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Abstract 
 
UPC, or Unified Parallel C, is a parallel extension of ANSI C.  UPC follows a distributed 
shared memory programming model aimed at leveraging the ease of programming of the 
shared memory paradigm, while enabling the exploitation of data locality.  UPC 
incorporates constructs that allow placing data near the threads that manipulate them to 
minimize remote accesses.        
  
This paper gives an overview of the concepts and features of UPC and establishes, 
through extensive performance measurements of NPB workloads, the viability of the 
UPC programming language compared to the other popular paradigms.  Further, through 
performance measurements we identify the challenges, the remaining steps and the 
priorities for UPC.         
 
It will be shown that with proper hand tuning and optimized collective operations 
libraries, UPC performance will be comparable to that of MPI.  Furthermore, by 
incorporating such improvements into automatic compiler optimizations, UPC will 
compare quite favorably to message passing in ease of programming. 
     
 
1. INTRODUCTION 

 
A good programming language should be founded on a good programming model. 
Programming models present the programmer with an abstract machine which allows 
application developers to express the best way in which their application should be 
executed and its data should be handled.   
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Programming models should be sufficiently independent of the underlying  architecture 
for portability, yet they should expose common architecture features to enable efficient 
mapping of the programs onto architectures.  Programming models should remain, 
however, simple for ease of use.   
 
Two popular parallel programming models are the Message Passing Model and the  
Shared Memory Model.  In addition, we advocate the Distributed Shared Memory Model, 
which is followed by UPC.   
 
In the message passing model, parallel processing is derived from the use of a set of 
concurrent  sequential processes cooperating on the same task.  As each process has its 
own private space, two-sided communication in the form of a sends and receives would 
be needed.  This results in substantial overhead in interprocessor communications,  
especially in the case of small messages.  With separate spaces, ease of use becomes 
another concern.  The most popular example of message passing is MPI , or the Message 
Passing Interface.        
 
Another popular programming model is the shared memory model.  The view provided 
by this model is one in which multiple, independent threads operate in a shared space.        
The most popular implementation of this model is OpenMP.  This model is characterized 
by the ease of use as remote memory accesses need not be treated any differently from 
local accesses by the programmers.  As threads become unaware of whether their data is 
local or remote, however, excessive remote memory accesses might be generated.         
 
The distributed shared memory programming model can potentially achieve the desired 
balance between ease of use  and exploiting data locality.  UPC is, therefore, designed as 
an instance of this model.  Under this model, independent threads are operating in a 
shared space.  However the shared space is logically partitioned among the threads.  This 
enables the mapping of each thread and the space that has affinity to it to the same 
physical node.  Programmers can thus declare data that is to be processed by a given 
thread, in the space which has affinity to that thread.  This can be easily achieved in UPC.  
 
Through experimental measurements, this paper will establish the important compiler 
implementations that should take place as the next step of the UPC effort.  In particular it 
will be shown that the availability of an optimized collective communication library is 
crucial to the performance of UPC.  Therefore, the UPC consortium is currently engaged 
in defining and implementing such a library, which can be optimized at low levels.  Other 
optimizations and potential benefits will be also discussed based on the results.   
 
This paper is organized as follows.  Section 2 gives a brief overview of UPC, while 
section 3 introduces the experimental study strategy.  Section 4 presents the experimental 
measurements, followed by conclusions in section 5. 
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2. AN OVERVIEW OF UPC 
 
History and Status 
 
UPC, or Unified Parallel C, builds on the experience gained from its predecessor 
distributed shared memory C languages such as Split-C[Cul93], AC[Car99], and 
PCP[Bro95].  UPC maintains the C philosophy by keeping the language concise, 
expressive, and by giving the programmer the power of getting closer to the hardware.         
These UPC features have gained a great deal of interest from the community.       
Therefore, support for UPC is consistently mounting from high-performance computing 
users and vendors.  UPC is the effort of a consortium of government, industry and 
academia.  Through the work of this community,  the UPC specifications V1.0 were 
produced in February 2001 [ElG01a].  Consortium participants include GWU, IDA, 
DoD, ARSC, Compaq, CSC, Cray Inc., Etnus, HP, IBM, Intrepid Technologies, LBNL, 
LLNL, MTU, SGI, Sun Microsystems, UC Berkeley, and US DoE.  This has translated 
into efforts at many of the vendors to develop and commercialize UPC compilers.  One 
example is the Compaq UPC effort, which has produced a relatively mature product.      
Other commercial implementations that have been just released or underway include 
compilers for SGI O2000, Sun Servers and Cray SV-2.  An open-source implementation 
for the Cray T3E also exists.  There are many other implementations underway.  A total 
view debugger is now available from Etnus, for some of the implementations.       
 
