
The Liberty Structural Specification Language: A
High-Level Modeling Language for Component Reuse

Manish Vachharajani Neil Vachharajani David I. August

Departments of Computer Science and Electrical Engineering
Princeton University
Princeton, NJ 08544

{manishv, nvachhar, august }@princeton.edu

ABSTRACT
Rapid exploration of the design space with simulation models is
essential for quality hardware systems research and development.
Despite striking commonalities across hardware systems, design-
ers routinely fail to achieve high levels of reuse across models
constructed in existing general-purpose and domain-specific lan-
guages. This lack of reuse adversely impacts hardware system de-
sign by slowing the rate at which ideas are evaluated. This paper
presents an examination of existing languages to reveal their funda-
mental limitations regarding reuse in hardware modeling. With this
understanding, a solution is described in the context of the design
and implementation of the Liberty Structural Specification Lan-
guage (LSS), the input language for a publicly available high-level
digital-hardware modeling tool called the Liberty Simulation En-
vironment. LSS is the first language to enable low-overhead reuse
by simultaneously supporting static inference based on hardware
structureand flexibility via parameterizable structure. Through
LSS, this paper also introduces a new type inference algorithm and
a new programming language technique, calleduse-based special-
ization, which, in a manner analogous to type inference, customizes
reusable components by statically inferring structural properties
that otherwise would have had to have been specified manually.

Categories and Subject Descriptors
I.6.2 [Simulation and Modeling]: Simulation Languages;
I.6.5 [Simulation and Modeling]: Model Development—Model-
ing methodologies

General Terms
Design, Languages

Keywords
Liberty Simulation Environment (LSE), Liberty Structural Specifi-
cation (LSS), component reuse, simulator construction, structural
modeling, type inference, use-based specialization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

1. INTRODUCTION AND MOTIVATION
In digital hardware design, early design decisions significantly

impact the overall quality of the system produced. Current ana-
lytical models fail to provide guidance due to the complexity of
these systems. Producing and measuring candidate hardware pro-
totypes to test these early design decisions is prohibitively expen-
sive. As a result, designers turn to high-level (e.g. microarchitec-
tural level) software simulation models for feedback in iteratively
refining these critical early design decisions.

The quality of the resulting high-level design is directly related to
the rate at which high-level design candidates can be explored. Just
as reuse in software development significantly improves program-
mer efficiency, reuse in high-level design modeling reduces model
specification time, dramatically increasing the exploration rate of
design candidates. Reuse here is particularly attractive because
high-level hardware design exploration is replete with opportunities
to employ it; many behaviors such as arbitration and queuing, are
extremely common in a wide range of hardware systems, and other
common structures exist among designs within an exploration. Un-
fortunately, current modeling systems either do not support reuse
or require significant effort to achieve reuse, negating any poten-
tial benefits. Consequently, model construction and modification
times when using these systems is on the order of months to years,
severely limiting the range of alternatives explored in the early de-
sign phases and negatively impacting final design quality [4, 15].

In the general purpose microprocessor research and design com-
munity, manually coding a simulator in a sequential programming
language such as C or C++ is the most common method of high-
level modeling1. This method does not allow component-based
reuse because the notion of a hardware component does not map
well to any type of modular block in C or C++ [17].

Concurrent-structural modeling tools present an alternative by
modeling hardware components with concurrently executing soft-
ware components that communicate through statically connected
communication channels. Since this modeling paradigm matches
the structural composition and concurrent processing of hardware
components, component-based reuse becomes a possibility [17].
These systems fall into two categories, static concurrent-structural
systems and structural object oriented programming (OOP) sys-
tems. Unfortunately, as will be described in this paper, the spec-
ification style in each of these systems forces a trade-off between
ease of building reusable components and ease of using reusable
components. In both cases, the difficulties in building and using
reusable components discourage reuse in practice.

1In the 30th International Symposium on Computer Architecture at
FCRC, at least 23 of 37 papers used this simulation technique.

195

block1

block2

block3

addblock z

y

x
input1

input2

output

(a) Structural Addition

...
/* Instantiate adder */
instance addblock:adder;

/* Connect ports */
block1.x -> addblock.input1;
block2.y -> addblock.input2;
addblock.output -> block3.z;

(b) Structural Code

component adder {
...
void compute() {

int x, y, z;
x = receive(input1);
y = receive(input2);
z = add(x,y);
send(output, z);

}
}

(c) Behavioral Code

Figure 1: Structural specifications.

In this paper, we present a hybrid model specification style that
allows easy constructionand easy use of flexible, reusable com-
ponents. This paper also presents the design and implementation
of the Liberty Structural Specification Language (LSS), a high-
level hardware modeling language that uses this hybrid specifica-
tion style. This style opens the door to techniques that were pos-
sible, but of limited utility, in static structural systems and use-
ful, but unimplementable, in structural-OOP systems. This paper
presents the implementation of two such techniques used in LSS:
structural type inference in the presence of both component over-
loading and parametric polymorphism anduse-based specializa-
tion, a new technique to further reduce the overhead in using flex-
ible components. These techniques required the development of a
novel algorithm for type inference and unique evaluation semantics
for use-based specialization.

The remainder of the paper is organized as follows. Section 2
provides an overview of high-level concurrent structural modeling.
Section 3 identifies key attributes for fully supporting component-
based reuse and surveys existing modeling systems to identify which
attributes are missing. Sections 4, 5, and 6 describe the design of
the LSS language, including implementation challenges and solu-
tions to these challenges. Section 7 summarizes our experience
with the LSS language, emphasizing the applicability of techniques
described in this paper. Section 8 discusses related work, and Sec-
tion 9 concludes the paper.

