
X10: New opportunities for
Compiler-Driven Performance
via a new Programming Model

X10: New opportunities for
Compiler-Driven Performance
via a new Programming Model

Kemal Ebcioglu
Vijay Saraswat
Vivek Sarkar

IBM T.J. Watson Research Center
{kemal,vsaraswat,vsarkar}@us.ibm.com

Compiler-Driven Performance Workshop --- CASCON
2004

Oct 6, 2004

This work has been supported in part by the Defense Advanced Research Projects
Agency (DARPA) under contract No. NBCH30390004.

Kemal Ebcioglu
Vijay Saraswat
Vivek Sarkar

IBM T.J. Watson Research Center
{kemal,vsaraswat,vsarkar}@us.ibm.com

Compiler-Driven Performance Workshop --- CASCON
2004

Oct 6, 2004

This work has been supported in part by the Defense Advanced Research Projects
Agency (DARPA) under contract No. NBCH30390004.

V. Sarkar CDP 2004 Workshop 2

Acknowledgments
• Contributors to X10 design & implementation

ideas:
− David Bacon
− Bob Blainey
− Philippe Charles
− Perry Cheng
− Julian Dolby
− Kemal Ebcioglu
− Guang Gao (U Delaware)
− Allan Kielstra
− Robert O'Callahan
− Filip Pizlo (Purdue)
− Christoph von Praun
− V.T.Rajan
− Lawrence Rauchwerger (Texas A&M)
− Vijay Saraswat (contact for lang. spec.)
− Vivek Sarkar
− Mandana Vaziri
− Jan Vitek (Purdue)

• IBM PERCS Team members
− Research
− Systems & Technology Group
− Software Group
− PI: Mootaz Elnozahy

• University partners:
− Cornell
− LANL
− MIT
− Purdue University
− RPI
− UC Berkeley
− U. Delaware
− U. Illinois
− U. New Mexico
− U. Pittsburgh
− UT Austin
− Vanderbilt University

V. Sarkar CDP 2004 Workshop 3

Performance and Productivity Challenges
facing Future Large-Scale Systems

1) Memory wall: Severe non-
uniformities in bandwidth &
latency in memory hierarchy

Clusters (scale-out)
SMP

Multiple cores on a chip

Coprocessors (SPUs)
SMTs
SIMD
ILP

. . . L3 Cache

Memory

. . .

L2 Cache

PEs,
L1 $

Proc Cluster
PEs,
L1 $. . .

L2 Cache

PEs,
L1 $

Proc Cluster
PEs,
L1 $

. . .

. . .

. . .

2) Frequency wall: Multiple layers of
hierarchical heterogeneous
parallelism to compensate for
slowdown in frequency scaling

3) Scalability wall: Software will need
to deliver ~ 105-way parallelism to
utilize large-scale parallel systems

V. Sarkar CDP 2004 Workshop 4

IBM PERCS Project
(Productive Easy-to-use Reliable Computing Systems)

Increase
overall

productivity

Increase development
productivity

Increase number of

applications written

PERCS Programming Tools
performance-guided parallelization and transformation, static
& dynamic checking, separation of concerns --- all integrated

into a single development environment (Eclipse)
Increase

performance
of applications

MPIOpenMPPERCS Programming Model

Static and Dynamic Compilers for base language w/
programming model extensions

Mature languages: C/C++, Fortran, Java
Experimental languages: X10, UPC, StreamIt, HTA/Matlab

Increase
execution
productivity Language Runtime + Dynamic Compilation + Continuous Optimization

PERCS System Software (K42)

PERCS System Hardware

V. Sarkar CDP 2004 Workshop 5

Limitations in exploiting Compiler-Driven
Performance in Current Parallel Programming Models

• MPI: Local memories + message-passing
− Parallelism, locality, and “global view” are completely managed by

programmer
− Communication, synchronization, consistency operations specified at

low level of abstraction
Limited opportunities for compiler optimizations

• Java threads, OpenMP: shared-memory parallel programming model
− Uniform symmetric view of all shared data
− Non-transparent performance --- programmer cannot manage data

locality and thread affinity at different hierarchy levels (cluster, SMT, …)
Limited effectiveness of compiler optimizations

