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Abstract

This paper describes an empirical study of the SPECjvm98 benchmarks, using the Jalapefio virtual
machine. The study employs two compilers, a nonoptimizing compiler that is initially used to compile all
application methods, and an optimizing compiler that is selectively used to recompile a parameterized
set of hot methods based on past profiling. We view this study as a step in examining the feasibility of
adaptive optimization in this environment.

The results show promise for adaptive optimization. In particular, they show that the combined
time (execution and compilation) of selective opt-compilation can be less than the execution time of no
opt-compilation and the combined time of full opt-compilation. The results also show that the combined
time of selective opt-compilation can be competitive with static compilation (full opt-compilation not
counting compilation time) for the SPECjvm98 benchmarks with input size 100.

1 Introduction

One technique for increasing the efficiency of Java applications is to compile the application to native code,
thereby gaining efficiency over an interpretation execution environment. To satisfy the semantics of Java
for dynamic class loading, most compilation-based systems perform compilation at runtime. However, any
gains in application execution performance achieved by such JIT (“Just In Time”) systems must overcome
the cost of application compilation.

An alternative strategy is to selectively compile the methods of an application that dominate the execution
time with the goal of incurring the cost of compilation for only those methods where i1t will be beneficial.
A variant of this approach, most useful for long-running applications, such as those running on servers, is
to replace the interpreter/compiler strategy with two compilers: a quick nonoptimizing compiler and an
optimizing compiler. Using this approach, all methods are initially compiled by the nonoptimizing compiler
and only selective methods are compiled by the optimizing compiler.

In this work we evaluate the effectiveness of such a strategy in the context of the Jalapefo Java virtual

machine (JVM) [4, 10, 3, 2]. Specifically, we

e study how a past profiling run of an application can be used to understand which methods to opt-
compile, 1.e., compile with the optimizing compiler,

e define metrics that characterize how selective opt-compilation performs and report their values,

e investigate different strategies for choosing methods to opt-compile based on a past profiling run.



This work will help estimate the performance of adaptive optimization [18], when the selection of such
methods is based on the current performance characteristics of the application, i.e., it does not solely depend
on previous profiling runs. The results show that selective opt-compilation is a cost effective strategy;
the execution time improvement obtained by opt-compiling selected methods outweighs the compile-time
overhead. The results also show that in most benchmarks there is a significant range of methods that can be
selected to achieve close to optimal performance. This suggests that performance benefits may be achievable
with an adaptive system; such functionality is being added to Jalapeno. The rest of this paper elaborates
on these points and is organized as follows. Section 2 describes the background for this study. Section 3
presents the study and discusses the results. Section 4 describes related work and Section 5 concludes.

2 Background

This experimental results used in this study were obtained using the Jalapefio JVM being built at IBM
Research [4, 3, 2]. Jalapefio contains three runtime compilers, a nonoptimizing baseline compiler, a quick
compiler that performs register allocation, and an optimizing compiler [10] discussed below. A compile-only
strategy that combines executables produced by the compilers is easier than mixing compiled execution with
interpreted execution. Except for a small amount of code that manages operating system services, Jalapefio
is completely written in Java [3]. In addition to eliminating language barriers between the application and
the JVM, writing a JVM 1in Java also enables optimization techniques to be applied to the JVM itself,
such as inlining JVM code directly into the application [5] and adapting the JVM to the application using
recompilation.

For the purposes of this study, we refer to the baseline compiler as the nonoptimizing compiler.! Both
the nonoptimizing and optimizing compilers compile one method at a time, producing native RS/6000 AIX
machine code. Jalapefio is compiled using a bootstrap process [3] in which the optimizing compiler is used
to compile all methods of the JVM, including both the nonoptimizing and optimizing compilers.

The version of the optimizing compiler used for this study performs the following optimizations:

e bytecode to IR optimizations, such as copy propagation, constant propagation, dead code elimination,
and register renaming for local variables [28];

e flow-insensitive optimizations, such as scalar replacement of aggregates and the elimination of local
common subexpression, redundant bounds checks (within an extended basic block [12]) and redundant
local exception checks;

e semantic expansion transformations of standard Java library classes [29] and static inlining, including
the inlining of special methods such as lock/unlock and allocation;

These optimizations are collectively grouped together into the default optimization level (level 1). More
sophisticated flow-sensitive optimizations (level 2) are under development.