2. CONCURRENT-STRUCTURAL MODELS
Concurrent-structural systems, in general, are those systems in

which computation is encapsulated in concurrently executing sys-
tem components that communicate values to one another by send-
ing and receiving data on a predefined communication network.
Typically, each component defines a set of input and output ports
and continuously computes its outputs given the current values of
its inputs and internal state. Components whose input ports are con-
nected to a particular output port receive the value sent on it and
accordingly update their internal state and outputs. Synchronous
digital hardware, where state update is synchronized to a global
clock, is an example of a concurrent-structural system. Concurrent-

Static Structural Object Oriented
Capability Theory Practice Theory Practice
Parameters yes yes yes yes
–Structural yes yes
–Algorithmic yes yes yes yes
Polymorphism yes yes yes yes
–Parametric yes yes yes
–Overloading yes yes
Static Analysis yes yes
Instrumentation yes yes

Table 1: Capabilities of existing methods and systems.

structural modeling systems are the most natural way to model such
hardware and are often used for this purpose. Figure 1a shows a
structural model that adds two numbers together. Figure 1b shows
a possible textual description of the structural model.

In high-levelconcurrent-structural models, the focus of this work,
the primitive components’ port I/O relation (e.g. the function that
the adder component will compute) is specified using conven-
tional function-invocation based code. Despite the use of function-
invocation codewithin a particular component, communicationbe-
tweencomponents occurs structurally. This distinction clearly sep-
arates functionality and communication, a hallmark of concurrent-
structural systems. Continuing the earlier example, Figure 1c shows
a possible description of theadder component’s behavior.

3. REUSE IN EXISTING METHODS
High-level concurrent-structural modeling languages should have

certain capabilities to fully support component-based reuse. These
languages should support:

Parameterizable Components -the ability to customize compo-
nent properties with parameters. Example: a cache component
whose replacement policy can be selected from an enumerated
set of predefined policies.
Structural Customization - the ability to customize hierarchi-

cal structure with parameters. This allows existing compo-
nents to be reused hierarchically to create aflexible com-
ponent. Example: customizing the mix of functional units
and bypass connection specification in a structurally speci-
fied reusable CPU core.

Algorithmic Customization - the ability to inherit and augment
the behavior of an existing component with an algorithm.
Example: customizing arbitration logic inside a bus arbiter
component.

Polymorphism - the ability to support reuse across types.
Parametric Polymorphism - the ability to create and use com-

ponent models in a datatype independent fashion. Exam-
ples: queues, memories, and crossbar switches that support
all types.

Component Overloading -the ability for a component’s im-
plementation to be automatically selected from a family of
implementations that support different datatypes. Note that
function overloading, in whichargumenttypes select a func-
tion’s implementation, differs from component overloading,
whereport and connectiontypes select a component’s im-
plementation. Example: An ALU with an implementation
family that operates on integer and floating point numbers.

Static Model Analysis -the ability to analyze the model for op-
timization and user convenience. Example: type inference to
resolve polymorphic port types.

Instrumentation - the ability to insert probes into a model without

196

gen

out

delays[0]

outin outin

delays[1]

outin

delays[2] hole

in

delayn

Figure 2: Block diagram of a 3-stage delay chain specification.

modifying the internals of any component. This allows models
to be reused to satisfy different data collection needs. Examples:
instrumentation for performance measurement, debugging, or
visualization.

The following two subsections relate the above abilities to two
existing modeling methodologies: static structural modeling and
structural modeling in OOP. This analysis will identify desirable
features and highlight potential pitfalls present in these methods.
The insight gained will guide the design of the LSS language pre-
sented in the remainder of this paper. Table 1 can be used as a
reference during the discussion.

3.1 Static Structural Modeling
Static structural modeling systems are concurrent-structural mod-

eling systems which statically describe a model’s overall structure.
Models in these systems are often netlists of interconnected com-
ponents augmented with component parameterizations, and typi-
cally these tools have drag-and-drop graphical user interfaces to
construct models. An example of such a tool is Ptolemy II with the
Vergil interface [7].

These systems support many of the features described above.
Components typically export parameters so that they can be cus-
tomized. Depending on the underlying language used to implement
the components, inheritance may allow algorithmic customization.
Some systems support polymorphism [7] and type inference to re-
solve the polymorphism [20]. Models could even be instrumented
using aspect-oriented programming (AOP) [8] to weave instrumen-
tation code into the structure of the described model.

Unfortunately, the fact that these specifications are static im-
plies a fundamental limitation of static structural modeling systems.
Consider the structure shown in Figure 2. In static structural sys-
tems, one would explicitly instantiate the three blocks within the
dotted box in the figure. However, this chain of blocks could not
be wrapped into a flexible hierarchical component where the length
of the chain is a parameter since static structural systems provide
no mechanism to iteratively connect the output of one block to the
input of the next a parametric number of times. As a result, to
permit flexibility, this simple hierarchical design would have to be
discarded in favor of a more complex implementation of a primitive
component. Implementing the primitive component for this simple
example may not be difficult, but in more complex examples, such
as controlling the mix of functional units in a processor model, im-
plementation of a monolithic primitive component would be over-
whelming. Note that some static structural modeling systems may
provide idioms for common patterns, such as chained connections.
However, the fundamental lack of general mechanisms to paramet-
rically and programmatically control model structure still remains.

3.2 Structural Modeling in OOP
A promising concurrent-structural modeling approach, such as

the one taken by SystemC [11], which allows flexible primitiveand
hierarchical components is to augment an existing OOP language
with concurrency and a class library to support structural entities
such as ports and connections. Objects take the place of compo-

1 class delayn {
2 public InPort in;
3 public OutPort out;
4
5 Delay[] delays;
6 delayn(int n) {
7 int i;
8
9 in=new InPort();

10 out=new OutPort();
11
12 delays=new Delay[]();
13 in.connect(delays[0].in);
14 for(i=0;i<n-1;i++) {
15 delays[i].out.connect(delays[i+1].in);
16 }
17 delays[n-1].out.connect(out);
18 }
19 };

Figure 3: Structural OOP pseudo-code for an n-stage delay
chain.

nents, and simulator structure is created at run-time by code that
instantiates and connects these objects.