• HPF, UPC: partitioned global address space + SPMD execution model
− User specifies data distribution & parallelism, compiler generates

communications using owner-computes rule
− Large overheads in accessing shared data; compiler optimizations can

help applications with simple data access patterns
Limited applicability of compiler optimizations

V. Sarkar CDP 2004 Workshop 6

X10 Design Guidelines: Design for Productivity &
Compiler/Runtime-driven Performance

• Start with state-of-the-art OO
language primitives as foundation
− No gratuitous changes
− Build on existing skills

• Raise level of abstraction for
constructs that should be
amenable to optimized
implementation
− Monitors atomic sections
− Threads async activities
− Barriers clocks

• Introduce new constructs to model
hierarchical parallelism and non-
uniform data access
− Places
− Distributions

• Support common parallel
programming idioms
− Data parallelism
− Control parallelism
− Divide-and-conquer
− Producer-consumer / streaming
− Message-passing

• Ensure that every program has a
well-defined semantics
− Independent of implementation
− Simple concurrency model &

memory model

• Defer fault tolerance and reliability
issues to lower levels of system
− Assume tightly-coupled system

with dedicated interconnect

V. Sarkar CDP 2004 Workshop 7

Logical View of X10 Programming Model
(Work in progress)

heap

stack

control

heap

stack

control

. . .

Activities &
Activity-local storage

Place-local heap

Partitioned Global heap

heap

stack

control

heap

stack

control

. . .

Place-local heap

Partitioned Global heap

Inbound
async
requests

Outbound
async
requests

Outbound
async
replies

Inbound
async
replies

. . .

Place Place

• Place = collection of resident activities
and data
− Maps to a data-coherent unit in a

large scale system

• Four storage classes:
− Partitioned global
− Place-local
− Activity-local
− Value class instances

• Can be copied/migrated freely

• Activities can be created by
− async statements (one-way msgs)
− future expressions
− foreach & ateach constructs

• Activities are coordinated by
− Unconditional atomic sections
− Conditional atomic sections
− Clocks (generalization of barriers)
− Force (for result of future)

Activities &
Activity-local storage

Granularity of
place can range
from single h/w
thread to an entire
scale-up system

Value
Class

Instances

V. Sarkar CDP 2004 Workshop 8

Async activities: abstraction of threads

• Async statement
− async(P){S}: run S at place P
− async(D){S}: run S at place

containing datum D
− S may contain local atomic

operations or additional async
activities for same/different places.

• Example: percolate process to data.

• Async expression (future)
− F = future(P){E}, or

F = future(D){E}: Return
the value of expression E,
evaluated in place P (or the
place containing datum D)

− force F or !F : suspend until
value is known

• Example: percolate data to process.
public void put(K key, V value) {

int hash = key.hashCode()% D.size;
async (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

b.v = value;
return;

}
}
buckets[hash] =

new Bucket<K,V>(key, value, buckets[hash]);
};

}

public ^V get(K key) {
int hash = key.hashCode()% D.size;
return future (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

return b.v;
}

}
return new V();

}
}

Distributed hash-table example

V. Sarkar CDP 2004 Workshop 9

RandomAccess (GUPS) example

public void run(int a[] blocked, int seed[] cyclic,

int value smallTable[]) {

ateach (start : seed clocked c) {

int ran = start;

for (int count : 1.. N_UPDATES/place.MAX_PLACES) {

ran = Math.random(ran);

int j = F(ran); // function F() can be in C/Fortran

int k = smallTable[g(ran)];

async (a[j]) atomic {a[j]^=k;}

} // for

} // ateach

next c;

}

V. Sarkar CDP 2004 Workshop 10

Regions and Distributions

• Regions
− The domain of some array;

a collection of array indices
− region R = [0..99];
− region R2 = [0..99,0..199];

• Region operators
− region Intersect = R3 &&

R4;
− region Union = R3 || R4;
− Etc.