While UPC specifications are the responsibility of the whole UPC consortium, the 
consortium carries out its work through three working groups: low level communication 
libraries, collective operations, and benchmarking and I/O. 
 
 
UPC Model and Basic Concepts 
 
 
 
 
 
 
   
 
 
 
 

Figure 1. The UPC Memory and Execution Model 
 
Figure 1 illustrates the memory and execution model as viewed by UPC codes and 
programmers.  Under UPC, memory is composed of a shared memory space and a private 
memory space.  A number of threads work independently and each of them can reference 
any address in the shared space, but only its own private space.  The total number of 
threads is “THREADS” and each thread can identify itself using “MYTHREAD,” where 
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“THREADS” and “MYTHREAD” can be seen as special constants.  The shared space, 
however, is logically divided into portions each with a special association (affinity) to a 
given thread.  The idea is to make UPC enable the programmers, with proper 
declarations, to keep the shared data that will be dominantly processed by a given thread 
(and occasionally accessed by others) associated with that thread.  Thus, a thread and the 
data that has affinity to it can likely be mapped by the system into the same physical 
node.  This can clearly exploit inherent data locality in applications.          
 
UPC is an explicit parallel extension of ANSI C.  Thus, all language features of C are 
already embodied in UPC.  In addition, UPC declarations give the programmer control 
over how the data structures are distributed across the threads, by arbitrary sized blocks, 
in the shared space.  Among the interesting and complementary UPC features is a work- 
sharing iteration statement known as upc_forall.  This statement can spread independent 
loop iterations across threads based on the affinity of the data to be processed.  This is 
also complemented by the presence of rich private and shared UPC pointers and pointer 
casting ability that offer the sophisticated programmer substantial power.  In addition, 
UPC supports dynamic memory allocation in the shared space.     
 
On the synchronization and memory consistency control side, UPC offers many powerful 
options.  A fact worth mentioning here is that the memory consistency model can be set 
at the level of a  single object, a statement, a block of statements, or the whole program.     
 
Many other rich synchronization concepts are also introduced including non-blocking 
barriers that can overlap synchronization with local processing for hiding synchronization 
latencies.    
 
 
A First UPC Example 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. A UPC Vector Addition 
 
 
Figure 2 shows a short example of a UPC program, a vector addition.  In this example, 
arrays v1, v2 and v1plusv2 are declared as shared integers.  By default they are 

#include <upc_relaxed.h> 
#define N 100 * THREADS 
shared int v1[N], v2[N], v1plusv2[N]; 
 
void main () { 
 
 int i; 
 upc_forall (i = 0; i < N; i ++; &v1[i]) 
  v1plusv2[i] = v1[i] + v2[i]; 
 
} 
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distributed across the threads by blocks of one element each, in a round robin fashion.       
Under UPC, this default distribution can be altered and arbitrary block sizes can be 
utilized.  The UPC work sharing construct “upc_forall” explicitly distributes the 
iterations among the threads.  “upc_forall” has four fields, the first three are similar to 
those found in the “for” loop of the C programming language.  The fourth field is called 
“affinity” and in this case it indicates that the thread which has the v1[i] element should 
execute the ith iteration.  This guarantees that iterations are executed without causing any 
unnecessary remote accesses.  The fourth field of a upc_forall can also be an integer 

expression, e.g. i.  In such a case, thread (i mod THREADS) executes the i
th

 iteration. 
 
 
Data and Distribution 
 
In UPC, an object can be declared as shared or private.  A private object would have 
several instances, one at each thread.  A scalar shared object declaration would result in 
one instance of such object with affinity to thread 0.  The following example shows scalar 
private and shared declarations.  
 
int x;  // x is private, one x in the private space of each thread 
shared int y;         // y is shared, only one y at thread 0 in the shared space 
 
UPC distributes shared arrays by blocks across the different threads.  The general 
declaration is shown below: 
 
 shared [block-size] array [number-of-elements] 

 
When the programmer does not specify a blocking factor, UPC automatically assumes a 
blocking factor of one.  For example if the user declares an array x as shared int 
x[12], UPC would use a blocking factor of 1 and distribute the x array in a round robin 
fashion as shown in figure 3a.  Alternatively, if this declaration were shared[3] int 
x[12], UPC would distribute the array with a blocking factor of 3.  In this case, x will be 
distributed across the shared memory space in three-element blocks across the threads in 
a round robin fashion, see figure 3b.     
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Figure 3. Data layout in UPC 
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b. User defined blocking factor 
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Pointers in UPC 
 
Pointer declarations in UPC are very similar to those of C.  In UPC there are four distinct 
possibilities: private pointers pointing to the private space, private pointers pointing to the 
shared space, shared pointers pointing to the shared space, and lastly shared pointers 
pointing into the private space, see figure 4. 
 
