
© 2002 IBM
Corporation

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

IBM Toronto Lab

Auto-SIMDization Challenges October 17, 2005 @2005 IBM Corporation

Auto-SIMDization Challenges

Amy Wang, Peng Zhao,

IBM Toronto Laboratory

Peng Wu, Alexandre Eichenberger

IBM T.J. Watson Research Center

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation2

Objective:

What are the new challenges in SIMD code generation that
are specific to VMX?

 (due to lack of time….)

 Scalar Prologue/Epilogue Code Generation (80% of the talk)
 Loop Distribution (10% of the talk)

 Mixed-Mode SIMDization
 Future Tuning Plan (10% of the talk)

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation3

Background:

Hardware imposed misalignment problem

 More details in the CELL tutorial Tuesday afternoon

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation4

Single Instruction Multiple Data (SIMD) Computation Single Instruction Multiple Data (SIMD) Computation
Process multiple “b[i]+c[i]” data per operations

b0 b1 b2 b3

c0 c1 c2 c3

b0+
c0

b1+
c1

b2+
c2

b3+
c3

b0 b2 b3 b4 b5 b6 b7 b8 b9 b10

c0 c1 c3 c4 c5 c6 c7 c8 c9 c10c2

b1

+

R1

R2

R3

16-byte boundaries

16-byte boundaries

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation5

loop epilogue
(simdized)

loop steady state
(simdized)

loop prologue
(simdized)

Code Generation for Loops (Multiple Statements)Code Generation for Loops (Multiple Statements)

b0 b1 b2 b3 b4 b5 b6 b7b1 b96 b97 b98 b99 b
100

b
101

b
102

b
103...

a0 a1 a2 b3 a4 a5 a6 a7a0 a96 a97 a98 a99 a
100

a
101

a
102

a
103...

c0 c1 c2 b3 c4 c5 c6 c7c3 c96 c97 c98 c99 c
100

c
101

c
102

c
103...

 a[i]=

b[i+1]=

c[i+3]=

Implicit loop skewing (steady-state)
 a[i+4] = …
 b[i+4] = …
 c[i+4] = …

for (i=0; i<n; i++) {
 a[i] = …;
 b[i+1] = …;
 c[i+3] = …;
}

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation6

Code Generation for Partial Store – Vector Prologue/EpilogueCode Generation for Partial Store – Vector Prologue/Epilogue

a0 a1 a2 a3 a4 a5 a6 a7 …

16-byte boundaries

b1+
c2

b5+
c6 * * * b2+

c3
b3+
c4

b4+
c5

store c[3] store c[7]

...

shuffle

a3a0 a1 a2

b1+
c2 a0 a1 a2

for (i=0; i<100; i++) a[i+3] = b[i+1] + c[i+2];

load a[3]

 Can be complicated for multi-threading and page faulting issues

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation7

Multi-threading issueMulti-threading issue

a0 a1 a2
b1+
c2

b2+
c3

b3+
c4

b4+
c5

b5+
c6 …

16-byte boundaries

Thread 1 performs load of a0-a3

shuffle

b1+
c2 a0 a1 a2

for (i=0; i<100; i++) a[i+3] = b[i+1] + c[i+2];

Thread 2 updates a0, while thread 1 is
working on shuffling

a3a0 a1 a2 a7a4 a5 a6

a3a0 a1 a2

b1+
c2 * * *

WRONG!

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation8

Solution – Scalar Prologue/EpilgueSolution – Scalar Prologue/Epilgue
After Late-SIMDization
 20 | void ptest()

 {

 22 | if (!1) goto lab_4;

 @CIV0 = 0;

 if (!1) goto lab_26;

 @ubCondTest0 = (K1 & 3) * -4 + 16;

 @CIV0 = 0;

 do { /* id=2 guarded */ /* ~27 */

 /* region = 0 */

 /* bump-normalized */

 if ((unsigned) (@CIV0 * 4) >= @ubCondTest0) goto lab_30;

 pout0[]0[K1 + @CIV0] = pin0[]0[K1 + @CIV0] + pin1[]0[K1 + @CIV0];

 lab_30:

 /* DIR LATCH */

 @CIV0 = @CIV0 + 1;