• Distributions
− Map region elements to places

• distribution D = cyclic(R);

− Domain and range restriction:
• distribution D2 = D | R;

• distribution D3 = D | P;

• Regions/Distributions can be used
like type and place parameters
− <region R, distribution D>

void m(...)

V. Sarkar CDP 2004 Workshop 11

ArrayCopy example: example of high-
level optimizations of async activities

Version 1 (orginal):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn an activity for each index to
// fetch and copy the value

ateach (i : D.region)
a[i] = async b[i];

next c; // Advance clock
}

Version 2 (optimized):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn one activity per place
ateach (D.places)

for (j : D | here)
a[i] = async b[i];

next c; // Advance clock
}

Version 3 (further optimized):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn one activity per D-place and one
// future per place p to which E maps an
// index in (D | here).

ateach (D.places) {
region LocalD = (D | here).region;
ateach (p : E[LocalD]) {

region RemoteE = (E | p).region;
region Common =

LocalD && RemoteE;
a[Common] = async b[Common];

}
}

next c; // Advance clock
}

V. Sarkar CDP 2004 Workshop 12

Uniform treatment of Arrays & Loops
and Collections & Iterators

• Distributed Collections
− Map collection elements to

places
− Collection<D,E> identifies a

collection with distribution D and
element type E

• Parallel iterators
− foreach (e : C) { … }
− ateach (C) { … here … }

• Sequential iterator
− for (e : C)

• Arrays
− Map region elements to values

(therefore multidimensional)
− Declared with a given

distribution
− int[D] array;

• Loops
− ateach (D[R]) { ... }
− ateach (array) { ... }
− foreach (i : R) { ... }
− foreach (i : D) { ... }
− foreach (i : array) { ... }
− sequential variants of foreach

are available as for loops

V. Sarkar CDP 2004 Workshop 13

Clocks: abstraction of barriers

• Operations:
clock c = new clock();
now(c){S}

• Require S to terminate before clock
can progress.

continue c;
• Signals completion of work by

activity in this clock phase.
next c1,…,cn ;

• Suspend until clocks can advance.
Implicitly continues all clocks.
c1,…,cn names all clocks for activity.

drop c;
• No further operations on c..

• Semantics
− Clock c can advance only when

all activities registered with the
clock have executed continue c..

• Clocked final
− clocked(c) final int l = r;
− Variables is “final” (immutable) until

next phase

V. Sarkar CDP 2004 Workshop 14

Unstructured Mesh Transport Example (UMT2K)

• 3D, deterministic, multi-group, photon transport code

• Solves 1st order form of steady-state Boltzman equation

• Represented by an unstructured mesh
− Partitioning strives to maintain load balance, reduce

communicate/compute ratio

Figure source: Modified from
Mathis and Kerbyson, IPDPS 2004

V. Sarkar CDP 2004 Workshop 15

Communication Structure

• Nearest neighbor communication in graph domain

• Communication can be minimized via judicious mapping of
graph to system nodes

Figure source: Modified from Mathis and Kerbyson, IPDPS 2004

V. Sarkar CDP 2004 Workshop 16

UMT2k in X10: example of hierarchical
heterogeneous parallelism

do {
now (c) {

ateach (n : nodes) { // Cluster-level parallelism
foreach (s : Sweeps) { // SMP parallelism

// receive inputs
flows = new Flux[R] (k) { // SMT parallelism

async (…) inputs[s][k].receive();
}
// Choice of using clock or force to synchronize on flows[*]
// Thread-local with vector & co-processor parallelism
flux = compute(s, flows);
// send outputs
. . .

} // foreach
} // ateach

} // now
// use clock c to wait for all sweeps to complete
next c;
. . .