On average the nonoptimizing compiler 1s 50 times faster than the optimizing compiler used in this study
and the resulting performance benefit can vary greatly. For our benchmark suite, the execution time speedup
ranges from 1.92-8.66 when the application is completely compiled by the optimizing compiler.

The Jalapefio JVM 1is also being used as an infrastructure to experiment with a family of interchangeable
memory managers [2]. Each manager consists of a concurrent object allocator and a stop-the-world, parallel,
type-accurate garbage collector. This study uses the nongenerational copying memory manager.

1 The quick compiler is not yet fully functional and thus is not included in this study.



3 Empirical Study

Section 3.1 describes the methodology used in this study. Section 3.2 presents the main results and direct
conclusions. Section 3.3 examines how accurately profiling data can be used to predict method selection.
Section 3.4 further discusses these findings with respect to adaptive optimization.

3.1 Methodology

The experimental results were gathered on a 333MHz IBM RS/6000 PowerPC 604e with 1048MB RAM,
running AIX 4.3. The study uses the SPECjvm98 benchmark suite [14] run on the size 10 (medium) and
size 100 (large) problem sizes. In the remainder of the paper we use the terms “size 10 benchmarks” and
“size 100 benchmarks” to refer to these benchmarks run on the corresponding input sizes.

In each experiment all application methods are first compiled by the nonoptimizing compiler (as would be
the case with adaptive compilation) to ensure that all classes will be loaded when the optimizing compiler is
invoked. This avoids any dependences due to the order in which classes are loaded. After this step a selected
number of application methods are compiled again by the optimizing compiler. After this opt-compilation
completes, the application is run using the results of the compilation. Thus, no compilation is performed
while the application is executing.

Each benchmark/input size is run a repeated number of times. On each run N methods are opt-compiled.
The manner in which methods are chosen to opt-compile is determined by (past) profile information, i.e.,
the application is run on size 10 input using instrumentation to determine the time spent in each method.
Successive runs opt-compile the previous N methods plus the hottest remaining K methods. Initially,
successive runs compile the next hottest method, i.e., K = 1. Once 20 methods have been opt-compiled (N
= 20), subsequent selections use a value of 10 for K to allow for the results to be obtained in a reasonable
period of time. Thus, for each benchmark/input size N methods are selected for opt-compilation, where
N =(0,1,2,...,19,20, 30,40, ..., allmethods).

The time for each run is measured. This time is composed of the following three quantities: the time to
compile all methods using the nonoptimizing compiler, the time to compile the selected methods (from 0 to
allmethods) using the optimizing compiler, and the time to run the application. We refer to this total time
as the combined time. We refer to the combined time, excluding both kinds of compilation, as the ezecution
time. All times reported are the minimum of 4 runs of the application.?

The startup time of the Jalapefio virtual machine is not counted in the timings. Optimizing JVM startup
time is beyond the scope of this paper and is a separate topic of research. The goal of this study is to better
understand the tradeoffs between optimization and performance; counting JVM startup time would simply
add a constant factor to all times, making the interesting tradeoff less clear.

3.2 Results

The data for each application is plotted on a graph where the x-axis measures the number of (hot) methods
selected for opt-compilation and the y-axis measures time in seconds. Figures 1 and 2 present the 14 graphs,
one for each application and input size. Each graph contains two curves, the solid curve connects points of
the form (number-of-opt-compiled-methods, combined time). The dashed curve connects points of the form
(number-of-opt-compiled-methods, execution time), i.e., the dashed curve does not include any compilation
time. The time to compile all methods with the nonoptimizing compiler is included in the combined time
(solid curve). This time ranged from 0.06—0.25 seconds, averaging 0.12 seconds.

The first observation concerning the graphs is the execution time difference between the size 10 and
size 100 inputs to the SPECjvm98 benchmarks. With all methods optimized, the execution time only (the

2These results do not follow the official SPEC reporting rules, and therefore should not be treated as official SPEC results.
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Figure 1: Graphs for 201 _compress, 202_jess, 209_db, and 213_javac for input sizes 10 and 100. The x-axis
1s the number of methods that are opt-compiled. The y-axis is time in seconds. The dashed curve connects
points for execution time. The solid curve connects points for the combined time (execution + compilation).
x-axis points were recorded for (0,1, ...,20, 30,40, ..., allmethods).
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Figure 2: Graphs for 222 mpegaudio, 227 mtrt, and 228_jack for input sizes 10 and 100. The x-axis is the
number of methods that are opt-compiled. The y-axis is time in seconds. The dashed curve connects points

for execution time. The solid curve connects points for the combined time (execution + compilation). x-axis
points were recorded for (0,1, ...,20,40, 80,120, ..., allmethods)