 
 
 
 
            
                                            
 
 
 
 
 
 
 
Consider the following pointer declarations : 
 
int *p1;    // private to private 
shared int *p2;   // private to shared 
int *shared p3;   // shared to private 
shared int *shared p4;   // shared to shared 
 

The first statement declares a private pointer p1, which points to the private space and 
resides in the private space.  We notice that p1 is clearly a typical C pointer.  p2 is a 
private pointer that points to the shared space.  Therefore, each thread has an instant of 
p2.  On the other hand, p4 is a shared pointer pointing to the shared space.  Thus, it has 
one instance with affinity to thread 0.  p3, however, is a shared pointer to the private 
space and therefore should be avoided.     
 
Figure 5 demonstrates where the pointers of the previous example declarations are 
located and where they are pointing.  
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Figure 4. Pointer Table 

Legend : 
 
PP – private to  private 
PS – private to shared 
SP – shared to private 
SS – shared to shared 
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In order to keep track of shared data, a UPC shared pointer (pointer to a shared object) is 
composed of three fields : thread, phase, and virtual address (see figure 6).  The thread 
information clearly indicates the thread affinity of the data item, i.e. to which thread the 
datum has its affinity.  On the other hand, Vadd indicates the block address, and Phase 
indicates the location of the data item within that block.  UPC allows the casting of one 
pointer type to the another.  Casting a shared pointer to a private pointer results in the loss 
of the thread information.  On the other hand, casting a private pointer to a shared pointer 
is not advised and would produce unknown results.  Shared pointers can also have a 
blocking factor to traverse blocked arrays as needed. 
 
 
     
 
 
 
                                Figure 6.  A Shared Pointer Format 
 
 
Dynamic Memory Allocation 
 
Being an ANSI C extension, allocating private memory is already supported in UPC 
under the C syntax.  Shared memory allocation is, however, supported using the UPC 
extensions. 
 
UPC provides three ways to dynamically allocate shared memory.  They are 
upc_global_alloc(), upc_all_alloc(), and upc_local_alloc().     
 
The upc_global_alloc() routine  allocates memory across all the threads and returns one 
pointer to the calling thread.  The syntax for upc_global_alloc() is as follows: 
  
 shared void *upc_global_alloc(size_t nblocks, size_t nbytes) 

Figure 5. UPC Pointer Scenarios 
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upc_global_alloc() is not a collective call.  Be aware that if upc_global_alloc() is called 
by multiple threads, each thread will allocate the amount of memory requested.       If the 
intent is to give all the threads access to the same block of memory, upc_all_alloc() 
should be used instead.     
 
The upc_all_alloc() routine is called by all the threads collectively and each thread is 
returned with the same pointer to memory.  The syntax for upc_all_alloc() is: 
 
 shared void *upc_all_alloc(size_t nblocks, size_t nbytes) 
 
This routine allows the threads easy access to a common block of memory, which could 
be very useful when performing a collective operation.        
 
Finally the upc_local_alloc() routine is provided as a way to allocate local memory to 
each thread.  upc_local_alloc() is not a collective function.  The syntax for 
upc_all_alloc() is: 
 
 shared void upc_local_alloc(size_t nblocks, size_t nbytes) 
 
upc_local_alloc() returns a pointer to the local shared memory.     
 
The upc_free() function is used to free dynamically allocated shared memory space.       
This call is not a collective routine.  In the case of a global shared buffer created by 
upc_all_alloc(), the freeing is only effective when all the threads have completed the 
upc_free() call.     
 
 
Memory Consistency 
 
The adopted memory consistency model determines the order of data accesses in the 
shared space.  Under a strict memory consistency, accesses  take place in the same order 
that would have resulted from sequential execution.  Under a relaxed policy, however, the 
compiler can order such accesses in any way that can optimize the execution time. 
 
UPC provides memory consistency control at the single object level, statement block 
level, and full program level.  Either relaxed or strict mode can be selected.  In the 
relaxed mode, the compiler makes the decisions on the order of operations.  In the strict 
case, sequential consistency is enforced.  Statements including implicit or explicit 
barriers and fences force all prior accesses to complete.   The programmer defines the 
memory consistency behavior, as follows.     
 