The basic features of object-oriented languages provide many
of the capabilities described at the beginning of Section 3. Ob-
ject behavior can be customized via instantiation parameters passed
to class constructors. Algorithmic customization is supported via
class inheritance. If the OOP language and the added structural
entities support parametric polymorphism then type-neutral com-
ponents can be modeled as well.

Since component instantiation and connection occur at run time,
the OOP language’s basic control flow primitives (i.e. loops, if
statements, etc.) can be used toalgorithmicallybuild the structure
of the system. This code can be encapsulated into an object and the
internal structure can easily be customized by structural parameters
thus producingflexiblehierarchical components. For example, the
n-cycle delay component (Figure 2) seen in the last section could
be built by composingn single-cycle delay components as shown
in the pseudo-code in Figure 3.

Unfortunately, run-time composition of structure provides com-
ponent flexibility by precluding static analysis of model structure.
This makes using these flexible components cumbersome. For ex-
ample, any parametric polymorphism must be resolved via explicit
type instantiation by the user since the constraints used in type in-
ference are obtained from the model’s structure which is unavail-
able at compile time. Ideally, connecting the output of a floating
point register file to an overloaded ALU would automatically se-
lect the ALU implementation which handles floating point data.
However, this component overloading is not possible since the user
must codify the particular ALU implementation in the instantia-
tion statement rather than the compiler automatically determining
this based on connectivity. Additionally, parameters controlling the
extent of all port arrays must be specified explicitly by the user
rather than the compiler automatically inferring these extents from
their connectivity. Finally, implementing instrumentation that is or-
thogonal to machine specification is at best cumbersome. Powerful
techniques, such as aspect-oriented programming cannot be used
since the desired join points (locations where instrumentation code
should be inserted) are often parts of the model structure which is
not known until run time.

4. THE LSS LANGUAGE
The modeling methodologies discussed in Section 3.1 and Sec-

tion 3.2 possessed many of the capabilities necessary for reuse in

197

LSS
Interpreter Analysis

Engine

Static Code
Generator

typed
netlistLSS

Specification
Executable
Simulator

Component Library

netlist

LSS Compiler

LSS
Module

Description

Component
Runtime
Behavior

Figure 4: Overview of LSS based compilation.

a concurrent-structural modeling tool. Unfortunately, those sys-
tems forced a trade-off between the ability to algorithmically con-
trol structure and the ability to statically analyze it. The Liberty
Structural Specification Language (LSS) is a language designed
to specify structure of concurrent-structural systems that obviates
this trade-off by combining the desirable attributes of both existing
methodologies.

To allow algorithmic specification of structure, LSS possesses
common imperative control flow constructs in addition to its struc-
tural modeling constructs. Using these constructs, a model’s struc-
ture can be built using code similar to that in Figure 3. However,
unlike modeling in OOP, the LSS code can be executed atcom-
pile timesince the LSS code only describes the model’s structure
andnot its run-time behavior. Since the LSS code is executed at
compile time, the model’s structure is still known statically and
therefore can be used for analysis.

Figure 4 shows this LSS compilation process. In the first phase
of compilation, the LSS specification undergoes interpreted exe-
cution to build a netlist that represents the static structure of the
model. Once the netlist is generated, various static analyses are
performed on the netlist. In the current implementation of the LSS
compiler, these analyses include structure-based type inference, de-
scribed in Section 5, and static concurrency scheduling [12]. Fi-
nally, after static analysis, the code generator combines the netlist
with the leaf (i.e. not hierarchical) component behavior specifica-
tions, applies non-structural customizations to these behaviors, and
emits an executable simulator binary. We refer to the language in
which the leaf module behaviors are specified as the behavior spec-
ification language (BSL)2.

This section describes the LSS language and its features that
support all the desired capabilities listed in Section 3. Addition-
ally, this section will describe enough about the language so that
later sections can discuss the LSS type inference problem and the
implementation of a novel technique, called use-based specializa-
tion, for parameter value inference. Note, since LSS was designed
for algorithmic specification of structure, the design decisions for
some features differ from those made in traditional programming
languages. These design decisions and their implications will be
discussed throughout this section.

4.1 LSS Modules
In LSS, components are created from component templates, anal-

ogous to classes in structural OOP modeling, calledmodules. The

2LSS is independent of the BSL, but a component written in LSS
for a particular BSL is not necessarily compatible with another
component written in LSS for another BSL. As a consequence of
this independence, discussion of BSL details is beyond the scope
of this paper.

1 module delay {
2 parameter initial_state = 0:int;
3 inport in:int;
4 outport out:int;
5
6 tar_file="corelib/delay.tar";
7
8 // BSL specific parameters here
9 };

Figure 5: An LSS module declaration for a leaf delay element.

1 instance d1:delay;
2 instance d2:delay;
3 ...
4 d1.initial_state = 1;
5 d1.out -> d2.in;
6 ...

Figure 6: A sample use of thedelay module.

body of an LSS module specifies the component’s parameteriza-
tion interface, communication interface, and constructor. There are
two types of modules in LSS. The first,leaf modules, are simple
modules defined without composing behavior from other modules.
The second,hierarchical modules, are more complex modules ob-
taining their behavior through the composition and customization
of existing components. The next few sections will describe leaf
and hierarchical modules and their parameterization.

4.1.1 Leaf Modules
Figure 5 shows the declaration of a leaf module nameddelay .

Line 2 in the figure declares a parameter namedinitial state
with typeint and assigns the parameter a default value of0. Mod-
ule parameters can be set by the user when instantiating a module
to customize its behavior. These parameter values are forwarded to
the BSL code so they can be used to customize module behavior.

