How did this get published? Pitfalls in experimental evaluation of computing systems

José Nelson Amaral
University of Alberta
Edmonton, AB, Canada

Thing #1

Aggregation

Thing #2

Learning

Thing #3

Reproducibility

So, a computing scientist entered a Store....

http://archive.constantcontact.com/fs042/1101916237075/archive/1102594461324.html

http://bitchmagazine.org/post/beyond-the-panel-an-interview-with-danielle-corsetto-of-girls-with-slingshots

So, a computing scientist entered a Store....

http://bitchmagazine.org/post/beyond-the-panel-an-interview-with-danielle-corsetto-of-girls-with-slingshots

So, a computing scientist entered an Store....

Ma'am you are \$560 short. But the average of 10% and 50% is 30% and 70% of \$3,200 is \$2,240.

http://bitchmagazine.org/post/beyond-the-panel-aninterview-with-danielle-corsetto-of-girls-with-slingshots

http://www.businessinsider.com/10-ways-to-fix-googles-busted-android-app-market-2010-1?op=1

So, a computing scientist entered an Store....

Ma'am you cannot take the arithmetic average of percentages!

But... I just came from at top CS conference in San Jose where they do it!

\$ 200.00 Discount

http://bitchmagazine.org/post/beyond-the-panel-aninterview-with-danielle-corsetto-of-girls-with-slingshots

http://www.businessinsider.com/10-ways-to-fix-googles-busted-android-app-market-2010-1?of=1

The Problem with Averages

A Hypothetical Experiment

Speedup

$$Speedup = \frac{Baseline Time}{Transformed Time}$$

Performance Comparison

The transformed system is, on average, 2.6 times **faster** than the baseline!

Normalized Time

Normalized Time

Normalized Time

The transformed system is, on average, 2.6 times **slower** than the baseline!

Latency × Throughput

What matters is latency:

What matters is throughput:

Aggregation for Latency: Geometric Mean

$$GeoMean = \sqrt{\prod_{i=0}^{n-1} s_i}$$

Speedup

The performance of the transformed system is, on average, <u>the same</u> as the baseline!

Normalized Time

Normalized Time

The performance of the transformed system is, on average, the same as the baseline!

Aggregation for Throughput

The throughput of the transformed system is, on average, **1.6** times **faster** than the baseline.

The Evidence

- A careful reader will find the use of arithmetic average to aggregate normalized numbers in many top CS conferences.
- Papers that have done that have appeared in:
 - LCTES 2011
 - PLDI 2012 (at least two papers)
 - CGO 2012
 - A paper where the use of the wrong average changed a negative conclusion into a positive one.
 - 2007 SPEC Workshop
 - A methodology paper by myself and a student that won the best paper award.

This is not a new observation...

Edgar H. Sibley Panel Editor Using the arithmetic mean to summarize normalized benchmark results leads to mistaken conclusions that can be avoided by using the preferred method: the geometric mean.

HOW NOT TO LIE WITH STATISTICS: THE CORRECT WAY TO SUMMARIZE BENCHMARK RESULTS

PHILIP J. FLEMING and JOHN J. WALLACE

Communications of the ACM, March 1986, pp. 218-221.

RULE 1: Do Not Use the Arithmetic Mean to Average Normalized Numbers

RULE 2: Use the Geometric Mean to Average Normalized Numbers

RULE 3: Use the Sum (or arithmetic mean) of Raw, Unnormalized Results whenever This "Total" Has Some Meaning

Communications of the ACM, March 1986, pp. 218-221.

No need to dig dusty papers...

Geometric mean

From Wikipedia, the free encyclopedia

$$GM\left(\frac{X_i}{Y_i}\right) = \frac{GM(X_i)}{GM(Y_i)}$$

This makes the geometric mean the only correct mean when averaging normalized results, that is results that are presented as ratios to reference values.^[4] This is the case when presenting

So, the computing scientist returns to the Store...

Hello. I am just back from Beijing. Now I know that we should take the geometric average of percentages.

http://www.businessinsider.com/10-ways-to-fix-googles-busted-android-app-marke

http://bitchmagazine.org/post/beyond-the-panel-an-interview-with-danielle-corsetto-of-girls-with-slingshots

So, a computing scientist entered a Store....

Sorry Ma'am, we don't average percentages... Thus I should get $\sqrt[2]{50 \times 10}$ = 22.36% discount and pay 0.7764×\$3,200 = \$2,484.48

http://bitchmagazine.org/post/beyond-the-panel-aninterview-with-danielle-corsetto-of-girls-with-slingshots

So, a computing scientist entered a Store....

The original price is \$3,200. You pay \$2,700 + \$100 = \$2,800. If you want an aggregate summary, your discount is 400/3,200 = 12.5%

\$ 3,000.00

http://bitchmagazine.org/post/beyond-the-panel-aninterview-with-danielle-corsetto-of-girls-with-slingshots

Disregard to methodology when using automated learning

Example: Evaluation of Feedback Directed Optimization (FDO)

We have:


```
# Generic relations were moved in Django revision 5172
try:
from django.contrib.contenttypes import generic
except importerror:
import django.db.models as generic

class Tag(models.Model):

A basic Application

name = models.Chanfield(maxlength-50, unique-True,
db_index Codleor_list=[isTag])

objects = TagManager()

class Meta:
    db_table = 'tag'
    verbose_name = 'Tag'
    verbose_name = 'Tag'
    ordering = ('name',)
```


http://www.orchardoo.com

We want to measure the effectiveness of an FDO-based code transformation.

Training Set

http://www.orchardoo.com

The FDO transformation produces code that is XX <u>faster</u> for this application.

class Meta:
 db_table = 'tag'
 verbose_name = 'Tag'
 verbose_name_plural = 'Tags'
 ordering = ('name',)

http://www.orchardoo.com

The Evidence

- Many papers that use a single input for training and a single input for testing appeared in conferences (notably CGO).
- For instance, a paper that uses a single input for training and a single input for testing appears in:
 - ASPLOS 2004

Performance

Evaluation Set

Combined Profiling (Berube, ISPASS12)

Cross-Validated Evaluation (Berube, SPEC07)

http://www.orchardoo.com

Wrong Evaluation!

The Evidence

 For instance, a paper that incorrectly uses the same input for training and testing appeared in:

- PLDI 2006

Thing #3

Reproducibility

Expectation:

When reproduced, an experimental evaluation should produce similar results.

Issues

Thing #3

Reproducibility

Have the measurements been repeated a sufficient number of times to capture measurement variations?

Availability of code, data, and precise description of experimental setup.

Lack of incentives for reproducibility studies.

Progress

Program committees/reviewers starting to ask questions about reproducibility.

Steps toward infrastructure to facilitate reproducibility.

SPEC Research Group

http://research.spec.org/

14 industrial organizations

20 universities or research institutes

UNIVERSITÄT

Driven to Discover

SPEC Research Group

http://research.spec.org/

Performance Evaluation

Benchmarks for New Areas

Performance Evaluation Tools

Evaluation Methodology

Repository for Reproducibility

http://icpe2013.ipd.kit.edu/

nal Conference ce Engineering

Prague - Czech Republic - April 21-24

Evaluate Collaboratory:

http://evaluate.inf.usi.ch/

Open Letter to PC Chairs

Anti Patterns

Evaluation in CS education

Parting Thoughts....

Creating a culture that enables full reproducibility seems daunting...

Initially we could aim for:

Reasonable expectation by a reasonable reader that, if reproduced, the experimental evaluation would produce similar results.