
10/31/00 \Gao\Pro64-Case1 1

PART III:
Using Pro64 in Compiler Research

and Development

Case Studies

10/31/00 \Gao\Pro64-Case1 2

Outline
• General Remarks
• Case Study I: Integration of new instruction

reordering algorithm to minimize register pressure
[Govind,Yang,Amaral,Gao2000]

• Case Study II: Design and evaluation of an
induction pointer prefetching algorithm
[Stouchinin,Douillet,Amaral,Gao2000]

10/31/00 \Gao\Pro64-Case1 3

Case I
• Introduction of the Minimum Register

Instruction Sequence (MRIS) problem
and a proposed solution
– Problem formulation
– The proposed algorithm

• Pro64 porting experience
– Where to start
– How to start
– Results

• Summary

10/31/00 \Gao\Pro64-Case1 4

Researchers

• R. Govindarajan (Indian Inst. Of Science)

• Hongbo Yang (Univ. of Delaware)

• Chihong Zhang (Conexant)

• José Nelson Amaral (Univ. of Alberta)

• Guang R. Gao (Univ. of Delaware)

10/31/00 \Gao\Pro64-Case1 5

The Minimum Register
Instruction Sequence Problem

Given a data dependence graph G,
derive an instruction sequence S for G
that is optimal in the sense that its
register requirement is minimum.

10/31/00 \Gao\Pro64-Case1 6

A Motivating Example

Observation: Register requirements drop 25% from (b) to (c) !

a: s1 = ld [x];

b: s2 = s1 + 4;

c: s3 = s1 * 8;

d: s4 = s1 - 4;

e: s5 = s1 / 2;

f: s6 = s2 * s3;

g : s7 = s4 - s5;

h: s8 = s6 * s7;

s1

s2

s3

s4

s5

s6

s7

s1

s4

s5

s7

s3

s2

s6

a: s1 = ld (x);

d: s4 = s1 - 4;

e: s5 = s1 / 2;

g : s7 = s4 - s5;

c: s3 = s1 * 8;

b: s2 = s1 + 4;

f: s6 = s2 * s3;

h: s8 = s6 * s7;

(a) DDG (b) Instruction Sequence 1 (c) Instruction Sequence 2

a

b c d e

h

f g

10/31/00 \Gao\Pro64-Case1 7

Motivation
• IA-64 style processors

– Reduce spills in local register allocation phase
– Reduce Local Register Allocation (LRA) requests in

Global Register Allocation (GRA) phase
– Reduce overall register pressure on a per procedure

basis
• Out-of-order issue processor

– Instruction reordering buffer
– Register renaming

10/31/00 \Gao\Pro64-Case1 8

How to Solve the MRIS Problem?

– Register lineages
– Live range of lineages
– Lineage interference

L1 = (a, b, f, h);
L2 = (c, f);
L3 = (e, g, h);
L4 = (d, g);

 (c) Lineages(a) Concepts (b) DDG

a

b c d e

h

f g

10/31/00 \Gao\Pro64-Case1 9

How to Solve the MRIS Problem?

L1 = (a, b, f, h);
L2 = (c, f);
L3 = (e, g, h);
L4 = (d, g);

 (c) Lineages(a) Concepts (b) DDG

a

b c d e

h

f g

Questions: Can L1 and L2 share the same register?

– Register lineages
– Live range of lineages
– Lineage interference

10/31/00 \Gao\Pro64-Case1 10

How to Solve the MRIS Problem?

L1 = (a, b, f, h);
L2 = (c, f);
L3 = (e, g, h);
L4 = (d, g);

 (c) Lineages(a) Concepts (b) DDG

a

b c d e

h

f g

Questions: Can L1 and L2 share the same register?
 Can L2 and L3 share the same register?

– Register lineages
– Live range of lineages
– Lineage interference

10/31/00 \Gao\Pro64-Case1 11

How to Solve the MRIS Problem?

L1 = (a, b, f, h);
L2 = (c, f);
L3 = (e, g, h);
L4 = (d, g);

 (c) Lineages(a) Concepts (b) DDG

a

b c d e

h

f g

Questions: Can L1 and L2 share the same register?
 Can L2 and L3 share the same register?
 Can L1 and L4 share the same register?