Best Characteristics Best Performance
Methods for Pct of Best
Best Profile Combined | Nonopt / | All (cmp+exe) / Best /
Benchmark/Input size || Number | Pct | Covered Time [s] Best Best All (exe only)
201_compress/10 15 5% 99.9% 3.7 6.90 1.58 1.03
202 jess/10 8 1% 79.6% 1.5 2.42 4.11 1.47
209.db/10 8 3% 81.8% 1.2 1.79 2.84 1.29
213 javac/10 3 0% 18.1% 2.4 2.50 4.67 1.96
222_mpegaudio/10 50 | 11% 98.4% 4.0 6.23 1.62 1.39
227 _mtrt/10 50 12% 98.5% 2.2 2.32 2.23 1.80
228 jack/10 16 3% 71.1% 6.5 1.83 1.86 1.22
Average 21.4 5% 78.2% 3.1 3.43 2.70 1.45
201_compress/100 19 ™% 99.9% 39.8 6.97 1.05 1.01
202 jess/100 90 15% 99.0% 24.5 2.36 1.15 1.07
209-db/100 50 17% 98.9% 55.3 1.92 1.04 1.00
213_javac/100 320 30% 97.8% 43.2 1.71 1.09 1.16
222_mpegaudio/100 120 | 27% 99.8% 28.7 8.22 1.09 1.03
227 _mtrt /100 110 26% 99.9% 14.3 3.97 1.17 1.09
228 jack/100 50 9% 92.3% 48.1 2.00 1.08 1.07
Average 108.4 19% 98.2% 36.3 3.88 1.10 1.06
Table 1: Effectiveness of selective opt-compilation. “All (exe only)” = execution time only, when all methods
are opt-compiled. “All (cmp+exe)” = combined time (compilation and execution), when all methods are

opt-compiled.

rightmost point on the dotted curve) is in the range of 0.9-5.3 seconds for the size 10 benchmarks, and
13.1-55.4 seconds for size 100. Thus it is not surprising that compilation time is a much larger percentage
of combined time for size 10 inputs than for size 100 inputs, because the same methods are compiled in each
case, 1.e., the amount of time spent compiling is the same for a given value of N.

Another trend across the benchmarks is a steep initial drop in the curves, reaching a minimum rather
quickly. After the combined time (solid curve) reaches a minimum, most of the size 10 graphs rise again,
while the size 100 graphs remain relatively flat.

Table 1 elaborates on the graphs from Figures 1 and 2. In particular, it describes characteristics about
the best combined time ( “Best”) using selective opt-compilation, i.e., the lowest point on the solid curves,
and compares this time to the time of other interesting points.

The first column of Table 1 lists the benchmark name and input size. The next set of three columns
reports the characteristics used to achieve the best combined time (Best) using selective opt-compilation.
This could be no methods opt-compiled, all methods opt-compiled, or some methods opt-compiled in order
of hotness. The column marked “Number” reports the number of (hot) methods opt-compiled. The column
marked “Pct” gives the percentage of all methods in the application that are opt-compiled. The column
marked “Pct of Profile Covered” gives the percentage of profile execution time that is covered by the selected
methods.

The number of methods opt-compiled for Best varies greatly across the benchmarks, ranging from 3 to
320 methods (0-30% of all methods), demonstrating that the benchmarks have rather different execution
patterns regarding method hotness. The percent of the profile covered by the selected methods, however,
was fairly consistent among the size 100 benchmarks, averaging 98.2%.

The profile for 213_javac has a fairly even distribution among its methods. Thus, for the size 10 input,
Best includes only a small number of methods because additional opt-compilation is not beneficial on such



a short-running program. However, with the largest budget afforded by the longer-running size 100 input,
Best opt-compiles the largest set of methods, 320 (30%). Despite this large number, it is the second smallest
of the size 100 inputs regarding percentage of profile covered. Thus, 213_java may be the most challenging
benchmark in the SPECjvm98 suite for adaptive compilation.

The last four columns of Table 1 report the performance of the Best method selection. The first column
in this set reports the combined time (execution and compilation) for the methods selected. The next
three columns compare this time to other interesting values. The first of these three (“Nonopt / Best”)
compares the Best time to the combined time when no methods are opt-compiled. This quantity represents
the performance improvement gained by selectively using the optimizing compiler (higher numbers indicate
better performance for Best). The speedups range from 1.71 to 8.22 (averaging 3.66) and demonstrate that
runtime optimization can significantly increase performance, even for short running and medium length
programs.