At the global level: 
 
#define <upc_relaxed.h>  /* for relaxed consistency */ 
 

#define <upc_strict.h>  /* for strict consistency */ 
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At the statements level: 
 
#pragma upc_strict  /* following statements have strict consistency */ 
 

#pragma upc_relaxed  /* following statements have strict consistency */ 
 
At the object level: 
 
The keyword strict or relaxed can be used when a variable needs to be treated in a 
strict or relaxed manner.  For example, a possible declaration could be: 
 
strict shared int x; 

 
 
Thread Synchronization 
 
Thread synchronization in UPC is facilitated through locks and barriers.  Critical sections 
of code can be executed in a mutually exclusive fashion using locks.  Example lock 
primitives are: 
 
void upc_lock(shared upc_lock *l)   /* grabs the lock */ 
void upc_unlock(shared upc_lock *l)   /* releases the lock */ 
int upc_lock_attempt(shared upc_lock *l)  /* returns 1 on successful lock and 0  
                    otherwise */  
 
In addition to the previous primitives, locks can be also dynamically allocated and 
initialized.   
 
Another commonly used synchronization mechanism is barrier synchronization.  A 
barrier is a point in the code at which all threads must arrive, before any of them can 
proceed any further.   
 
Two versions of barrier synchronization are provided.  In addition to the commonly used 
barriers, that simply ensure that all threads have reached a given point before they can 
proceed, UPC provides a split-phase (non-blocking) barrier.  The split-phase barrier is 
designed to overlap synchronization with computation.  The syntax for the regular barrier 
follows.     
 
upc_barrier;  // regular barrier  
 

For the split-phase barrier, the following pair of statements is used: 
 
Example: 
 

upc_notify;   //  notify others and start local processing 
…    //  local processing 
upc_wait;   // do not proceed until others notify 
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3. EXPERIMENTAL STRATEGY  
 
Testbed  
 
As an experimental testbed, we have used the Compaq AlphaServer SC and the Compaq 
UPC 1.7 Compiler.  The AlphaServer SC has a NUMA architecture.  It is based on the 
AlphaServer ES40, which is a SMP machine with four Alpha EV67 processors.  The 
machine is essentially a cluster of these SMP nodes in which each node has four 
processors and an interconnect. The interconnect is a Quadrics switch with 440Mb/s 
throughput (206Mb/s under MPI) and 6ns latency.  The nodes are connected together 
through the Quadrics switch into a fat tree topology.  The communication hardware 
allows one sided communication with limited software support.  The Compaq 
implementation of UPC takes advantage of this particular communication layer when 
performing remote accesses.[Compaq99] 
 
 
Applications 
 
First, to illustrate how to optimize UPC codes as well as the potential for the UPC 
language, we examined micro-benchmarks based on the stream benchmark as well as the 
Sobel edge detection problem in UPC.   Then, in order to establish the current standing of 
UPC and the remaining steps that need to be taken, we have implemented and presented 
performance measurements for workloads from the NAS Parallel Benchmark (NPB) 
[Bai94].  The UPC implementations were compared against an NPB 2.3 MPI implementation, 
which is written in Fortran+MPI, except for IS which is written in C+MPI. 
 
 
UPC Stream Benchmarks  
 
The STREAM benchmark is a simple synthetic benchmark program that measures 
sustainable memory bandwidth (in MB/s) and the corresponding computation rate for 
simple vector kernels.  The micro-benchmarks used for testing the Compaq UPC 1.7  
compiler was extracted from the STREAM benchmark(e.g. Put, Get and Scale) and 
extended for UPC.  For these synthetic benchmarking experiments, the memory access 
rates are measured and presented in MB/s (1000000 bytes transferred per second).   The 
higher the bandwidth, the better and more complete are the complier optimizations. 
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Sobel Edge Detection  
 
Edge detection has many applications in computer vision, including image registration 
and image compression.  One popular way of performing edge detection is using the 
Sobel operators.  The process involves the use of two masks for detecting horizontal and 
vertical edges.   The west mask is placed on the top of the image with its center on top of 
the currently considered image pixel.  Each of the underlying image pixels is multiplied 
by the corresponding mask pixel and the results are added up, and the sum is squared.  
The same process is applied to the north mask and the square root for the two squared 
sums becomes the pixel value in the edge image.  In parallelizing this application, the 
image is portioned into equal contiguous slices of rows  that are distributed across the 
threads,  as blocks of a shared array.  With such contiguous horizontal distribution, 
remote accesses into the next thread will be needed only when the mask is shifted over 
the last row of a thread data to access the elements of the next row. 
 
 
The NAS Parallel Benchmark Suite    
 
The NAS parallel benchmarks (NPB) is developed by the Numerical Aerodynamic 
simulation (NAS) program at NASA Ames Research Center for the performance 
evaluation of parallel supercomputers.  The NPB mimics the computation and data 
movement characteristics of large–scale computation fluid dynamics (CFD) applications. 
 
