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Objective: 

What are the new challenges in SIMD code generation that 
are specific to VMX?

    (due to lack of time….)

 Scalar Prologue/Epilogue Code Generation (80% of the talk)
 Loop Distribution (10% of the talk)

 Mixed-Mode SIMDization
 Future Tuning Plan (10% of the talk)
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Background: 

Hardware imposed misalignment problem

 More details in the CELL tutorial Tuesday afternoon
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Single Instruction Multiple Data (SIMD) Computation  Single Instruction Multiple Data (SIMD) Computation  
Process multiple “b[i]+c[i]” data per operations
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loop epilogue
(simdized)

loop steady state
(simdized)

loop prologue
(simdized)

Code Generation for Loops (Multiple Statements)Code Generation for Loops (Multiple Statements)
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100
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a  
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    a[i]=

b[i+1]=

c[i+3]=

Implicit loop skewing (steady-state)
  a[i+4] = …
  b[i+4] = …
  c[i+4] = …

for (i=0; i<n; i++) {
  a[i] = …;
  b[i+1] = …;
  c[i+3] = …;
}
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Code Generation for Partial Store – Vector Prologue/EpilogueCode Generation for Partial Store – Vector Prologue/Epilogue

a0 a1 a2 a3 a4 a5 a6 a7 …

16-byte boundaries

b1+
c2  

b5+
c6  *  *  * b2+

c3  
b3+
c4  

b4+
c5  

store c[3] store c[7]

...

shuffle

a3a0 a1 a2

b1+
c2  a0 a1 a2

for (i=0; i<100; i++) a[i+3] = b[i+1]  + c[i+2];

load a[3]

 Can be complicated for multi-threading and page faulting issues
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Multi-threading issueMulti-threading issue

a0 a1 a2
b1+
c2

b2+
c3

b3+
c4

b4+
c5

b5+
c6 …

16-byte boundaries

Thread 1 performs load of a0-a3

shuffle

b1+
c2  a0 a1 a2

for (i=0; i<100; i++) a[i+3] = b[i+1]  + c[i+2];

Thread 2 updates a0, while thread 1 is 
working on shuffling

a3a0 a1 a2 a7a4 a5 a6

a3a0 a1 a2

b1+
c2  *  *  *

WRONG!
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Solution – Scalar Prologue/EpilgueSolution – Scalar Prologue/Epilgue
After Late-SIMDization
    20 |  void ptest()

          {

    22 |    if (!1) goto lab_4;

            @CIV0 = 0;

            if (!1) goto lab_26;

            @ubCondTest0 = (K1 & 3) * -4 + 16;

            @CIV0 = 0;

            do {   /* id=2 guarded */ /* ~27 */

              /* region = 0 */

              /* bump-normalized */

              if ((unsigned) (@CIV0 * 4) >= @ubCondTest0) goto lab_30;

              pout0[]0[K1 + @CIV0] = pin0[]0[K1 + @CIV0] + pin1[]0[K1 + @CIV0];

            lab_30:

              /* DIR  LATCH */

              @CIV0 = @CIV0 + 1;

            } while (@CIV0 < 4);    /* ~27 */

            @CIV0 = 0;

          lab_26:

            

int K1;

void ptest() {

   int i;

   for (i=0;i<UB;i++) {

      pout0[i+K1] = pin0[i+K1] +

                             pin1[i+K1];

   }

}

Scalar Prologue
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 if (!1) goto lab_25;

            @CIV0 = 0;

            do {   /* id=1 guarded */ /* ~3 */

              /* region = 8 */

    23 |      @V.pout0[]02[K1 + (@CIV0 + 4)] = @V.pin0[]01[K1 + (@CIV0 + 4)] + @V.pin1[]00[K1 + (@CIV0 + 4)];

    22 |      /* DIR  LATCH */

              @CIV0 = @CIV0 + 4;

            } while (@CIV0 < 24);    /* ~3 */

            @mainLoopFinalCiv0 = (unsigned) @CIV0;

          lab_25:

SIMD Body

        if (!1) goto lab_28;

            @ubCondTest1 = (unsigned) ((K1 & 3) * -4 + 16);

            @CIV0 = 0;

            do {   /* id=3 guarded */ /* ~29 */

              /* region = 0 */

              /* bump-normalized */

              if ((unsigned) (@CIV0 * 4) < @ubCondTest1) goto lab_31;

              pout0[]0[K1 + (24 + @CIV0)] = pin0[]0[K1 + (24 + @CIV0)] + pin1[]0[K1 + (24 + @CIV0)];

            lab_31:

              /* DIR  LATCH */

              @CIV0 = @CIV0 + 1;

            } while (@CIV0 < 8);    /* ~29 */

            @CIV0 = 32;

          …

Scalar Epilogue
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Scalar Prologue/Epilogue ProblemsScalar Prologue/Epilogue Problems

One loop becomes 3 loops: Scalar Prologue, SIMD Body, Scalar 

Epilogue

Contains an “if” stmt, per peeled stmt, inside the Scalar P/E loops

 If there is one stmt that is misaligned, ‘every statement’ needs to 

be peeled

Scalar P/E do not benefit from SIMD computation where as Vector 

P/E does.  
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The million bucks questions…The million bucks questions…

When there is a need to generate scalar p/e, what is the 

threshold for a loop upper bound?