The second to last column compares the Best time to the combined time (comp + exe) when all methods
are opt-compiled. The resulting speedups represent the performance gains that can be achieved by avoiding
optimization of infrequently executed methods (again, higher numbers indicate better performance of Best).
The numbers show that selective optimization is important for the short running programs, averaging 2.70
speedup over optimizing all methods, and is also helpful for the size 100 inputs, averaging speedup of 1.10
(10%). The importance of selective optimization will only increase as more sophisticated optimizations,
requiring more compile time, are added to the optimizing compiler.

The last column of Table 1 compares the Best combined (compilation and execution) time to the ezecution
time only when all methods are opt-compiled. This ratio essentially compares Best against a system in which
compile time is free (as is true for the static compilation model). The numbers are expressed as the additional
overhead incurred by Best, so smaller numbers indicate better performance (less overhead) for Best. Not
surprisingly, 1t is difficult for a selective opt-compilation system to match the performance of a static compiler
for size 10 benchmarks because they only run for a few seconds. The size 100 benchmarks, however, offered
rather encouraging results with an average slowdown of 1.06 (6%).

3.2.1 Sweet Spot

This study uses offline profiling information to determine which methods to opt-compile. An online profiling
technique can benefit from more accurately capturing current information about an application. However,
online profiling may not provide the same accuracy as an offline technique because it must be more efficient
(it runs along side the real application run) and it will not have complete application information. Thus,
one may wonder how closely a technique must estimate the set of actual hot methods that achieve Best in
order to obtain reasonable performance. To address this question, we record the number of collections in
order of method hotness that are within NV percent of the Best combined time. We refer to these collections
as being in the sweet spot for this benchmark. Table 1 provides this information for the following values of
N: 1, 5,10, 25, and 50. The value is expressed as the percentage of all collections within N% of the Best
combined time.

This table quantifies properties that are visually present in the graphs of Figures 1 and 2. For example,
the graph of 213_javac size 10 in Figure 2 shows few points as low as the Best value at point (3, 2.39). This
property is conveyed in Table 2 where the corresponding row (213_javac/10) shows that only 1% of the
x-axis data points are within 50% of the Best combined time. This is in contrast to the graph of 209 _db/100,
where many points seem to come close to the performance of Best. Table 2 shows that 90% of the selections
are within 5% of Best performance. Although the size 100 inputs, in general, were more forgiving than the
size 10 inputs, their 5% sweet spots did vary considerable, 20%—-90%.



Sweet Spot Percentage
Benchmark/Input size 1% [ 5% | 10% | 25% | 50%
201_compress/10 3% 3% 4% 14% 57%
202 jess/10 2% 2% 2% 2% 10%
209.db/10 3% 3% 7% 14% 24%
213_javac/10 1% 1% 1% 1% 1%
222_mpegaudio/10 5% 6% 23% 34% 57%
227 mtrt/10 % 16% 23% 26% 40%
228 jack/10 2% 4% 9% 15% 34%
Average 3.3% 5% 9.9% | 15.1% | 31.9%
201_compress/100 4% 79% 96% 96% 96%
202_jess/100 3% 20% 44% 98% 98%
209-db/100 % 90% 93% 97% 97%
213 javac/100 8% 53% 90% 96% 99%
222_mpegaudio/100 5% 25% 89% 91% 91%
227 _mtrt/100 % 23% 37% 91% 95%
228 jack/100 6% 43% 98% 98% 98%
Average 57% | 47.6% | 78.1% | 95.3% | 96.3%

Table 2: Percentage of x-axis data points that are within N% of Best combined time for N = 1,5, 10, 25, 50.

3.3 Using Profiling as a Predictor for Method Selection

Section 3.2 determined the Best set of methods to opt-compile by observing the timings of many different
executions. In an adaptive compilation system, this decision will be made by observing the profiling informa-
tion and predicting which methods would be the best to optimize. This section investigates the effectiveness
of some simple prediction strategies to determine if there exists a single strategy, for all benchmarks, that
can approach the results of Best. The following predictor strategies are considered:

Num methods: Opt-compile the N hottest methods,
Percent of methods: Opt-compile N% of all application methods (in hotness order),
Time in method: Opt-compile any method that is executed for more than N milliseconds,

Relative time in method: Opt-compile any method that is executed for more than N% of the time of
the hottest method,

Percent profile coverage: Opt-compile enough hot methods (in hotness order) to cover N% of the profiled
execution.