Lines 3 and 4 define the communication interface of the module.
These two lines define an input port namedin and an output port
namedout . The computation which links the data received on port
in to the data produced on portout is specified externally in leaf
modules. The value in the internal parametertar file (shown
on Line 6 of the figure) tells the code generator where to find the
run-time behavior for instances of this module. Note that internal
parameters, unlike module parameters, cannot be overridden by a
user of the module.

Figure 6 shows an example of instantiating and parameterizing
the delay module. Lines 1 and 2 each instantiate thedelay
module to create module instances namedd1 andd2 respectively.
Line 4 gives theinitial state parameter on instanced1 the
value1. Line 5 of Figure 6 connects the output ofd1 to the input
of d2 . Notice that theinitial state parameter on instance
d2 is not set. When such assignments are omitted, the parameter
takes on its default value as defined in the module body (Line 2 of
Figure 5).

Notice from the figures that parameters in LSS are referenced
nominally and can be specifiedafter the instantiation statement (e.g.
initial state is referenced on Line 4 of the figure) rather than
in a positional argument list as part of the instantiation statement.
These choices were made because flexible modules typically have
many parameters. Nominal parameter references clarify models
since parameter names describe the parameter’s purpose better than
position in an argument list. Similarly, flexible placement of pa-
rameter assignment allows groups of related parameter assignments

198

3’

4’

4

31’

2’ 2

1

Component A

Component B

Component C

Figure 7: Hierarchical component composition.

1 module delayn {
2 parameter n:int;
3
4 inport in:’a;
5 outport out:’a;
6
7 var delays:instance ref[];
8 delays=new instance[n](delay,"delays");
9

10 var i:int;
11
12 in -> delays[0].in;
13 for(i=1;i<n;i++) {
14 delays[i-1].out -> delays[i].in;
15 }
16 delays[n-1].out -> out;
17 };

Figure 8: A LSS module declaration for an n-stage delay chain.

for different module instances to be co-located rather than scattered
based on module instantiation location. Both features make using
flexible components (i.e. those with many parameters) easier, en-
couraging their construction and use.

4.1.2 Hierarchical Modules
In addition to leaf modules, LSS supports the creation of com-

plex modules by composing the behavior of existing modules into
new hierarchical modules. Hierarchical modules, just like leaf
modules, define a parameterization and communication interface
by defining ports and parameters. However, unlike leaf modules,
the behavior of the module is specified by instantiating modules
and connecting these instances to the module’s input and output
ports (see Figure 7). Recall that allowing parameters to control the
structure of these modules was a requirement outlined in Section 3.
To allow this, LSS uses imperative control flow constructs to guide
the sub-component instantiation, parameterization, and connection.

To understand how these features work together, consider the
LSS code shown in Figure 8. (Note that this is the LSS version of
the pseudo-code shown in Figure 3.) This code defines a module
that models an arbitrary depth delay pipeline built using single-
cycle delay modules. The moduledelayn declares a single pa-
rametern (Line 2) that controls the number of stages in the pipeline.
The parametern is a structural parameter; anywhere after this dec-
laration, the body of the module can read this parameter to guide
how subinstances will be created, connected, or parameterized.

Line 7 and 8 create an array of instances of thedelay module
that will be nameddelays in the BSL. Notice that the length of
the array (the value enclosed in brackets on Line 8 of the figure) is
controlled by the parametern.

Lines 12 through 16 connect thedelay instances in a chain as
shown forn=3 in Figure 2. Notice how the general purpose C-like
for-loop causes the length of the connection chain to vary with the
parametern. Also, notice that while the C-like for-loop was able to

1 instance gen:source;
2 instance hole:sink;
3 instance delay3:delayn;
4
5 delay3.n=3;
6
7 gen.out -> delay3.in;
8 delay3.out -> hole.in;

Figure 9: LSS specification of a 3-stage delay pipeline.

capture a parameterized idiomatic connection pattern in this exam-
ple, LSS supports constructs (including loops, conditionals, etc.)
that permit general algorithmic specification of structure. This al-
lows any non-idiomatic connection pattern to be created and pa-
rameterized.

Figure 9 shows how thedelayn module can be used to create a
3-stage delay pipeline. The module is instantiated on Line 3, itsn
parameter is set on Line 5, and finally the instance is connected on
Lines 7 and 8. A block diagram of this system is shown in Figure 2.
Thegen andhole instances just provide data to and consume data
from the pipeline respectively.

4.2 Flexible Communication Interfaces
Module instances communicate via input and output ports de-

fined by the modules from which they were instantiated. To fa-
cilitate scalable interfaces such as a register file with a customiz-
able number of read ports, each port in LSS is actually a variable
length array ofport instances. Rather than connecting two ports to-
gether to have two instances communicate, one connects two port
instances together. If no port instance number is specified, one is
inferred by the interpreter. For each port in a module, the port’s
width (the number of connections made to the port) is available in
the module body as a parameter. This parameter is automatically
set by counting the number of connections actually made to the
port. Modules can use the width parameter, like any other param-
eter, to customize the components created from it. This automatic
customization is an instance ofuse-based specializationand will
be discussed in more detail in Section 6.

LSS also supports leaving ports unconnected (ports with zero
width). Using the width parameter, a module can detect whether
or not a port is connected and customize its behavior accordingly.
Theseunconnected port semanticsallow modules to have rich com-
munication interfaces without burdening a user with the responsi-
bility of connecting all the ports. Without such a feature, it may be
tempting to replicate simple functionality rather than reuse a com-
plex module with many ports that are unnecessary for a given situa-
tion. These unconnected port semantics are especially useful when
refining a model to a more precise model since the initial and re-
fined model can reuse the same components; the initial model relies
on unconnected port semantics, while the refined model connects
the ports to achieve a specific desired behavior.

