
IBM Software Group

Compilation Technology © 2005 IBM Corporation

Toward Deterministic Java Performance

Mark Stoodley, Mike Fulton
Toronto Lab, IBM Canada Ltd.

IBM Software Group

© 2005 IBM CorporationCompilation Technology

The Real-Time World

 Responsive in “real time”
– Often keyed to real world events
– Performing work on a regular basis
– Asynchronous events
– Graceful handling of truly exceptional conditions

 Deterministic performance key to meet response
time requirements

 Java performance not really responsive as-is
– But it’s a nice development environment
– Motivates the Real-Time Specification for Java

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Overview

 Real-Time Java

 Java performance isn’t really deterministic ✪

 Mitigating the Chaos

 Summary

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Real-Time Java

 JSR #1: Real-Time Specification for Java

 Facilities to support Real-Time programming
– Make performance more controllable & predictable
– Large-scale enhancements to Java

• Threading, scheduling
• Memory management
• Asynchronous event handling, control transfer, termination
• Physical memory access

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Example 1: Memory Management

 SPEC assumes that managed memory (garbage
collection) is incompatible with real-time needs

 New memory areas that are not collected
– Immortal memory
– Memory scopes

 New thread type “No Heap Realtime Thread”
– Not permitted to even see a heap reference
– No need to stop for any reason when GC occurs

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Java performance isn’t really deterministic

 Chaos lurks everywhere:
➼Thread scheduling is at the whim of the operating system

➼Garbage collection occurs “whenever” for “however long”
– JIT compilations occur “whenever” for “however long”
– Aggressive JITs recompile methods that seem “hot”
– JIT compilers employ many speculative optimizations
– Class loading occurs on demand

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Mitigating the JIT Chaos: stop doing “bad” stuff

 JIT compiling delays are unacceptable
– Also derivative effects: profiling, sampling
– Could run at low priority BUT risk priority inversion

 Ahead-of-Time (AOT) compilation a better option
– Takes compiler out of the run-time performance equation
– Possibly lower performance to deal with resolution order
– Derivative effects also removed
– BUT maybe more difficult to achieve high performance

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Mitigating the JIT Chaos: stop doing “bad” stuff

 Stop doing speculative optimizations
– No flat-word monitors

• Also simplifies priority-inversion support
– No monitor coarsening
– Profiling-based optimizations
– Not easy because JIT compilers speculate a LOT

 Devirtualization ok if all classes are pre-loaded

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Mitigating the JIT Chaos: stop doing “bad” stuff

 Class loading is a trouble spot
– Loading one class often requires loading other classes
– Once class is loaded, devirtualizations may be invalid

• Lots of call sites may need to be patched for correctness
– Updates many VM data structures also accessed by GC

• Particularly a problem for NoHeapRealtimeThreads

 Application-level pre-loading is one option
– Collect list of loaded classes in one execution
– “Force” class to load before application begins executing

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Summary

 Java not suitable as-is for Real-Time workloads

 Real-Time Specification enhances Java for RT

 Java VMs have many sources of nondeterminism
– GC, thread scheduling, JIT compiler

 These problems can be largely mitigated
– Ahead-of-Time compiles, class preloading, stop doing

speculative optimizations
– Lower sustained performance but more deterministic

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Contact Information and Acknowledgments

Mark Stoodley

Toronto Lab, IBM Canada Ltd.

mstoodle@ca.ibm.com

With thanks to:

Mike Fulton

mailto:mstoodle@ca.ibm.com

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Backup Slides

IBM Software Group

© 2005 IBM CorporationCompilation Technology

Example 2: Asynchronous Transfer of Control (ATC)

 RT programs need to respond to truly exceptional
conditions quickly and drastically

 Thread that detects condition may need to
interrupt other threads actively working

 ATC provides facilities to mark methods that can
be safely interrupted
– More draconian exception semantics in such methods

 Also mechanisms to initiate such interruptions