The NPB comes in two flavors NPB 1 and NPB 2.  The NPB 1 are the original "pencil 
and paper" benchmarks.  Vendors and others implement the detailed specifications in the 
NPB 1 report, using algorithms and programming models appropriate to their different 
machines.  On the other hand NPB 2 are MPI-based source-code implementations written 
and distributed by NAS.  They are intended to be run with little or no tuning.  Another 
implementation of NPB 2 is the NPB 2-serial; these are single processor (serial) source-
code implementations derived from the NPB 2 by removing all parallelism [NPB].  We 
have therefore used NPB 2 in our MPI execution time measurements.  NPB 2-serial was 
used to provide the uniprocessor performance when reporting on the scalability of MPI.  
 
The NPB suite consists of five kernels (EP, MG, FT, CG, IS) and three pseudo-
applications (LU, SP, BT) programs. The bulk of the computations is integer arithmetic 
in IS.  The other benchmarks are floating-point computation intensive.  A brief 
description of each workload is presented in this section. 
  
BT (Block Tri-diagonal) is a simulated CFD application that uses an implicit algorithm 
to solve 3-dimensional (3-D) compressible Navier-Stokes equations. The finite 
differences solution to the problem is based on an Alternating Direction Implicit (ADI) 
approximate factorization that decouples the x, y and z dimensions. The resulting systems 
are Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension. 
BT uses coarse-grain communications. 
 
SP (Scalar Penta-diagonal) is a simulated CFD application that has a similar structure to 
BT. The finite differences solution to the problem is based on a Beam-Warming 
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approximate factorization that decouples the x, y and z dimensions. The resulting system 
has Scalar Pentadiagonal bands of linear equations that are solved sequentially along each 
dimension. SP uses coarse-grain communications. 
 
LU (Block Lower Triangular) : is a simulated CFD application that uses symmetric 
successive over-relaxation (SSOR) method to solve a seven-block-diagonal system 
resulting from finite-difference discretization of the Navier-Stokes equations in 3-D by 
splitting it into block Lower and Upper triangular systems. LU performs a large number 
of small communications (five words) each. 
 
FT (Fast Fourier Transform): This benchmark solves a 3D partial differential equation 
using an FFT-based spectral method, also requiring long range communication. FT 
performs three one-dimensional (1-D) FFT’s, one for each dimension. 
 
MG (MultiGrid): The MG benchmark uses a V-cycle multigrid method to compute the 
solution of the 3-D scalar Poisson equation.  It performs both short and long range 
communications that are highly structured. 
 
CG (Conjugate Gradient): This benchmark computes an approximation to the smallest 
eigenvalue of symmetric positive definite matrix. This kernel features unstructured grid 
computations requiring irregular long-range communications. 
 
EP (Embarrassingly Parallel): This benchmark can run on any number of processors 
with little communication. It estimates the upper achievable limits for floating point 
performance of a parallel computer. This benchmark generates pairs of Gaussian random 
deviates according to a specific scheme and tabulates the number of pairs in successive 
annuli. 
 
IS (Integer sorting): This benchmark is a parallel sorting program based on bucket sort. 
It requires a lot of total exchange communication. 
 
There are different versions/classes of the NPB like Sample, Class A, Class B and Class 
C.  These classes differ mainly in the size of the problem.  Figure 7 gives the problem 
sizes and performance rates (measured in Mflop/s) for each of the eight benchmarks, for 
Class A and Class B problem sets on a single processor Cray YMP. 
 
 
Targeted Measurements      
 
In this study, a number of issues were taken into account.  First, as UPC itself is an 
extension of ANSI C, it is perhaps a fair assumption that in most cases UPC compiler 
writers start from an already written sequential C compiler.  Given a particular machine, 
the available sequential C compiler (cc) may be very different from the sequential 
compiler that was extended to become UPC.  Another observation that should also be 
taken into account is that the single node performance of a parallel code may be very 
different from that of the sequential code.  In order to account for these differences and 
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their implications, we study the performance of the applications under different 
compilation/execution scenarios such as: 1) sequential code produced by the “CC” 
compiler running serially, 2) Single process execution of code produced by CC+MPI 
and 3) UPC code compiled with UPC compiler and running with a single thread.  In 
addition, measurements that can demonstrate the potential improvement from compiler 
optimizations and hand tuning are shown for the Sobel edge workload.  Two 
optimizations will be demonstrated: space privatization and block prefetching.  Finally, 
hand tuned versions of NPB in UPC are considered along with their MPI counterparts, 
and the respective cost of collection operations.  These are used to show that if such an 
optimized library is made available for UPC, then UPC would have similar performance 
to MPI.    
 