Can L2 and L4 share the same register?

– Register lineages
– Live range of lineages
– Lineage interference

10/31/00 \Gao\Pro64-Case1 12

Lineage Interference Graph
a

b c d e

f g

h

L1 = (a, b, f, h);
L2 = (c, f);
L3 = (e, g, h);
L4 = (d, g);

L1 L4

L3L2

(a) Original DDG (b) Lineage Interference Graph (LIG)

Question: Is the lower bound of the required registers = 3?
Challenge: Derive a “Heuristic Register Bound” (HRB)!

10/31/00 \Gao\Pro64-Case1 13

Our Solution Method

• A “good” construction
algorithm for LIG

• An effective heuristic
method to calculate
the HRB

• An efficient
scheduling method
(do not backtrack)

Form Lineage Interference Graph (LIG)

Derive HRB

Extended list-scheduling
guided by HRB

DDG

A good instruction
sequence

10/31/00 \Gao\Pro64-Case1 14

Pro64 Porting Experience

• Porting plan and design

• Implementation

• Debugging and validation

• Evaluation

10/31/00 \Gao\Pro64-Case1 15

Implementation

• Dependence graph construction

• LIG formation

• LIG construction and coloring

• The reordering algorithm implementation

10/31/00 \Gao\Pro64-Case1 16

Porting Plan and Design

• Understand the compiler infrastructure
• Understand the register model (mainly from

targ_info)
e.g.:
– register classes: (int, float, predicate, app, control)
– register save/restore conventions: caller/callee save, return value,

argument passing, stack pointer, etc.

../common/targ_info/abi/ia64../common/targ_info/abi/ia64

10/31/00 \Gao\Pro64-Case1 17

Register Allocation
GRA

Assign_Registers

Fix_LRA_Blues

Fail?
reschedule
local code motion
spill global or
 local registers

Succ?

LRA:
At block level

10/31/00 \Gao\Pro64-Case1 18

Implementation
• DDG construction: use native service

routines: e.g. CG_DEP_Compute_Graph

• LIG coloring: using native support for
set package (e.g. bitset.c)

• Scheduler implementation: vector
package native support (e.g. cg_vector.cxx)

• Access dependence graph using native
service functions ARC_succs, ARC_preds,
ARC_kind

10/31/00 \Gao\Pro64-Case1 19

Debugging and Validation

• Trace file
– tt54:0x1. General trace of LRA
– tt45: 0x4. Dependence graph building
– tr53. Target Operations (TOP) before LRA
– tr54. TOP after LRA

10/31/00 \Gao\Pro64-Case1 20

Evaluation

• Static measurement
– Fat point -tt54: 0x40

• Dynamic measurement
– Hardware counter in R12k and

perfex

10/31/00 \Gao\Pro64-Case1 21

Evaluation
• For the MIPS R12K (SPEC95fp), the

lineage-based algorithm reduce the
number of loads executed by 12%, the
number of stores by 14%, and the
execution time by 2.5% over a baseline.

• It is slightly better than the algorithm in
the MIPSPro compiler.

10/31/00 \Gao\Pro64-Case1 22

 Design and Evaluation of an
Induction Pointer Prefetching
Algorithm

Case II

10/31/00 \Gao\Pro64-Case1 23

Researchers
• Artour Stoutchinin (STMicroelectronics)

• José Nelson Amaral (Univ. of Alberta)

• Guang R. Gao (Univ. of Delaware)

• Jim Dehnert (Silicon Graphics Inc.)

• Suneel Jain (Narus Inc.)

• Alban Douillet (Univ. of Delaware)

10/31/00 \Gao\Pro64-Case1 24

Motivation
The important loops of many programs are pointer-chasing
loops that access recursive data structures through induction
pointers.

Example:
max = 0;
current = head;
while(current != NULL)

 {
 if(current->key > max)
 max = current->key;
 current = current->next;
 }

10/31/00 \Gao\Pro64-Case1 25

Problem Statement
How to identify pointer-chasing recurrences?