4.3 Customizing Component Computation
LSS provides two mechanisms to customize the computation

of existing modules (algorithmic customization), increasing their
reusability. The first mechanism is simply wrapping an existing
module within another module and adding modules along compu-
tation paths to customize behavior. Figure 7 demonstrates how this
can be done. Those computation paths which should be identical to
the base component are connected directly to the wrapping compo-
nent’s input and output ports. In the figure, component C inherits
the behavior of ports 1, 2, and 3 from component A. Component C
overrides the behavior of component A’s output port 4 since com-

199

ponent B has been placed between component A’s output and com-
ponent C’s corresponding output. In this way, component C has
extended component A.

The second way to customize computation is viauserpointpa-
rameters. These algorithmic parameters accept string values whose
content is BSL code. This BSL code forms the body of a function
on a module instance where the function signature is defined by the
userpoint declaration in the declaring module’s body. The declara-
tion identifies a set of arguments whose values may be used in the
userpoint BSL code and a return type for a return value that must
be produced by the BSL code. The code in the userpoint is invoked
by the module’s behavioral specification to accomplish some com-
putation or state-update task. Just like other parameters, userpoint
parameters can have default values, thus allowing the module to
define default behavior which can be overridden by the user.

A single userpoint parameter assignment on a module instance is
the OOP equivalent of inheriting a class, overriding a virtual mem-
ber function, and then instantiating the inherited class. This allows
userpoints to dramatically reduce the overhead of one-off inher-
itance (i.e. inheriting a module and instantiating it once). Since
one-off inheritance is common in structural modeling, this reduces
specification overhead in LSS. More formal styles of inheritance
can be achieved via userpoint assignment and module wrapping.

To allow userpoints to maintain state across invocations, LSS
also supports the ability to add state by declaring runtime vari-
ables. Runtime variables are variables available during simulation
rather than during model compilation. To allow initialization and
synchronousupdate of this added state, all modules possess two
system-defined userpoints,init and end of timestep , that
are invoked at the beginning of simulation and the end of each clock
cycle respectively. Once created, users can reference runtime vari-
ables in other userpoints to help customize computation.

4.4 Polymorphism
To support reuse across datatypes, LSS supports two types of

polymorphism: parametric polymorphism and component overload-
ing. Parametric polymorphism is supported through use of type
variables. For example, any port in LSS, instead of having a basic
type, such asint , may have a polymorphic type that contains type
variables. Line 4 and 5 in Figure 8 state that thein andout port
will have the type specified by the type variable’a (all type vari-
ables in LSS begin with a’). The type variable can be instantiated
with any LSS type. The fact that both thein andout ports use the
same type variable means that both ports must have the same basic
type. While this example demonstrates parametric polymorphism
on a hierarchical component, it can also be used on leaf compo-
nents. In such cases, the BSL code for the leaf component is spe-
cialized based on the basic type given to all type variables.

Component overloading in LSS is achieved through the use of
disjunctive-types. A disjunctive-type, denoted astype1|type2
in LSS, specifies that the entity with this type may statically have
type type1 or type2 , but not both simultaneously. Notice that
this is different from union types which may store either type de-
pending on the value assigned at runtime. Since modules may de-
fine many ports, implementing the full cross-product of allowable
overloaded configurations may be extremely cumbersome. How-
ever, since the types are resolved statically, rather than implement-
ing multipleentirebehaviors for a given component, the BSL can
specify type dependent code fragments and the code generator can
customize this code using the statically resolved type information.

Since it is common to have many polymorphic components in a
model (e.g. long chains of polymorphic data routing components
and polymorphic state elements),manuallyresolving all the poly-

morphism can be very tedious. In practice, hundreds of explicit
type instantiations are necessary to resolve the polymorphism [18].
To avoid this overhead, LSSautomaticallyresolves polymorphism
via type inference based on the structure of the model. For ex-
ample, in the code shown in Figure 8, since thedelay module
requires typeint on its ports and both thein andout ports of
thedelayn module are connected to instances of this module, the
type variable’a will be resolved to have typeint .

Since ports can have disjunctive types, the LSS type inference
problem is non-trivial. Details regarding the LSS type inference
problem can be found in Section 5.

4.5 Instrumentation
To allow a model to be reused for different data collection needs,

LSS supports a mechanism to separate model specification from
model instrumentation. As was possible in static structural mod-
eling, LSS uses an aspect-oriented data collection scheme. Each
module can declare that its instances emit certaineventsat run-
time. These events behave like join points in aspect-oriented pro-
gramming (AOP). Each time a certain state is reached or value
computed, the instance will emit the corresponding event and user-
definedcollectorswill fill these join points and collect information
for statistics calculation and reporting. BSL code may be speci-
fied for the collector that processes the data sent with the event to
accumulate statistics that can be reported during or at the end of
simulation and used for visualization or model debugging.

In addition to declared events, LSS automatically adds code to
emit an event whenever a value is sent on a port. Since many impor-
tant hardware events are synchronized with communication, many
useful statistics can be gathered using just these port firing events.

5. TYPE INFERENCE
As described earlier, LSS will attempt to assign basic types to

all ports via type inference. This type inference greatly reduces
the tedium in using polymorphic components since it frees the user
from explicitly specifying each type.