 } while (@CIV0 < 4); /* ~27 */

 @CIV0 = 0;

 lab_26:

int K1;

void ptest() {

 int i;

 for (i=0;i<UB;i++) {

 pout0[i+K1] = pin0[i+K1] +

 pin1[i+K1];

 }

}

Scalar Prologue

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation9

 if (!1) goto lab_25;

 @CIV0 = 0;

 do { /* id=1 guarded */ /* ~3 */

 /* region = 8 */

 23 | @V.pout0[]02[K1 + (@CIV0 + 4)] = @V.pin0[]01[K1 + (@CIV0 + 4)] + @V.pin1[]00[K1 + (@CIV0 + 4)];

 22 | /* DIR LATCH */

 @CIV0 = @CIV0 + 4;

 } while (@CIV0 < 24); /* ~3 */

 @mainLoopFinalCiv0 = (unsigned) @CIV0;

 lab_25:

SIMD Body

 if (!1) goto lab_28;

 @ubCondTest1 = (unsigned) ((K1 & 3) * -4 + 16);

 @CIV0 = 0;

 do { /* id=3 guarded */ /* ~29 */

 /* region = 0 */

 /* bump-normalized */

 if ((unsigned) (@CIV0 * 4) < @ubCondTest1) goto lab_31;

 pout0[]0[K1 + (24 + @CIV0)] = pin0[]0[K1 + (24 + @CIV0)] + pin1[]0[K1 + (24 + @CIV0)];

 lab_31:

 /* DIR LATCH */

 @CIV0 = @CIV0 + 1;

 } while (@CIV0 < 8); /* ~29 */

 @CIV0 = 32;

 …

Scalar Epilogue

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation10

Scalar Prologue/Epilogue ProblemsScalar Prologue/Epilogue Problems

One loop becomes 3 loops: Scalar Prologue, SIMD Body, Scalar

Epilogue

Contains an “if” stmt, per peeled stmt, inside the Scalar P/E loops

 If there is one stmt that is misaligned, ‘every statement’ needs to

be peeled

Scalar P/E do not benefit from SIMD computation where as Vector

P/E does.

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation11

The million bucks questions…The million bucks questions…

When there is a need to generate scalar p/e, what is the

threshold for a loop upper bound?

What is the performance difference between vector p/e versus

scalar p/e?

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation12

ExperimentsExperiments
Written a gentest script with following parameters:

 ./gentest -s snum -l lnum -[c/r] ratio -n ub
 -s : number of store statements in the loop
 -l : number of loads per stmt
 -[c/r] : compile time or runtime misalignment, where 0 <= ratio <= 1 to specify the

fraction of stmts that is aligned (i.e. known to aligned at quad word boundary during
compile time).

 -n : upper bound of the loop (compile time constant)

Since we’re only interested in overhead introduced by p/e, load references
are relatively aligned with store references. (no shifts inside body)

Use addition operation
Assume data type of float (i.e. 4 bytes)
Each generated testcase is compiled at –O3 –qhot –qenablevmx –

arch=ppc970, and ran on AIX ppc970 machine (c2blade24)
Each testcase is ran 3 times with average timing recorded.
10 variants of the same parameters are generated.

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation13

ResultsResults
Compile Time Misalignment Study for Scalar P/E

0

0.1

0.2

0.3

0.4

0.5

0 0.25 0.5 0.75

Ratio of Aligned Stmts in Loop

Ti
m

e
(s

ec
on

ds
)

disable SIMD ub12

SIMD w Scalar P/E ub12

With the lowest functional ub of 12 and in the presence of different
degree of compile misalignment, it is always good to simdize!
Tobey is able to fully unroll the scalar p/e loops and fold away all
the if conditions. (good job!)

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation14

ResultsResults
Runtime Misalignment Study for Scalar P/E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25 0.5 0.75

Ratio of Aligned Stmts in Loop

T
im

e
 (

s
e
c
o

n
d

s
)

disable SIMD ub12
SIMD w Scalar P/E ub12
disable SIMD ub16
SIMD w Scalar P/E ub16

When the aligned ratio is below 0.25 (i.e. misaligned ratio is greater than 0.75) at
ub12, scalar p/e gives overhead too large that it is not good to simdize.
However, if we raise the ub to 16, it is always good to simdize regardless of any
degree of misalignment!
Tobey is still able to fully unroll the scalar P/E loops, but can’t fold away “if”s with
runtime condition.

