caching data and services locally
could solve this.

Conclusion

 .NET represents a significant evolution from current approaches to computing. While in a
design phase at this point, it will most certainly represent a big step ahead in the way software is
developed and used. Since it targets the new generation of mobile gadgets, it will probably shape the
future of its software. The design of the .NET framework will seriously ease the use and
development of distributed applications. We expect that the .NET technology will become one of the
most popular development environments and probably the most used technology for consumer
software consumers.

References:

• Microsoft .NET website, http://www.microsoft.net
• Jamie de Guerre, Microsoft Research. “The .NET Framework”. Microsoft

Presentation at University of Alberta, 2001