How to efficiently integrate induction pointer
prefetching with loop scheduling based on the
profitability analysis?

How to decide whether there are enough
processor resources and memory bandwidth
to profitably prefetch an induction pointer?

10/31/00 \Gao\Pro64-Case1 26

Prefetching Costs
• More instructions to issue
• More memory traffic
• Longer code (disruption in instruction cache)
• Displacement of potentially good data from cache

Before prefetching:
t226 = lw 0x34(t228)

After prefetching:
t226 = lw 0x34(t228)
tmp = subu t226, t226s
tmp = addu tmp, tmp
tmp = addu t226, tmp
pref 0x0(tmp)
t226s = t226

10/31/00 \Gao\Pro64-Case1 27

What to Prefetch?
When to Prefetch it?

A good optimizing compiler should only
prefetch data that will actually be referenced.

It should prefetch far enough in advance to prevent
a cache miss when the reference occurs.

But, not too far in advance, because the data might
be evicted from the cache before it is used,
or might displace data that will be referenced again.

10/31/00 \Gao\Pro64-Case1 28

Prefetch Address
In order to prefetch, the compiler must calculate
addresses that will be referenced in future iterations of
the loop.

For loops that access regular data structures, such as
vectors and matrices, compilers can use static analysis
of the array indexes to compute the prefetching
addresses.

How can we predict future values of induction pointers?

10/31/00 \Gao\Pro64-Case1 29

Key Intuition
Recursive data structures are often allocated at
regular intervals.

Example:
curr = head = (item) malloc(sizeof(item));
while(curr->key = get_key()) != NULL)

 {
 curr->next = curr = (item)malloc(sizeof(item));
 other_memory_allocations();
 }

 curr -> next = NULL;

10/31/00 \Gao\Pro64-Case1 30

Pre-Fetching Technique
Example:

max = 0;
current = head;

 tmp = current;
while(current != NULL)

 {
 if(current->key > max)
 max = current->key;
 current = current->next;
 stride = current - tmp;

 prefetch(current + stride*k);
 tmp = current;
 }

10/31/00 \Gao\Pro64-Case1 31

Prefetch Sequence (R10K)

stride = addr - addr.prev
stride = stride * k
addr.pref = addr + stride
addr.prev = addr
pref addr.pref

In our implementation, the stride is recomputed
in every iteration of the loop, making it
tolerant of (infrequent) stride changes.

10/31/00 \Gao\Pro64-Case1 32

Identification of Pointer-
Chasing Recurrences

A surprisingly simple method works well: look in the
intermediate code for recurrence circuits containing only
loads with constant offsets.

Examples:
node = ptr->next; r1 <- load r2, offset_next
ptr = node->ptr; r2 <- load r1, offset_ptr

current = current->next; r2 <- load r1
r1 <- load r2, offset_next

r1

r2

10/31/00 \Gao\Pro64-Case1 33

Profitability Analysis

Goal: Balance the gains and costs of prefetching.

Although we use resource estimates analogous to
those done for software pipelining, we consider
loop bodies with control flow.

How to estimate the resources available for
prefetching in a basic block B that belongs
to many data dependence recurrences?

10/31/00 \Gao\Pro64-Case1 34

Software Pipelining
What limits the speed of a loop?
• Data dependences: recurrence initiation interval (recMII)
• Processor resources: resource initiation interval (resMII)
• Memory accesses: memory initiation interval (memMII)

0 1 2 3 4 5 6 7 8 9 10 11 12 16151413 time

ldf
fadds

stf

sub

cmp
bg

Initiation interval

10/31/00 \Gao\Pro64-Case1 35

Data Dependences(recMII)

 for i = 0 to N - 1 do
a: X[i] = X[i - 1] + R[i];
b: Y[i] = X[i] + Z[i - 1];
c: Z[i] = Y[i] + 1;
 end;

(0,2)
a

b

c

(0,2)(1,2)

(1,2)

The recurrence minimum initiation interval (recMII)
is given by:

()
()

()��
�

�
�

�= ∀ θ
θ

θ distanceiteration
latency max recMII cycle

(dist,lat)

10/31/00 \Gao\Pro64-Case1 36

The recMII for Loops
with Control Flow

An instruction of a basic block B,
can belong to many recurrences
(with distinct control paths).