For each prediction strategy a wide range of values for N were explored, with the goal of finding a value
of N which performs well for all of the benchmarks of similar execution time. The value of V that resulted
in the lowest performance degradation from Best, averaged over all benchmarks of that size, was chosen.
The two tables in Figure 3 summarize the results. The two tables are grouped according to input size;
we have found that approximate knowledge of the execution time (size 10 vs. size 100) can improve the
prediction strategy. The first column of these tables lists the benchmark names and input sizes. The next
five columns list the prediction strategies as described above. The line below the column headings gives
the value of N that resulted in the lowest performance degradation above Best. Given this value of N, the



Combined Time Degradation as a Percentage of Best

Num Percent of Time Relative Time Profile

Methods | Methods | in Method in Method Coverage

Benchmark/Input size [50] [11%)] [1250ms] [0.25%)] [98.29%)]
201_compress/10 17.3 11.8 4.0 4.0 4.9
202 jess/10 40.0 47.6 15.1 47.2 50.6
209.db/10 22.8 12.4 6.8 20.0 21.9
213 javac/10 64.4 104.7 81.1 163.1 182.4
222_mpegaudio/10 0.0 4.8 14.4 0.0 0.0
227 mtrt/10 0.0 0.7 1.3 3.6 0.4
228 jack/10 7.5 8.9 9.3 16.4 36.7
Average 21.7 27.3 18.9 36.3 42.4

Combined Time Degradation as a Percentage of Best

Num Percent of Time Relative Time Profile

Methods | Methods | in Method in Method Coverage

Benchmark/Input size [130] [28%)] [40ms] [0.05%)] [99.85%)]
201_compress/100 4.3 2.9 0.2 4.6 4.6
202_jess/100 3.3 4.7 3.0 1.7 4.7
209.db/100 3.3 1.6 1.2 1.4 1.5
213 javac/100 5.5 1.4 0.1 1.9 4.2
222 _mpegaudio/100 0.5 0.2 1.1 7.5 0.1
227 _mtrt/100 1.2 0.2 0.5 16.2 1.9
228 jack/100 3.3 2.8 2.7 2.2 2.1
Average 3.1 2.0 1.2 5.1 2.7

Figure 3: Summary of the effectiveness of predictor strategies

percentage degradation above Best is listed for each benchmark and a selection policy. For example, using
an 11% selection strategy the combined time for 201 _compress/10 degrades 12% from Best. The average
degradation percent is listed in the last line.

“Time in method” seems to be the best of the five prediction strategies, resulting in an average degradation
from Best of 1.2% for size 100, and 18.9% for size 10. In general, all predictors, except “Relative Time in
Method,” worked reasonably well for size 100 (1.2-3.1% average degradation), and not very well for size 10
(18.9-42.4% average degradation). This is most likely not because the location of Best is inherently more
difficult to predict for size 10, but because the sweet spot for size 100 is much more forgiving. For example,
even though the numbers in columns 2 and 3 of Table 1 vary significantly, the predictors “Num methods” and
“Percent of Methods” worked reasonably well for size 100, resulting in 2.0% and 3.1% average degradation,
respectively.

3.4 Discussion

The focus of this study is the selective use of the optimizing compiler as a runtime compiler. Offline profiling is
used to determine what to optimize (to save compile time), but not how to optimize. Dynamic optimizations
that take advantage of up-to-date profiling information to determine how to optimize (such as specializing for
common data or control values) could potentially allow adaptive compilers to outperform static compilers.



In fact, Kistler [21] concluded that his results show that runtime optimization is often better than what can
be achieved at compile time (with or without profiling data).

Unlike in this study, an adaptive optimization system is not required to make all of its optimization
decisions at one time. Thus the predictors presented in Section 3.3 are not the only selection options
available to an adaptive compiler. An intelligent adaptive system could begin by optimizing only a small
part of the application and continue until it is no longer improving performance.

The SPECjvm98 inputs are categorized as small, medium (size 10), and large (size 100), with the longest
running “large” application running for less than one minute in our environment. It appears that adaptive
compilation may be most effective on longer running applications, where the cost of compilation time is
relatively lessened and the possibility of more indicative profiling data is greater. Increasing the compilation
budget can lead to more sophisticated analyses than were used in this study.