The type inference problem for LSS can be formulated as try-
ing to assign values to a set of type variables under a set of con-
straints. When defining a system’s ports and connections, the user
annotates each port and optionally annotates each connection with
a type scheme. The legal types and type schemes in the system are
specified by the following grammar:

Basic Types τ ::= int | . . . | τ [n] |
struct{i1 : τ1; . . . in : τn; }

Type Variables α, β, γ ::= ′i
Type Schemes τ∗ ::= α | (τ∗

1 | . . . | τ∗
n) |

int | . . . | τ∗[n] |
struct{i1 : τ∗

1 ; . . . in : τ∗
n; }

Identifiers i ::= any identifier

If two ports in the system are connected, a constraint term that
equates the corresponding type variables is added to the overall
constraint. For each connection annotated with a type scheme, a
pair of constraint terms that equate the connected ports’ type vari-
ables to the annotated type scheme is added to the constraint. The
form of a legal constraint in the type inference problem is given by
the following grammar:

Constraints φ ::= > | τ∗
1 = τ∗

2 | φ1 ∧ φ2

The constraint> represents the trivially true constraint, the con-
straintτ∗

1 = τ∗
2 asserts the equality of two type schemes, and the

constraintφ1 ∧ φ2 represents the conjunction of the constraintsφ1

200

andφ2. The type inference engine must assign a basic type to all
the type variables while satisfying the constraint.

The type system and constraints are very similar to those found
in languages such as ML [9]. However, notice the(τ∗

1 | . . . | τ∗
n)

type scheme. Any entity annotated with this type scheme must
statically have asinglebasic type which is accepted by one of the
type schemesτ∗

1 , τ∗
2 , . . . , orτ∗

n. This is different than a union type
in which values that match any of the type schemes can be passed
at run-time. Thisdisjunctivetype scheme comes from the need to
allow overloading of port types as discussed in Section 4.4.

The presence of this disjunctive type prevents the typical unifi-
cation algorithm from working for the LSS type system. The prob-
lem arises because it is not possible to assign a basic type to a type
variable based solely on the disjunctive type constraint, even if the
disjunctive type scheme has no unbound type variables. In fact, the
LSS type inference problem is NP-complete [18].

The type system and inference problem presented here is very
similar to the type system and inference problems in languages
such as Haskell. However, the Haskell problem is undecidable in
general [16]. There exist restricted versions of the type system that
are decidable [10, 14]. Unfortunately, of these, the restrictions that
yield acceptable computational complexity [10] are not desirable
in a structural modeling environment since they forbid common
port interface typings. For other restricted versions of the type sys-
tem, we know of no heuristic algorithms that are appropriate for
instances of the problem that arise when using LSS.

Thus, to perform type inference, LSS uses a modified version of
the typical unification algorithm. This algorithm, upon encounter-
ing a constraint of the form(τ∗ = τ∗

1 | . . . | τ∗
n)∧φ, recursively

applies itself to all constraint systems of the formτ∗ = τ∗
i ∧ φ. If

at least one of those constraints has a solution, then that is also a
solution to the original constraint.

Since this straight-forward extension of the unification algorithm
is too slow in practice, a few heuristics are used make the algo-
rithm practical. First, constraint terms are reordered so that non-
disjunctive constraint terms are simplified first. This eliminates the
need to re-solve them during the recursion used to handle disjunc-
tive terms. Second, a heuristic is employed that intelligently solves
certain disjunctive terms without recursion. Third, a divide-and-
conquer heuristic that partitions disjoint constraint terms into sepa-
rate simpler constraints is applied and these constraints are solved
separately. Factoring the constraint in this way exponentially re-
duces the number of recursive calls. With these heuristics, type
inference completes in several seconds for all cases we have ob-
served, and we expect comparable times for all practical models.
Without these heuristics, type inference times exceeded 12 hours
for most models. A detailed description and analysis of the algo-
rithm and heuristics is beyond the scope of this paper but can be
found in the references [18].

6. USE-BASED SPECIALIZATION
Just as explicitly specifying types is tedious and often unnec-

essary, explicit parameter value specification is often tedious and
redundant. In a manner analogous to type inference, the LSS com-
piler infers certain parameter values from the way in which a com-
ponent is used. We refer to the process of components customiz-
ing themselves according to these inferred parameter values asuse-
based specialization.

6.1 Use-Based Specialization Design
The simplest example of use-based specialization involves port

widths. Consider thedelayn module presented in Figure 8. The
delay module used as the building block of thedelayn mod-

1 module delayn {
2 parameter n:int;
3 parameter width = 1:int;
4
5 inport in:’a;
6 outport out:’a;
7
8 var delays:instance ref[];
9 delays=new instance[n](delay,"delays");

10 var i:int;
11
12 /* The LSS_connect_bus(x,y,z) built-in does:
13 *
14 * for(i=0; i<z; i++) { x[i]->y[i]; }
15 */
16 LSS_connect_bus(in,delays[0].in,width);
17 in -> delays[0].in;
18 for(i=1;i<n;i++) {
19 LSS_connect_bus(delays[i-1],delays[i].in,width);
20 }
21 LSS_connect_bus(delays[n-1],out,width);
22 };

Figure 10: Modified delayn module that supports multiple
port connections.

1 instance gen:source;
2 instance hole:sink;
3 instance delay3:delayn;
4
5 delay3.n=3;
6 delay3.width=5;
7
8 LSS_connect_bus(gen.out, delay3.in, 5);
9 LSS_connect_bus(delay3.out, hole.in, 5);

Figure 11: Use of the modifieddelayn module.

ule supports multiple connections to itsin andout ports. How-
ever, any such connections made to thein andout ports of the
delayn module will do nothing since only the first port instance
is connected internally. To alter the behavior ofdelayn we could
change the code so that it defines awidth parameter that makes
multiple connections between the chain of delay elements. Fig-
ure 10 shows what the code would look like.

To use the module, one would instantiate the newdelayn , set
the width parameter, and then make the corresponding number of
connections to the instance. The instantiation code is shown in Fig-
ure 11. While setting this singlewidth parameter does not seem
overwhelming, with many ports this type of construct can quickly
clutter code and easily lead to errors, especially if this parameter
must be kept consistent with the connectivity of each port. Use-
based specialization can be used to avoid this scenario. In LSS, an
implicit parameter namedwidth is defined on each port. Rather
than the user explicitly setting this parameter, its value is inferred
by counting the number of connections made to the port.