} while (err > MAX_ERROR) ;

Clusters (scale-out)
SMP

Multiple cores on a chip
Coprocessors (SPUs)

SMTs
Vector (VMX)

ILP

V. Sarkar CDP 2004 Workshop 17

C+MPI FixedPoint iteration
(Simpler example than UMT2K)

int n;

double *A, *Tmp;

const double epsilon = 0.000001;

int main(int argc, char* argv[]) {

int i, iters;

double delta;

int numprocs, rank, mysize;

double sum;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (argc != 2) {

printf("usage: fixedpt n\n");

exit(1);

}

n = atoi(argv[1]);

mysize = n * (rank+1)/numprocs - n * rank / numprocs;

A = malloc((mysize+2)*sizeof(double));

for (i = 0; i <= mysize; i++) A[i] = 0.0;

if (rank == numprocs - 1) A [mysize+1] = n + 1.0;

Tmp = malloc((mysize+2)*sizeof(double));

iters = 0;

do {
iters++;
if (rank < numprocs -1)
MPI_Send(&(A[mysize]), 1, MPI_DOUBLE, rank+1, 1,

MPI_COMM_WORLD);
if (rank > 0)
MPI_Recv(&(A[0]), 1, MPI_DOUBLE, rank-1, 1,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
if (rank > 0)
MPI_Send(&(A[1]), 1, MPI_DOUBLE, rank-1, 1,

MPI_COMM_WORLD);
if (rank < numprocs-1)
MPI_Recv(&(A[mysize+1]), 1, MPI_DOUBLE, rank+1, 1,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
for (i=1; i <=mysize; i++) Tmp[i] = (A[i-1]+A[i+1])/2.0;
delta = 0.0;
for (i = 1; i <= mysize; i++) delta +=fabs(A[i]-Tmp[i]);
MPI_Allreduce(&delta, &sum, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
delta = sum;
for (i = 1; i <= mysize; i++) A[i]=Tmp[i];

} while (delta > epsilon);
if (rank == 0) printf("Iterations: %d\n", iters);
MPI_Finalize();

} Courtesy: Larry Snyder et al

API-based control flow, distribution is hard-coded in program

V. Sarkar CDP 2004 Workshop 18

Reduction and Scan Operators

• Reduction operator over type T
− Static method with signature: T(T,T)
− Virtual method in class T with signature T(T)
− Operator is expected to be associative and commutative

• Reduction operation: A >> foo() returns value of type T, where
− A is an array over base type T
− A>>foo() performs reductions over all elements of A to obtain a

single result of type T

• Scan operation: A || foo() returns array, B, of base type T, where
− B[i] = A[0..i]>>foo()

V. Sarkar CDP 2004 Workshop 19

Example of Unconditional Atomic Sections
SPECjbb2000: Java vs. X10 versions

Java version:
public class Stock extends Entity {…
private float ytd;
private short orderCount; …
public synchronized void

incrementYTD(short ol_quantity) { …
ytd += ol_quantity; …}…

public synchronized void
incrementOrderCount() { …

++orderCount; …} …
}

X10 version (w/ atomic section):
public class Stock extends Entity {…

private float ytd;

private short orderCount; …

public atomic void

incrementYTD(short ol_quantity) { …

ytd += ol_quantity; …}…

public atomic void

incrementOrderCount() { …

++orderCount; …} …

}

These two methods cannot be
executed simultaneously
because they use the same
lock

With atomic sections, X10
implementation can
choose to execute these
two methods in parallel

lock

ytd
orderCount ytd

orderCount

lock1

lock2

Layout of
a “Stock”

object

Atomic Sections are deadlock-free!

V. Sarkar CDP 2004 Workshop 20

Example of Conditional Atomic Section

• Conditional Atomic Sections are similar to Conditional Critical
Regions (CCRs)
− Powerful construct, misuse can lead to deadlock
− Need to identify special cases that are most useful in practice

class OneBuffer<value T> {
?Box<T> datum = null;
public void send(T v) {

when (this.datum == null) {
this.datum := new Box<T>(datum);

}
}
public T receive() {

when (this.datum !=null) {
T v = datum.datum;
value := null;
return v;

}
}

}

V. Sarkar CDP 2004 Workshop 21

Memory Model

• X10 focus is on data-race-free applications

• Programmer uses atomic / clock / force operations to
avoid data races
− X10 programming environment also includes data

race detection tool

• Weak memory model for defining consistency of
unsynchronized accesses
− Based on Location Consistency memory mode
− Akin to weak ordering guarantees of messages in

MPI

V. Sarkar CDP 2004 Workshop 22

X10 Type System: Features relevant
to Compiler Optimization

• Unified type system
− All data items are objects

• Value classes and clocked final
− Immutable --- no updatable fields
− However, target of object reference in a field can be mutable (if it’s

not itself a value class instance)
• Type parameters

− Places, distributions,
• Nullable

− All types are non-null by default, need to explicitly declare a variable
as nullable

− For any type T, the type ?T (read: “nullable T”) contains all the values
of type T, and a special null value, unless T already contains null.