 
 

 

 
 

Benchmark Size  Operations(x103 ) MFLOPS(YMP/1) 
EP 228 26.68 211 
MG 2563 3.905 176 
CG 14,000 1.508 127 
FT 2562  x 128 5.631 196 
IS 223 x 219 0.7812 68 
LU 643 64.57 194 
SP 643 102.0 216 
BT 643 181.3 229 

 
 
 

Benchmark Size  Operations(x103 ) MFLOPS(YMP/1) 
EP 230 100.9  
MG 2563 18.81 498 
CG 75,000 54.89 447 
FT 512 x 2562 71.37 560 
IS 225 x 221 3.150 244 
LU 1023 319.6 493 
SP 1023 447.1 627 
BT 1023 721.5 572 

 
 
    
 
 
 
 
 

b) Class B workloads (Bigger Version) 

Table 1. NPB Problem Sizes 

a) Class A workloads (Smaller Version) 
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4. EXPERlMENTAL RESULTS  
 
Performance measurements 
 
 

Table 2 . UPC Stream Measurements 
 

MB/s Put Get Scale 
CC 400.0 640.0 564.0 

UPC Private 565.0 686.0 738.0 
UPC Local 44.0 7.0 12.0 

UPC Remote 0.2 0.2 0.2 
MB/s Block Put Block Get Block Scale 
CC 384.0 384.0 256.0 

UPC Private 369.0 369.0 253.0 
UPC Local 150.0 300.0 145.0 

UPC Remote 146.0 344.0 155.0 
                                    

 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Sobel Edge Detection 

 
 

Table 2  is based on a synthetic micro-benchmark, modeled after the stream benchmark, 
which measures the memory bandwidth of different primitive operations (put and get) 
and the bandwidth generated by a simple computation, scale.  These measurements 
clearly demonstrate that UPC local accesses are 1 or 2 orders of magnitude faster than 
UPC remote accesses.  This shows that UPC achieves its objective of much better 
performance on local accesses, and the value of the affinity concept in UPC.  However, 
these accesses are also 1 to 2 orders of magnitude slower than private accesses.  This is 
mainly due to the fact that UPC compilers are still maturing and may not automatically 
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realize that local accesses can avoid the overhead of shared address calculations.   This 
implies that one effective compiler optimization would be the ability to automatically 
recognize whether a shared data item is local or remote.  If local, it can be treated as 
private, thereby avoiding unnecessary shared address translation.  The powerful pointer 
features of UPC, allow this to be directly implemented also by programmers as a hand 
tuning, by casting the shared pointer to a private one.  Performance of remote accesses 
are also shown in table 2.  They suggest that prefetching, specially block prefetching as 
seen from the measurements is another critical automatic complier optimization.  The 
UPC language features block puts and gets.  These can be alternatively used to 
accomplish the same benefit through direct hand tuning.      
 
Figure 7 considers the performance of edge detection on the Compaq AlphaServer SC.  
In this figure, O1 indicates the use of private pointers instead of shared pointers, while 
O2 indicates the use of block get to mimic the effect of prefetching.  The figure shows 
substantial scalability increase when these hand tunings are introduced.  In particular, it 
can be concluded that treating local accesses as private and block prefetching are two 
important compiler optimizations and must be incorporated in UPC compiler 
implementations.  Considering the case and measurements of figure 7, such optimizations 
improved scalability by a factor of two and achieved linear scaling.   
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b) 

Figure 8. Sequential execution time for NAS parallel benchmark suite workloads  
with different levels of compiler optimizations 

 
Figure 8 demonstrates how variable the performance in uniprocessor execution time is.        
This variability depends on the specific compiler front-end used, the specific optimization level 
and the associated overhead with a given machine implementation.  In some of the cases, it 
should be also noted that the performance of C and Fortran was quite different.  In case of EP, 
figure 8a, with all optimizations turned on, Fortran was slightly more than twice as fast as C, 
while in the case of FT, figure 8b, Fortran was faster by roughly 20%.  Similar variability was 
noticed in the case of the other workloads as well.  The scalability was, therefore, reported in 
the next set of figures based on the sequential behavior of the serial code compiled with the 
options that can produce the best performing sequential execution, cc –O3 –g0 in case of UPC 
and f77 –O3 –g0 in case of Fortran.        
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Figure 9. Parallel Performance of EP in UPC and MPI 
 

FT - Class A - Computation Time

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

Number of Processors

C
om

pu
ta

tio
n 

T
im

e 
(s

)

FT-UPC FT-MPI FT-Collective UPC FT-Collective MPI  
a) 

 

FT - Class A - Scalability

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

Number of Processors

S
pe

ed
 U

p

FT-UPC FT-MPI Linear  
b) 

Figure 10. Parallel Performance of FT in UPC and MPI 
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Figure 11. Parallel Performance of IS in UPC and MPI 
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MG - Class B - Computation Time
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Figure 12. Parallel Performance of MG in UPC and MPI 
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Figure 13. Parallel Performance of CG in UPC and MPI 
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Figure 14. Parallel Performance of SP in UPC and MPI 