We define the recurrence MII of a
load operation L as:

L ∈ c means that the operation L
is part of the recurrence c.

[])(max)(
|

crecMIILrecMII
cLc ∈

=

B8

B1

B2

B3

B6B5

B4

B7

Control Flow Graph

10/31/00 \Gao\Pro64-Case1 37

Processor Resources(resMII)

A basic block B may belong to
multiple control paths. We define
the resource constraint of a basic
block B as the maximum over all
control paths that execute B.

()[]presMIIBresMII
pBp ∈

=
|

max)(

Control Flow Graph

B8

B1

B2

B3

B6B5

B4

B7

10/31/00 \Gao\Pro64-Case1 38

Available Memory Bandwidth
Processors with non-blocking
caches can support up to k
outstanding cache misses without
stalling.
We define the available memory
bandwidth of all control paths
that execute a basic block B as

where m(p) is the number of
expected cache misses in each
control path p.

{ })(min)(
:

pmkBM
pBp

−=
∈

Control Flow Graph

B8

B1

B2

B3

B6B5

B4

B7

10/31/00 \Gao\Pro64-Case1 39

Profitability Analysis
Adding prefetch code for an induction pointer L
in a basic block B is profitable if both:
(1) the mii due to recurrences that contain L is greater
 than the resMII after prefetch insertion, and
(2) there is enough memory bandwidth to enable another
 cache miss without causing stalls.

0)()()(>∧≤ BMLrecMIIBresMII PP

10/31/00 \Gao\Pro64-Case1 40

Computing Available
Memory Bandwidth

To compute the available memory bandwidth of
a control path we need to estimate
how many cache misses are expected
in that control path.

We use a graph coloring technique over a
cache miss interference graph to predict
which memory references are likely to incur a miss.

10/31/00 \Gao\Pro64-Case1 41

The Miss Interference Graph

Miss Interference Graph assumptions:
1. Loop invariant references are cache hits
 (global-pointer relative, stack-pointer relative, etc).
2. Memory references on mutually exclusive control
 paths do not interfere.
3. References relative to the same base address interfere
 only if their relative offset is larger than the cache line.

Two memory references interfere if:
1. They are both expected to miss the cache
2. They can both be issued in the same iteration of the loop
3. They do not fall into the same cache line

10/31/00 \Gao\Pro64-Case1 42

Prefetching Algorithm

DoPrefetch(P,V,E)
1. C ← pointer-chasing recurrences
2. R ← Prioritized list of induction pointer loads in C
3. N ← Prioritized list of other loads (not in C)
4. O ← R + N
5. mark each L in O as a cache miss
6. for each L in O, L ∈ B
7. do if recMIIP(B) ≤ resMIIP(B) and S(B)
8. then add prefetch for L to B
9. mark L as cache hit
10. endif
11. endfor

10/31/00 \Gao\Pro64-Case1 43

An Example*
 1 while (arcin){
 2 tail = arcin->tail;
 3 if (tail->time + arcin->org_cost > latest){
 4 arcin = (arc_t *)tail->mark;
 5 continue;
 }
 6 arc_cost = tail->potential + head_potential;
 7 if (red_cost < 0) {
 8 if (new_arcs < MAX_NEW_ARCS){
 9 insert_new_arc(arcnew, new_arcs, tail,
 head, arc_cost, red_cost);
10 new_arcs++;
 }
11 else if((cost_t)arcnew[0].flow > red_cost)
12 replace_weaker_arc(arcnew, tail, head,
 arc_cost, red_cost);
 }
13 arcin = (arc_t *)tail->mark;
 }

*mcf: minimal cost flow optimizer,
 (Konrad-Zuse Informatics Center, Berlin)