What is the performance difference between vector p/e versus 

scalar p/e?  
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ExperimentsExperiments
Written a gentest script with following parameters:

 ./gentest -s snum -l lnum -[c/r] ratio -n ub
 -s : number of store statements in the loop
 -l  : number of loads per stmt
 -[c/r] : compile time or runtime misalignment, where 0 <= ratio <= 1 to specify the 

fraction of stmts that is aligned (i.e. known to aligned at quad word boundary during 
compile time).   

 -n : upper bound of the loop (compile time constant)

Since we’re only interested in overhead introduced by p/e, load references 
are relatively aligned with store references. (no shifts inside body)

Use addition operation
Assume data type of float (i.e. 4 bytes)
Each generated testcase is compiled at –O3 –qhot –qenablevmx –

arch=ppc970, and ran on AIX ppc970 machine (c2blade24)
Each testcase is ran 3 times with average timing recorded.
10 variants of the same parameters are generated.   
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ResultsResults
Compile Time Misalignment Study for Scalar P/E
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With the lowest functional ub of 12 and in the presence of different 
degree of compile misalignment, it is always good to simdize!
Tobey is able to fully unroll the scalar p/e loops and fold away all 
the if conditions.  (good job!)
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ResultsResults
Runtime Misalignment Study for Scalar P/E
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When the aligned ratio is below 0.25 (i.e. misaligned ratio is greater than 0.75) at 
ub12, scalar p/e gives overhead too large that it is not good to simdize.
However, if we raise the ub to 16, it is always good to simdize regardless of any 
degree of misalignment!
Tobey is still able to fully unroll the scalar P/E loops, but can’t fold away “if”s with 
runtime condition.  
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Answer to the first question.Answer to the first question.

When there is a need to generate scalar p/e, what is the 

threshold for a loop upper bound? Compile time 12, Run time 16.
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ResultsResults
Vector P/E VS Scalar P/E (compile time misalignment)
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In the presence of only compile misalignment, vector p/e is always better than scalar p/e
Improvement:

Since every stmt is peeled, those that we have peeled a quad word may still be 
done using vector instructions
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ResultsResults
Vector P/E VS Scalar P/E (runtime misalignment)
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In the presence of high runtime misalignment ratio, vector p/e suffers tremendous when 
it needs to generate select mask using a runtime variable.
It is better to do scalar p/e when misalignment ratio is greater than 0.25!
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Answer to the second question Answer to the second question 

What is the performance difference between vector p/e versus 

scalar p/e?  

 Vector p/e is always better when there is only compile time 

misalignment.  When there is runtime misalignment of greater than 

0.25, scalar p/e proves to be better.
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Motivating ExampleMotivating Example
 Not all computations are simdizable
 Dependence cycles
 Non-stride-one memory accesses
 Unsupported operations and data types

 A simplified example from GSM.encoder, which is a speech 
compression application

  for (i = 0; i < N; i++) {
1:   d[i+1] = d[i] + (rp[i] * u[i]);
2:   t[i]   = u[i] + (rp[i] * d[i]);
  }

Linear Recurrence

Not simdizable

Fully simdizable
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Distribute the simdizable and non/partially simdizable statements into 
separated loops (after Loop distribution)

Simdize the loops with only simdizable statements (after SIMDization)

Current Approach: Loop DistributionCurrent Approach: Loop Distribution

  for (i = 0; i < N; i++) {
1:   d[i+1] = d[i] + rp[i] * u[i];
  }
  for (i = 0; i < N; i++) {
2:   t[i]   = u[i] + rp[i] * d[i];
  }

  for (i = 0; i < N; i++) {
1:   d[i+1] = d[i] + rp[i] * u[i];
  }
  for (i = 0; i < N; i+=4) {
2:   t[i:i+3] = u[i:i+3] + rp[i:i+3] * d[i:i+3];
  }

After simdization

After loop distributionAfter Loop Distribution
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Problems with Loop DistributionProblems with Loop Distribution
Increase reuse distances of memory references

Only one unit is fully utilized for each loop

  for (i = 0; i < N; i++) {
1:   d[i+1] = d[i] + (rp[i] * u[i]);
2:   t[i]   = u[i] + (rp[i] * d[i]);
  } O(1)

  for (i = 0; i < N; i++) {
1:   d[i+1] = d[i] + (rp[i] * u[i]);
  }
  for (i = 0; i < N; i++) {
2:   t[i]   = u[i] + (rp[i] * d[i]);
  } O(N)

Scalar idle

SIMD idle

Original Loop

After loop distribution



Template release: Oct 02
For the latest, go to 
http://w3.ibm.com/ibm/presentations

  Automatic SIMDization © 2005 IBM Corporation22

Preliminary resultsPreliminary results

The prototyped mixed mode SIMDization has 
illustrated a gain of 2 times speed up for the SPEC95 
FP swim.  With loop distribution, the speed up is only 
1.5 times.



Template release: Oct 02
For the latest, go to 
http://w3.ibm.com/ibm/presentations

  Automatic SIMDization © 2005 IBM Corporation23

Conclusion and Future tuning planConclusion and Future tuning plan

Further improvement on scalar p/e code generation.
 Currently, finding out cases when stmt re-execution is allowed. This will allow 

us to fold away more if conditions
 More experiments to determine the upper bound threshold for different data 

types

Enable Mixed-mode SIMDization

 Integration of SIMDization framework into TPO better
 e.g. predicative commoning
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