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation15

Answer to the first question.Answer to the first question.

When there is a need to generate scalar p/e, what is the

threshold for a loop upper bound? Compile time 12, Run time 16.

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation16

ResultsResults
Vector P/E VS Scalar P/E (compile time misalignment)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.25 0.5 0.75

Ratio of Aligned Stmts in Loop

T
im

e
 (

s
e
c
o

n
d

s
)

vector P/E ub12

scalar P/E ub12

In the presence of only compile misalignment, vector p/e is always better than scalar p/e
Improvement:

Since every stmt is peeled, those that we have peeled a quad word may still be
done using vector instructions

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation17

ResultsResults
Vector P/E VS Scalar P/E (runtime misalignment)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 0.25 0.5 0.75

Ratio of Aligned Stmts in Loop

T
im

e
 (

s
e
c
o

n
d

s
)

vector P/E ub12

scalar P/E ub12

In the presence of high runtime misalignment ratio, vector p/e suffers tremendous when
it needs to generate select mask using a runtime variable.
It is better to do scalar p/e when misalignment ratio is greater than 0.25!

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation18

Answer to the second question Answer to the second question

What is the performance difference between vector p/e versus

scalar p/e?

 Vector p/e is always better when there is only compile time

misalignment. When there is runtime misalignment of greater than

0.25, scalar p/e proves to be better.

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation19

Motivating ExampleMotivating Example
 Not all computations are simdizable
 Dependence cycles
 Non-stride-one memory accesses
 Unsupported operations and data types

 A simplified example from GSM.encoder, which is a speech
compression application

 for (i = 0; i < N; i++) {
1: d[i+1] = d[i] + (rp[i] * u[i]);
2: t[i] = u[i] + (rp[i] * d[i]);
 }

Linear Recurrence

Not simdizable

Fully simdizable

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation20

Distribute the simdizable and non/partially simdizable statements into
separated loops (after Loop distribution)

Simdize the loops with only simdizable statements (after SIMDization)

Current Approach: Loop DistributionCurrent Approach: Loop Distribution

 for (i = 0; i < N; i++) {
1: d[i+1] = d[i] + rp[i] * u[i];
 }
 for (i = 0; i < N; i++) {
2: t[i] = u[i] + rp[i] * d[i];
 }

 for (i = 0; i < N; i++) {
1: d[i+1] = d[i] + rp[i] * u[i];
 }
 for (i = 0; i < N; i+=4) {
2: t[i:i+3] = u[i:i+3] + rp[i:i+3] * d[i:i+3];
 }

After simdization

After loop distributionAfter Loop Distribution

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation21

Problems with Loop DistributionProblems with Loop Distribution
Increase reuse distances of memory references

Only one unit is fully utilized for each loop

 for (i = 0; i < N; i++) {
1: d[i+1] = d[i] + (rp[i] * u[i]);
2: t[i] = u[i] + (rp[i] * d[i]);
 } O(1)

 for (i = 0; i < N; i++) {
1: d[i+1] = d[i] + (rp[i] * u[i]);
 }
 for (i = 0; i < N; i++) {
2: t[i] = u[i] + (rp[i] * d[i]);
 } O(N)

Scalar idle

SIMD idle

Original Loop

After loop distribution

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation22

Preliminary resultsPreliminary results

The prototyped mixed mode SIMDization has
illustrated a gain of 2 times speed up for the SPEC95
FP swim. With loop distribution, the speed up is only
1.5 times.

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation23

Conclusion and Future tuning planConclusion and Future tuning plan

Further improvement on scalar p/e code generation.
 Currently, finding out cases when stmt re-execution is allowed. This will allow

us to fold away more if conditions
 More experiments to determine the upper bound threshold for different data

types

Enable Mixed-mode SIMDization

 Integration of SIMDization framework into TPO better
 e.g. predicative commoning

Template release: Oct 02
For the latest, go to
http://w3.ibm.com/ibm/presentations

 Automatic SIMDization © 2005 IBM Corporation24

AcknowledgementAcknowledgement

This work would not be possible without the technical contribution
from the following individuals.

 Roch Archambault/Toronto/IBM
 Raul Silvera/Toronto/IBM
 Yaoqing Gao/Toronto/IBM
 Gang Ren/Watson/IBM