10/31/00 \Gao\Pro64-Case1 44

An Example
 1 while (arcin){
 2 tail = arcin->tail;
 3 if (tail->time + arcin->org_cost > latest){
 4 arcin = (arc_t *)tail->mark;
 5 continue;
 }
 6 arc_cost = tail->potential + head_potential;
 7 if (red_cost < 0) {
 8 if (new_arcs < MAX_NEW_ARCS){
 9 insert_new_arc(arcnew, new_arcs, tail,
 head, arc_cost, red_cost);
10 new_arcs++;
 }
11 else if((cost_t)arcnew[0].flow > red_cost)
12 replace_weaker_arc(arcnew, tail, head,
 arc_cost, red_cost);
 }
13 arcin = (arc_t *)tail->mark;
 }

10/31/00 \Gao\Pro64-Case1 45

1. t228 = lw 0x0(t226)
2. t229 = lw 0x14(t226)
3. t230 = lw 0x38(t228)
4. t231 = addu t229, t230
5. t232 = slt t220, 0
6. bne B3, t232, 0

 7. t226 = lw 0x34(t228)
 8. b B8

 9. t234 = lw 0x2c(t228)
10. t235 = subu t225, t234
11. t233 = addiu t235, 0x1e
12. bgez B7, t233

 13. t236 = slt t209. t175
 14. Beq B6, t236, 0

insert_new_arc(); replace_weaker_arc();

15. t226 = lw 0x34(t228)

15. bne B1, t226, 0

B1:

B5: B6:

B7:

B8:

B3:

B4:

B2:

10/31/00 \Gao\Pro64-Case1 46

1. t228 = lw 0x0(t226)
2. t229 = lw 0x14(t226)
3. t230 = lw 0x38(t228)
4. t231 = addu t229, t230
5. t232 = slt t220, 0
6. bne B3, t232, 0

 7. t226 = lw 0x34(t228)
 8. b B8

 9. t234 = lw 0x2c(t228)
10. t235 = subu t225, t234
11. t233 = addiu t235, 0x1e
12. bgez B7, t233

 13. t236 = slt t209. t175
 14. Beq B6, t236, 0

insert_new_arc(); replace_weaker_arc();

15. t226 = lw 0x34(t228)

15. bne B1, t226, 0

B1:

B5: B6:

B7:

B8:

B3:

B4:

B2:

10/31/00 \Gao\Pro64-Case1 47

1. t228 = lw 0x0(t226)
2. t229 = lw 0x14(t226)
3. t230 = lw 0x38(t228)
4. t231 = addu t229, t230
5. t232 = slt t220, 0
6. bne B3, t232, 0

 7. t226 = lw 0x34(t228)
 8. b B8

 9. t234 = lw 0x2c(t228)
10. t235 = subu t225, t234
11. t233 = addiu t235, 0x1e
12. bgez B7, t233

 13. t236 = slt t209. t175
 14. Beq B6, t236, 0

insert_new_arc(); replace_weaker_arc();

15. t226 = lw 0x34(t228)

15. bne B1, t226, 0

B1:

B5: B6:

B7:

B8:

B3:

B4:

B2:

10/31/00 \Gao\Pro64-Case1 48

1. t228 = lw 0x0(t226)
2. t229 = lw 0x14(t226)
3. t230 = lw 0x38(t228)
4. t231 = addu t229, t230
5. t232 = slt t220, 0
6. bne B3, t232, 0

7. t226 = lw 0x34(t228)
8. b B10

15. t226 = lw 0x34(t228)

B3

B2:

B7:

B1:

B6B5

B4

B8

10/31/00 \Gao\Pro64-Case1 49

1. t228 = lw 0x0(t226)
1. tmp = subu t228, t228s
1. tmp = addu tmp, tmp
1. tmp = addw t228, tmp
1. pref 0x34(tmp)
1. t228s = t228
2. t229 = lw 0x14(t226)
3. t230 = lw 0x38(t228)
4. t231 = addu t229, t230
5. t232 = slt t220, 0
6. bne B3, t232, 0

 7. t226 = lw 0x34(t228)
 7. tmp = subu t226, t226s
 7. tmp = addu tmp, tmp
 7. tmp = addu t226, tmp
 7. pref 0x0(tmp)
 7. t226s = t226
 8. b B10

