
Detecting Behavior Phases
in Utility Programs

Presenter: Xipeng Shen

Joint work with C. Ding,
S. Dwarkadas, and M. L. Scott

University of Rochester



2

Introduction

 Complex program analysis has evolved from
static code analysis to behavior analysis

 Behavior analysis
– To discover common behavior patterns for all

executions through training executions
– The patterns enable behavior prediction on any

execution



3

Behavior Phase

 Definition
– A unit of the recurring behavior

 Captures high-level behavior patterns
– Enables coarse-grain memory control and

program parallelization
 Provides program behavior prediction

– Guides dynamic software and hardware
optimizations



4

Utility Programs

 Take a group of requests as inputs and serve
them one by one
– GCC: compile function by function
– Compilers, compressions, transcoding utilities,

interpreters, servers, ...
 Big challenges for phase analysis

– Dynamic data and control structures
– Strongly input-dependent behavior



5

Instruction Per Cycle(IPC) of GCC



6

Outline

 Introduction
 Technology

– Active profiling
– Regularity filtering
– Consistency filtering

 Evaluation
 Related work
 Conclusions



7

Active Profiling

Strongly input dependent
normal inputs

Irregular
behavior with
no repetitions

regular inputs

Regular
behavior with

excellent repetitions

 Converts challenges to opportunities



8

GCC Normal & Regular IPC Graph

IPC on normal input IPC on regular input



9

Regularity Filtering

 Filtering on dynamic basic block trace
– Frequency-based filtering

 Keep block b only if freq(b) equals the number
of requests

– Distance-based filtering:
 Keep block b only if it has the similar recurring

distance pattern as the majority



10

Consistency Filtering

 Profiling on a normal input
– Check consistency of the markers
– Find phase markers common to most normal

request handling



11

Evaluation

 Five SPEC95 and SPEC2k integer
benchmarks
– GCC, Compress, LI, Vortex, Parser

 Detection: Digital Alpha machines
– ATOM: Binary code instrumentor

 Test: IBM POWER4 pSeries
– PMAPI: hardware performance counter



12

Regularity across Request
Handling (GCC)



13

Regularity across Request
Handling (GCC)



14

Regularity across Executions on
Different Inputs (GCC)

scilab 166



15

Phase Behavior Consistency

 Consistency is the base for prediction
 Comparison to subroutine phases

– Behavior phases have 2.6 to 21 times smaller variations in
cache hit rates

 Comparison to ideal interval phases
– For GCC and Compress, behavior phases have 1.7 to 4.3

times smaller variations
– For Vortex, LI, Parser, both kinds of phases have very low

variations (0.3% to 1.6%)
– Unlike interval phase analysis, behavior analysis requires

no thresholds



16

Uses

 Preventive memory management
– 44% speedup (LI)

 Behavior-based coarse-grain parallelization
– 2x speedup on 4-CPU Xeon machines, 8x on 16-

CPU Sunfire machines (GZip & Parser)
 Phase-based memory monitoring

– Predict memory demand
– Memory leak detection



17

Related Work

 Locality phases
– Not working for utility programs

 Code structure-based phases
– Rely on static program structure

 Interval phases
– Run-time overhead
– Hard to determine the good interval length



18

Conclusions

 An active profiling based approach to analyze utility
programs’ behavior phases

 Captures coarse-grain behavior regularities
 Enables new program improvement techniques

– Preventive garbage collection
– Behavior-based parallelization
– Memory usage monitoring and memory leak detection

 For more info, see our technical report:
http://www.cs.rochester.edu/u/xshen/TR848.pdf



The End

Thanks!