4 Related Work

Radhakrishnan et al. [26] used the Kaffe Virtual Machine to establish the maximum performance improve-
ment possible by interpreting, rather than compiling, cold methods. Their experiments show that between
10-15% of execution time can be saved by interpreting cold methods.

Kistler [21] presents a continuous program optimization architecture for Oberon that allows “up-to-
the-minute” profile information to be used in program reoptimization. Kistler concludes that continuous
optimization can produce better code than can be achieved with offline compilation, regardless of whether
profiling information is used in the latter. Optimizations were evaluated by computing :deal performance
speedup, which does not include profile or optimization time. This speedup is used to compute the break
even point: the length of time the application would have to execute to compensate for the time spent
profiling and optimizing.

Holzle and Unger [18] describe the SELF-93 system, an adaptive optimization system for SELF. The goal
of the system is avoid long pauses in interactive applications by optimizing only the performance-critical parts
of the application. Method counters with an exponential decay mechanism are used to determine candidates
for optimization. On average they found an improvement of 160% over a system in which all methods
are optimized. They concluded that their experiments showed that determining the selection mechanism
(“what” to optimize) was less important than determining the trigger mechanism (“when” to optimize).

Bala et al. [7] describe Dynamo, a transparent dynamic optimizer that performs optimizations at runtime
on a native binary. Dynamo initially interprets the program, keeping counters to identify sections of code
called hot traces. These sections are then optimized and written as an executable. The authors report an
average speedup of 7% and an average overhead of 1.4%.

Burger and Dybvig [8, 9] explore profile-driven dynamic-recompilation in Scheme, with an implementation
of a basic block reordering optimization. They report a 6% reduction in runtime and an average recompile
time of 12% of their base compile time.

Hansen [17] describes an adaptive FORTRAN system that makes automatic optimization decisions. When
a basic block counter reaches a threshold, the basic block is reoptimized and moved to the next optimization
state, where more aggressive optimizations are performed.

The HotSpot JVM [20] and the IBM Java Just-in-Time compiler (version 3.0) [27] are adaptive systems for
Java. Both systems initially interpret an application and later compile performance-critical code. The IBM
JIT uses method invocation counters augmented to accommodate loops in methods to trigger compilation.
Details of the HotSpot compilation system are not provided.

Another area of research considers performing runtime optimizations that exploit invariant runtime val-
ues. Because such values are not statically determinable, these systems provide optimization opportunities
not available with static compilation. Some systems include DyC [6, ?, 16] and Tempo [24] (based on C) and
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Fabius [23] (based on ML), as well as Consel and Noel’s work [13] which takes a partial evaluation approach.
The tcc system [25] provides a mechanism to specify and compose arbitrary expressions and statements at
runtime. The main disadvantage of these techniques is that they rely on programmer directives to identify
the regions of code to be optimized.

There are also nonadaptive systems that perform compilation/optimization at runtime to avoid the cost
of interpretation. This includes early work such as the Smalltalk-80 [15] and Self-91 [11] systems, as well
many of today’s JIT Java compilers [1, 22, 30]. The version of the Jalapefio system used in this work is also
in this category, although work is currently underway to make it an adaptive system.

There are also fully automated profiling systems that use transparent profiling to improve performance
of future executions. Such systems include Digital FX!32 [19] and Morph [31]. However, these systems do
not perform compilation/optimization at runtime.

5 Conclusions

This paper described an empirical study of selective opt-compilation using the Jalapeno JVM and the
SPECjvm98 benchmarks. The main conclusions are

e The Best number of methods to opt-compile varies greatly across the benchmarks, ranging from 3 to
320 methods (0-30% of all methods). The percent of the profile covered by the selected methods is
fairly consistent among the size 100 benchmarks, averaging 98.2%.

e The Best selective opt-compilation strategy (counting compilation time) outperformed a no opt-
compilation strategy by a speedup of up to 8.22, (average 3.66), demonstrating that runtime opti-
mization can significantly increase performance.

e The Best selective opt-compilation strategy outperformed an all opt-compilation strategy, averaging a
2.70 speedup for size 10 inputs and a speedup of 1.10 for size 100 inputs.

e The Best selective opt-compilation strategy (counting compilation time) is competitive with the all
opt-compilation strategy when compilation time is excluded, averaging a slowdown of only 1.06 (6%)
on the size 100 benchmarks.

e The “Time in method” prediction strategy seemed to be the best of the five simple prediction strategies
studies, resulting in an average degradation from Best of 1.24% for size 100, and 18.86% for size 10.
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