
Compilation Technology

October 17, 2005                            © 2005 IBM Corporation

Software Group

Reducing Compilation Overhead
 in J9/TR

Marius Pirvu, Derek Inglis, Vijay Sundaresan



2

Compilation Technology

© 2005 IBM Corporation

Software Group

Agenda

 Adaptive compilation in the TR JIT
 Class Load Phase
 Asynchronous compilation
 Limiting the negative effect of very long 

compilations
 Ongoing work

– Improvements to async compilation

– AOT



3

Compilation Technology

© 2005 IBM Corporation

Software Group

Adaptive Compilation in TR JIT
 Methods start out being interpreted

 After N invocations methods get 
compiled at ‘warm’ level

 Sampling thread used to identify 
hot methods

 Methods may get recompiled at 
‘hot’ or ‘scorching’ levels

 Transition to ‘scorching’ goes 
through a temporary profiling step

warm

hot

scorching

profiling

interpreted



4

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance
Comparison of compilation time for 

different optimization levels

0

5

10

15

20

25

30

co
mpress jes

s db
jav

ac

mpeg
au

dio
mtrt jac

k

SPECjbb

C
om

pi
la

tio
n 

tim
e 

(s
ec

)

Interpreted
noOpt
cold
warm
hot
scorching
Adaptive



5

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance
Performance comparison of 
different optimization levels

0.00

10.00

20.00

30.00

40.00

50.00

60.00

co
mpress jes

s db
jav

ac

mpeg
au

dio mtrt jac
k

SPECjbb

Sp
ee

du
p

Interpreted
noOpt
cold
warm
hot
scorching
Adaptive



6

Compilation Technology

© 2005 IBM Corporation

Software Group

How About Applications Without Hotspots

 WebSphere AppServer startup
–Very flat profile

21.5 sec161 secStartup-time

17.3 sec115 secTime spent 
compiling

Warm=2750, 
hot=11

Warm=36700Methods 
compiled

With Adaptive 
Compilation

No Adaptive 
Compilation



7

Compilation Technology

© 2005 IBM Corporation

Software Group

Class-Load-Phase
 Intuition: Methods compiled during startup phase may 

not be important during application run phase
 Detect phases when class loading is intense
 Reduce optimization level to “cold” during such phases

Effect of ClassLoadPhase

0

0.2

0.4

0.6

0.8

1

1.2

WAS6 Startup Time Trade6 throughput

R
el

at
iv

e 
pe

rf
or

m
an

ce

default
"cold"
ClassLoadPhase



8

Compilation Technology

© 2005 IBM Corporation

Software Group

Asynchronous Compilation

 Synchronous compilation
– Application thread places compilation request and 

blocks waiting for the compilation to finish

 Asynchronous compilation
– Application thread does not wait for the 

compilation result

 JIT compilations performed on a separate 
compilation thread



9

Compilation Technology

© 2005 IBM Corporation

Software Group

Asynchronous Compilation
 Implementation

– Synchronous compilation still needed in some cases 
(e.g. pre-existence)

– Synchronous and asynchronous compilation must 
coexist

– Queue of compilation requests

 Advantages
– Takes advantage of available processors on SMP 

machines by increased parallelism

– Allows performance improvements in uniprocessors 
by changing compilation thread priority

– Allows reordering of compilation requests



10

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance Results – Short Running Apps.

 Asynchronous compilation on SMP reduces 
execution time of short benchmarks

SPECjvm98, first run, AMD64 2P@1.6GHz

0

0.2

0.4

0.6

0.8

1

1.2

db jes
s

mtrt
mpe

g
jac

k
jav

ac

co
mpress

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e

SYNC
ASYNC



11

Compilation Technology

© 2005 IBM Corporation

Software Group

Limiting Negative Effect of Long Compilations

 Compilations may impede GC operation
– GC requires exclusive VM access

– Cannot allow class unloading while compilation in 
progress  Compilations require VM access 

 Solution
– Compilation thread periodically releases and 

reacquires VM access allowing GC to cut-in

– Upon re-acquiring VM access, check if GC 
unloaded any classes

– If classes were unloaded, abort current 
compilation and retry



12

Compilation Technology

© 2005 IBM Corporation

Software Group

 Idea
– Use thread priorities to smooth out the effects 

of compilation - effectively interleave 
compilation with execution

 Implementation
– Don’t use more than X% CPU for compilation

– Use the queue of methods as a buffer
– accumulate work during periods of heavy 

utilization
– solve the backlog when CPU is lightly used or idle 

(due to IO for instance)

– Prioritize compilation requests in the queue

Ongoing Improvements to Asynchronous Compilation



13

Compilation Technology

© 2005 IBM Corporation

Software Group

Performance - Uniprocessors

SPECjvm98, first run

0

0.2

0.4

0.6

0.8

1

1.2

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

gau
dio

_2
27

_m
trt

_2
28

_ja
ck

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

Sync
Dynamic



14

Compilation Technology

© 2005 IBM Corporation

Software Group

Ahead Of Time (AOT) Compilation

 Using the JIT as a static compiler
 Fully compliant code
 Used by J2ME customers to decrease footprint by 

eliminating the JIT
 Will be used by the Real Time offering to eliminate the 

possibility of nondeterministic behaviour introduced by the 
JIT

 Experimenting with combining AOT and JIT compilation to 
improve startup times



15

Compilation Technology

© 2005 IBM Corporation

Software Group

4.03

4.53

5.08

5.74

7.13

0 1 2 3 4 5 6 7 8

J9 w ith Shared Classes and
AOT

J9 w ith Shared Classes

J9 default

HotSpot Client

HotSpot Server

Startup Time (s)

Eclipse 3.0.1 Startup Times

Hardware: 1P@1.2GHz Pentium3 M, Windows32 Options:-Xmx512m -Xms512m for all tests



16

Compilation Technology

© 2005 IBM Corporation

Software Group

?