• Support for both rectangular multidimensional arrays (matrices) and
nested arrays

V. Sarkar CDP 2004 Workshop 23

X10 Compilation and Runtime Environment

X10 source code

X10 Front end

X10 Classfiles
X10 static
high-level
optimizer

X10 Virtual Machine
w/ PERCS CPO

Clusters (scale-out)

SMP

Multiple cores on a chip

Coprocessors (SPUs)

SMTs

Vector (VMX)

ILP

Hardware
parameters

Profile
Feedback OS

Hardware
parameters

V. Sarkar CDP 2004 Workshop 24

Relating optimizations for past programming
paradigms to X10 optimizations

Programming
paradigm

Activities Storage classes Important optimizations

Message-
passing e.g.,
MPI

Single activity per
place

Place local Message aggregation, optimization of
barriers & reductions

Data parallel
e.g., HPF

Single global
program

Partitioned global SPMDization, synchronization &
communication optimizations

PGAS e.g.,
Titanium, UPC

Single activity per
place

Partitioned global, place local Localization, SPMDization,
synchronization & communication
optimizations

DSM e.g.,
TreadMarks

Multiple Partitioned global, activity
local

Data layout optimizations, page locality
optimizations

NUMA Single activity per
place

Partitioned global, activity
local

Data distribution, synchronization &
communication optimizations

Futures / active
messages

Multiple Place-local, activity local Message aggregation, synchronization
optimization

Co-processor
e.g., STI Cell

Single activity per
place

Partitioned-global, place-local Data communication, consistency, &
synchronization optimizations

Full X10 Multiple activities in
multiple places

Partitioned-global, place-local,
activity-local

All of the above

V. Sarkar CDP 2004 Workshop 25

Some Challenges in Optimization
of X10 programs

• Analysis and optimization of explicitly parallel programs
− Proposed approach: use Parallel Program Graph (PPG)

representation
• Analysis and optimization of remote data accesses

− Proposed approach: perform data access aggregation and elimination
using Array SSA framework

• Optimized implementation of Atomic Sections
− Simple cases that can be supported by hardware e.g., reductions
− Analyzable atomic sections
− General case

• Load-balancing
− Dynamic, adaptive migration of place s

• Continuous optimization
− Efficient implementation of scan/reduce

• Efficient invocation of components in foreign languages
− C, Fortran

• Garbage collection across multiple places

V. Sarkar CDP 2004 Workshop 26

X10 Status and Plans
• Draft Language Design Report available internally w/ set of sample

programs
• Implementation begun on Prototype #1 for 1/2005

− Functional reference implementation of language subset, not
optimized for performance

− Support for calls to single-threaded native code (C, Fortran)
• Productivity experiments planned for 7/2005

− Use prototype #1 to compare X10 w/ MPI, UPC
− Revise language based on feedback from productivity

experiments
• Prototype #2 planned for 12/2005

− Includes design & prototype implementation of selected
optimizations for parallelism, synchronization and locality in X10
programs

− Revise language based on feedback from design evaluation
• Next phase of PERCS project planned for 7/2006 – 6/2010 timeframe

V. Sarkar CDP 2004 Workshop 27

Conclusions and Future Work

• Future Large-scale Parallel Systems will be accompanied by
severe productivity and performance challenges

• Summarized X10 language approach in PERCS project, with a
focus on next steps:
− Use applications and productivity studies to refine design

decisions in X10
− Prototype solutions to address implementation challenges

• Future work (beyond 2005)
− Explore integration of X10 with other language efforts in IBM

• XML (XJ), BPEL, …
− Community effort to build consensus on standardized “high

productivity” languages for HPC systems in the 2010
timeframe