 18 

BT - Class B - Computation Time
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Figure 15.  Parallel Performance of BT in UPC and MPI 

 
 
Figures 9–15  report the performance measurements for NPB workloads in both UPC and 
MPI.  Part a in each figure shows the timing of the respective workload under both UPC 
and MPI, as well as the time spent in collective operations.  Part b in each of these figures 
show the corresponding scalability for both UPC and MPI cases, with respect to the pure 
C or pure Fortran code.  The UPC codes are hand optimized by converting all local 
shared accesses to private accesses.  One unaccounted-for optimization is that of 
implementing and optimizing collective operations at the communication fabric level.  
This is because, the collective operations specifications of UPC are still under 
development and their implementations are expected soon after.  This is clearly the case 
for the used architecture where collective operations in UPC are implemented at the high 
level language while for MPI collective operations are optimized and implemented at the 
switch API level.  Therefore, the time for collective communication is measured 
separately for both UPC and MPI.   
 
Figures 9–15  provide adequate support to the proposition that UPC will perform similar 
to MPI if implementation qualities were similar.  First, in workloads that are demanding 
in collective operations, such as FT, IS and CG (figures 10, 11, and 13), the cost of 
collective operations in part a of these figures is quite higher in UPC.  This is because in 
UPC, collective operations are expressed at the UPC language syntax level.  In case of 
MPI, however, collective operations are separate calls that are optimized by vendors, as 
previously mentioned.  Close examination of the cost of such operations as shown in part 
a  of figures 10, 11, and 13, shows that such cost is roughly equal to the time difference 
between executing the UPC and the MPI codes. 
 
In SP and BT, figures 14 and 15 respectively, those differences between UPC and MPI 
are clearly smaller.  This is due to the lower need of collective calls in these workloads. 
 
EP and MG, figures 9 and 12, have low collective operation requirements, yet they are 
showing differences in performance.  This only indicates that other performance factors 
do exist.  Some of such factors are language and implementation dependent.  Recall for 
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example the performance differences between the sequential Fortran and C 
implementations, figure 8. 
 
The performance measurements have simply shown that UPC can perform at similar 
levels to those of MPI when problems in implementations are accounted for.  Thus, if a 
collective operation library for UPC  is specified and implemented at the same low level, 
UPC can have a performance similar to that of MPI.  Potentially, with the small overhead 
of UPC, for example in the case of short remote transactions, some UPC implementations 
may outperform current paradigms such as MPI on given architectures.  Other automatic 
compiler optimizations such as space privatization and block prefetching will avoid 
programmers the effort of hand tuning, thus making programming easier.   
 
One extension of the thread-based space privatization optimization, which makes a thread 
treats its local shared space as private, is the SMP space privatization.  In this case 
multiple threads that are mapped into the same node can treat each other’s local shared 
space as private.  This is an interesting feature, but is of less importance than thread based 
space privatization.  The reason for this is that through the concept of affinity, the 
programming model enables thread based locality exploitation, rather than SMP based 
locality exploitation.  In addition, as thread based privatization is more tied to the 
language, it can be efficiently exploited at compile time.  Exploiting SMP based locality 
is more tied however to the system and may require run-time support that could increase 
overhead.        
 
 
5. CONCLUSIONS 
 
While UPC compilers are maturing, a combination of hand tuning and optimized 
collective operations library can enable UPC codes to perform at levels similar to those of 
the current paradigms.  In fact, given the added programmer’s control over data 
placements and executions, it is conceivable to believe that for many applications and 
architectures UPC can  outperform current paradigms.       
 
As compilers mature and provide more automatic optimizations, UPC would become 
substantially easier to use as compared to existing parallel languages and tools, while 
maintaining a high-level of performance.     
 
These observations define the next steps that need to be taken by the UPC community.        
In specific there is a need to approach the next stage of the UPC development with two 
parallel efforts.  One that emphasizes more optimized libraries and hand tuning methods, 
while the other explores and exploits more aggressive automatic compiler optimizations.   
 
In general, UPC compiler optimizations should focus on space privatization for local 
shared accesses, block prefetching of remote data, and low level optimized 
implementation of collective operation libraries.  When all these optimizations are 
implemented efficiently, UPC may outperform current parallel programming paradigms 
in performance and ease of use.   
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APPENDIX A: UPC QUICK REFERENCE GUIDE 

 
 
UPC Keywords 
 
THREADS: Total number of threads. 
 
MYTHREAD: Identification number of the current thread (between 0 and THREADS-1). 
 
UPC_MAX_BLOCK_SIZE: Maximum block size allowed by the compilation environment. 
 
Shared variable declaration 
 
Shared objects 
 
The shared variables are declared using the type qualifier “shared”.  The shared objects 
have to be declared statically (that is either as global variables or with the keyword 
static). 
 