With use-based specialization, the code in Figure 11 would be
identical, except that Line 6 could be omitted. Figure 10 would be
modified by omitting Line 3, replacing occurrences ofwidth with
in.width , and adding a check to ensure thatin.width is the
same asout.width .

While the above example is extremely simple, use-based special-
ization can be extremely powerful. Consider, for example, a branch
prediction module which also supports branch target buffer (BTB)
functionality. Since it is clear that requesting branch target infor-
mation requires a BTB, using use-based specialization, the branch
prediction module can infer whether BTB behavior is necessary by
checking to see if abranch target port is connected.

201

1 module ... {
2 inport in:’a;
3 outport out:’a;
4 ...
5 if(out.width < in.width) {
6 parameter arbitration_policy:
7 userpoint(/* args */ =>
8 /* ret */);
9 instance arb:arbiter;

10 arb.policy = arbitration_policy;
11 ...
12 } else {
13 ...
14 }
15 ...
16 };

Figure 12: Use-based specialization exporting additional pa-
rameters

Figure 12 is another example of use-based specialization. Here,
the module infers whether an internal arbiter is necessary by com-
paring the width of input ports to those of output ports. If the ar-
biter is necessary (i.e. the input port is wider than the output port),
the module can export a userpoint parameter so that the arbitra-
tion policy can be parametrically specified (Lines 5-12). Without
use-based specialization, the parameterarbitration policy
would have to exist and, since it has no default value, would also
have to be set even when no arbitration is necessary. A default arbi-
tration policy can be added. However, in the case where arbitration
is required, having the module quietly select a policy is undesirable
since there are many reasonable default policies. Use-based spe-
cialization eliminates this trade-off by providing the best of both
alternatives; the user is required to specify the policy when it is
necessary and is not required to specify the policy otherwise.

It should be noted, as the last example demonstrates, that use-
based specialization allows a module’s parameterization and com-
munication interface to be affected by the connectivity and parame-
terization of other ports and parameters on the module. This creates
a dilemma for straight-forward evaluation of LSS. A module can-
not be used until it is instantiated, but the constructor cannot be
called until code following the instantiation line has executed. To
resolve this difficulty, LSS has novel evaluation semantics that are
described in the next section.

6.2 Use-Based Specialization Implementation
Use-based specialization requires that the module body has ac-

cess to values that are defined by the usage of the module instance
(e.g. the number of connections to a port and values of all explic-
itly specified parameters). However, use-based specialization also
allows the module’s interface (i.e. the module’s ports and parame-
ters) to depend on the same values. Thus, use-based specialization
requires deferring module body evaluation until after the module
is instantiated and used, however, conventional evaluation requires
that the module body be evaluated before it can be used so that its
interface is known. To remedy this circularity, LSS uses the novel
evaluation semantics described in this section.

Clearly, evaluation of the module body cannot occur as soon as
an instance is created since the module body depends on the values
of the module’s parameters. Thus, rather than invoking the module
body when creating a new instance, the name of the newly created
instance and the module from which it was instantiated are pushed
onto an instantiation stack.

Code continues to execute from the current module body, and
whenever an assignment to a subfield of a sub-instance (e.g. Line
5 in Figure 9), is encountered, the assignment is recorded as a po-

ho
le

:s
in

k
ge

n:
so

ur
ce

width=5
n=3

gen.in[0] −> in[0]

out[0] −> hole.out[0]

gen.in[1] −> in[1]
gen.in[2] −> in[2]
gen.in[3] −> in[3]
gen.in[4] −> in[4]

out[1] −> hole.out[1]
out[2] −> hole.out[2]
out[3] −> hole.out[3]
out[4] −> hole.out[4]

de
la

y3
:d

el
ay

nIn
st

an
tio

n
st

ac
k

In
st

an
tia

tio
n

R
ec

or
ds

(a) Instantiation stack.

Evaluation context

width=5 (added in step 6)
in.width=5 (added in step 7)
out.width=5 (added in step 7)

n=3 (added in step 5)

(b) Context for delay3.

Figure 13: LSS interpreter state.

tential parameter assignment. Similarly, whenever any connection
is made to a subfield of a sub-instance, the connection is recorded
as a potential port connection.

When the current module body finishes evaluation, the instance
at the top of the instantiation stack is popped off and its module
body executed. Whenever the module body declares a parameter,
the previously recorded potential parameter assignments are con-
sulted to see if the parameter has a user specified value. If so, the
type of the value is checked against the parameter’s type and if the
types match, the parameter is assigned that value. If no assign-
ments were recorded, the parameter will get its value from default
parameter assignments inside the module body, if they exist. Sim-
ilarly, when a port is declared, the recorded list of connections is
consulted to see if any attempts to connect to this port have been
made. If so, the port is connected, and its implicit width attribute is
set. After evaluation of the module completes, the potential subfield
assignment and potential connection records are checked to make
sure no non-existent parameters or ports on this instance were ref-
erenced. Additionally, all the parameters are checked to ensure that
they have some value.

The following example will illustrate the execution of the code
shown in Figure 11.

1. Line 1. The interpreter records that an instance of thesource
module namedgen was created by pushing it onto the in-
stantiation stack.

2. Line 2-3. The same is done for thehole anddelay3 mod-
ules.

3. Line 5-6. The interpreter records the assignments to potential
parametersn andwidth .

4. Line 8-9. The interpreter records the connections made.

At this point, the top-level code has finished and so the module
at the top of the instantiation stack is popped and its constructor
evaluated. Figure 13a shows the instantiation stack in the LSS in-
terpreter at this point in the execution. In this case, the next set of
code to run is that for thedelayn module shown in Figure 10.

5. Line 2. Check to see thatn has an integer value in the record.
If so, add it to the evaluation context based on the value in
the record. The evaluation context is shown in Figure 13b.

6. Line 3. Do the same for thewidth parameter.

7. Line 5-6. Record the fact that connections to thein and
out port are valid, compute the port widths, and add the
portname.width parameters to the context.