15. t226 = lw 0x34(t228)
15. tmp = subu t226, t226s
15. tmp = addu tmp, tmp
15. tmp = addu t226, tmp
15. pref 0x0(tmp)
15. t226s = t226

B3

B2:

B7:

B1:

B6B5

B4

B8

10/31/00 \Gao\Pro64-Case1 50

When Pointer Prefetch Works

Execution Time Performance
Improvement

Bench
mark

No
Prefetch

Without
Analysis

Analysis Without
Analysis

Analysis

mcf 3,396 s 2,854 s 2,699 s 16.0% 20.5%
ft 517 s 436 s 333 s 15.6% 35.5%

mlp 632 s 333 s 538 s 8.3% 14.9%
vpr 1,771 s - 1,761 s - 0.6%

twolf 2,540 s 2,657 s 2,531 s -4.6% 0.4%

10/31/00 \Gao\Pro64-Case1 51

When Pointer Prefetch
Does Not Help

Execution Time Performance
Improvement

Bench
mark

No
Prefetch

Without
Analysis

Analysis Without
Analysis

Analysis

gap 1,174 s - 1,207 s - -2.8%
li 285 s 293 s 292 s -2.8% -2.5%

perlbmk 2,062 s - 2,104 s - -2.0%
eon 949 s - 959 s - -1.1%

parser 2,180 s 333 s 538 s -3.0% -0.5%
gcc 122 s 123 s 122 s -0.7% -0.1%

10/31/00 \Gao\Pro64-Case1 52

Summary of Attributes

• Software-only implementation
• Simple candidate identification
• Simple code transformation
• No impact on user data structures
• Simple profitability analysis, local to loop
• Performance degradations are rare, minor

10/31/00 \Gao\Pro64-Case1 53

Open Questions

• How often is the speculated stride correct?
• Can instrumentation feedback help?
• How well does the speculative prefetch

work with other recursive data structures:
trees, graphs, etc?

• How well does this approach work for
read/write recursive data structures?

10/31/00 \Gao\Pro64-Case1 54

Related Work (Software)

• Luk-Mowry (ASPLOS-96)
– Greedy prefetching; History-Pointer prefetching;

Data Linearization Prefetching;
• Change the data structure storage;

• Lipatsi et al. (Micro-95)
– Prefetching pointers at procedure call sites;

• Liu-Dimitri-Kaeli (Journal of Syst. Arch.-99)
– Maintains a table of offsets for prefetching

10/31/00 \Gao\Pro64-Case1 55

Related Work (Hardware)

• Roth-Moshovos-Sohi (ASPLOS, 1998)

• Gonzales-Gonzales (ICS, 1997)

• Mehrotra (Urbana-Champaign, 1996)

• Chen-Baer (Trans. Computer, 1995)

• Charney-Reeves (Trans. Comp., 1994)

• Jegou-Teman (ICS, 1993)

• Fu-Patel (Micro, 1992)

10/31/00 \Gao\Pro64-Case1 56

Execution Time Measurements

10/31/00 \Gao\Pro64-Case1 57

Prefetch Improvement

10/31/00 \Gao\Pro64-Case1 58

L1 Cache Misses

10/31/00 \Gao\Pro64-Case1 59

L2 Cache Misses

10/31/00 \Gao\Pro64-Case1 60

TLB Misses

10/31/00 \Gao\Pro64-Case1 61

Benchmarks

gcc GNU C compiler
li Lisp interpreter
mcf Minimal cost flow solver
parser Syntactic parser of English
twolf Place and route simulator
mlp Multi-layer perceptron simulator
ft Minimum spanning tree algorithm

10/31/00 \Gao\Pro64-Case1 62

Targeting Pro64 to a New
Processor

• Create a new targ_info
• Adjust configuration file for ABI
• Create a new WHIRL-to-CG-lower

for instruction selection
• Adjust CG utilities (e.g., predication,

EBO patterns, SWP stuff, etc.)A
dv

an
ce

d
Fo

r -
O

0