Example of shared object declaration: 
 
shared int i; 
shared int b[100*THREADS]; 
 
The following will not compile if you do not specify the number of threads: 
shared int a[100]; 
 

All the elements of a in thread 0: 
shared [] int a[100]; 
 
Distribute the elements in a round robin fashion by chunks of 2 
elements: all the elements of a in thread 0; a[2] and a[3] in 
thread 1 …: 
shared [2] int a[100]; 
 
 

Shared pointers 
 
Private pointer to shared data: 
 
shared int *p; 
 
Shared pointer to shared data: 
 
shared int* shared sp; 
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Work sharing 
 
Distribute the iterations in a round-robin fashion with wrapping from the last thread to the 
first thread: 
upc_forall(i=0; i<N; i++; i) 
 
Distribute the iterations by consecutive chunks: 
upc_forall(i=0; i<N; i++; i*THREADS/N) 
 
The iteration distribution follows the distribution layout of a: 
upc_forall(i=0; i<N; i++; &a[i]) 
 

 
Synchronization 
 
Memory consistency 
 
Define strict or relaxed consistency model for the whole program. 
#include “upc_strict.h” or “upc_relaxed.h” 

 
Set strict memory consistency for the rest of the file: 
#pragma upc strict 

 
Set relaxed memory consistency for the rest of the file: 
#pragma upc relaxed 

 
All accesses to i will be done with the relaxed consistency model: 
shared relaxed int i; 
 

All accesses to i will be done with the relaxed consistency model: 
relaxed shared int i; 
 

All accesses to i will be done with the strict consistency model: 
strict shared int i; 
 
Synchronize locally the shared memory accesses; it is equivalent to a null strict reference. 
upc_fence; 
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Barriers 
 
Synchronize globally the program: 
 
upc_barrier [value];  

The value is an integer. 
// Before the barrier 
    upc_notify [value]; 
// Non-synchronized statements 
   relative to this on-going barrier 
    upc_wait [value]; 
// After the barrier 
 
 
UPC operators 
 
upc_threadof(p)  : thread having affinity to the location pointed by p 
upc_phaseof(p)    : phase associated with the location pointed by p 
upc_addrfield(p): address field associated with the location pointed by p 
 
 
Dynamic memory allocation 
 
3 different memory allocation methods are provided by UPC: 
 

upc_local_alloc(n, b): allocates nxb bytes of shared data in the calling thread only. It 
needs to be called by one thread only. 
 
upc_global_alloc(n, b): globally allocates nxb bytes of shared data distributed across 
the threads with a block size of b bytes. It needs to be called by one thread only. 
 
upc_all_alloc(n, b): collective allocates nxb bytes of shared data distributed across 
the threads with a block size of b bytes. It needs to be called by all the threads. 
 
upc_free(p): Frees shared memory pointed to by p from the heap. 
 
 
String functions in UPC 
 
Equivalent of memcpy : 
 
upc_memcpy(dst, src, size)  : copy from shared to shared 
upc_memput(dst, src, size)   : copy from private to shared 
upc_memget(dst, src, size)  : copy from shared to private 
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Equivalent of memset:  
upc_memset(dst, char, size) : initialize shared memory with a character 
 
 
Locks 
 
// static locks 
{ 

static shared upc_lock_t l; 
 
upc_lock_init(&l); 

 
//… 
upc_lock(&l); 
// protected section 
upc_unlock(&l); 

} 
 

// Dynamic lock globally allocated 
{ 

shared upc_lock_t* l; 
 

if (MYTHREAD==3) 
 l = upc_global_lock_alloc (); 
} 
 
// Dynamic lock collectively allocated 
{ 

shared upc_lock_t* l; 
 

l = upc_all_lock_alloc(); 

} 
 
 
General utilities 
 
Terminate the UPC program with exist status: 

upc_global_exit(status); 



 26 

 

APPENDIX B: COMPILING AND RUNNING UPC 
 

 
Compiling and Running on Cray 
 
To compile with a fixed number (4) of threads: 

upc –O2 –fthreads-4 –o myprog myprog.c 

To run the program: 

./myprog 

 
Compiling and Running on Compaq 
 
To compile with a fixed number of threads and run: 

upc –O2 –fthreads 4 –o myprog myprog.c  

prun ./myprog 

To compile without specifying a number of threads and run: 

upc –O2 –o myprog myprog.c 

prun –n 4 ./myprog 

 
Compiling and Running on SGI 
 
To compile without specifying a number of threads and run: 

upc –o2 myprog myprog.c 

./myprog  

 

Note: GNU-UPC version 1.8, automatically allocates resources to its processors, 
specifying the  number of threads may not result in optimal allocation. 

 

    