202

8. Line 12-21. Execute the code, recording the instantiations,
assignments, and connections as before.

Once this code is finished, the interpreter ensures that no connec-
tions were made to non-existent ports and no illegal parameter as-
signments were made. In this example, the code is correct so eval-
uation continues. The next instance on the stack, in this case one of
thedelay modules pushed onto the stack during the evaluation of
the instancedelay3 , is popped off the stack and evaluated.

This behavior can be specified more formally by describing the
execution semantics for the LSS language as an evolution of pro-
gram states. Execution semantics expressed in this way are typ-
ically called small-step semantics[5]. The complete small-step
semantics has numerous state transition rules that closely resem-
ble the semantics for common imperative programming languages.
Therefore, in this section, only the state transitions that relate to the
implementation of use-based specialization will be described. This
section uses the notation and terminology that is used by Harper [5],
unless defined differently below.

The state of an LSS program during execution will be repre-
sented by a 7-tuple,(M, Is, L, A, B, e, S). M is the netlist of the
design as it is known at the current point in program evaluation.Is

is the stack of instances that need to be processed.L is the eval-
uation context and maps symbols to values.A is the recorded list
of potential parameter assignments and port connections obtained
from the parent instance (the instance in the hierarchy above the
one currently being processed).B is a context that records poten-
tial parameter assignments and port connections for children of the
current instance.e is the current expression being evaluated, andS
is the current list of statements being evaluated.

The program starts in the initial state(·, ·, L0, ·, ·, ·, S0), where
L0 defines built-in functions andS0 is the statement list at the top-
level of the LSS specification.

The state transition function for LSS program states are expressed
using propositional logic. In the transition rules below, items that
appear above the horizontal bar represent the hypothesis of a logical
statement. The items that appear below the bar represent the con-
clusions of the statement. The notationq0 → q1 is used to denote
thatq0 can transition to stateq1. The conclusions of all the transi-
tion rules identify all the legal transitions. Since any given state of
an LSS program satisfies the hypothesis for at most one transition
rule, the transition rules define the state transition function.

The interesting rules for LSS evaluation are used when a new
instance is created. The rule for this statement is shown below.
Note that the portion of the rules related to actually augmentingM
is not shown but the extension is straightforward.

c current instance namen /∈ dom(L) m ∈ dom(L)
S′ = body(m) i = (c.n, S′)

(M, Is, L, A, B, ·, instance n : m;S) →
(M ′, i B Is, {n 7→ (c.n, S′)} ∪ L, A, B, ·, S)

This rule pushes the constructor for instancei onto the stack of
constructorsIs that must be evaluated and continues evaluating the
statements in the current statement list. (Note thati B Is denotes
a stack with the elementi at the top and the stackIs below it.)
Notice that this differs from standard evaluation which would have
immediately begun processingS′.

When the current instance is finished (i.e. no statements are left
in the current statement list), the following rule begins evaluating
the next instance constructor.

A = ∅ c current instance namei = (c.n, S′)
A∗ = extract(c.n, B) A′ = strip(A∗)

(M, i B Is, L, A, B, ·, ·) → (M, Is, L0, A
′, B \A∗, ·, S′)

The functionextract(c.n, B) extracts fromB all parameter as-
signments and connections for the instance namedc.n. The func-
tion strip(A∗) strips thec. prefix from all the symbol names,c.n,
in the contextA∗. The state for the next instance to be processed is
established by extracting the recorded potential assignments for the
about-to-be-processed instance and making this set of assignments
the newA context. TheA = ∅ hypothesis ensures that no assign-
ments to undefined parameters can occur. The mechanism for this
is explained below.

The remaining small-step inference rules are very similar to other
imperative programming languages. The most complex rules not
shown are the ones for parameter and port declarations. The param-
eter rule removes fromA any assignments to the parameter being
defined and updatesL andM appropriately. The port declaration
rule is similar. Since the records are removed fromA, if A 6= ∅ af-
ter a module finishes evaluation, then an assignment or connection
was made to an undeclared parameter or port.

7. EXPERIENCE WITH LSS
LSS is the front-end language to the Liberty Simulation Envi-

ronment (LSE). This section gives some background that provides
additional insight into the design of LSS, describes experience with
LSE, and discusses the reuse provided by LSS.

LSE originally used a static structural specification language in-
stead of LSS. Thus, the system resembled those described in Sec-
tion 3.1. In this system, a few models were created, the largest
being a cycle-accurate clone of a popular simulator hand-coded in
C, SimpleScalar [1]. Development of larger, more ambitious mod-
els was hindered by the lack of flexible hierarchical components. In
developing microarchitectural models, common instance and con-
nection patterns emerged, but in each case the structure or width
necessary varied slightly. For the reasons described in Section 3.1,
these patterns could not be encapsulated into reusable hierarchical
components. This forced cut-and-paste reuse rather than the more
formal reuse patterns described in this paper. As model complex-
ity grew, managing code riddled with cut-and-pasted fragments be-
came overwhelming. An alternate solution was clearly necessary.

In response to this need, the LSS language was designed and
implemented. After a direct conversion of the non-LSS version of
the SimpleScalar model to the LSS-based model, there was a 35%
reduction in line count. Furthermore, since the creation of LSS, we
have been able to build larger more aggressive models for research
and instruction. Table 3 lists several such models.

LSS allows the creation of flexible models and components in
practice. For example, the IA-64-based chip multiprocessor (CMP)
model (Model E), was constructed by instantiating two IA-64 cores
(Model D) and connecting them to a shared cache hierarchy. Model
E was sufficiently flexible to allow exploration of a novel com-
munication structure between processor cores, to study the effect
of the number of functional units and their mix, to evaluate the
effect of static and dynamic instruction scheduling, and to mea-
sure the effect of various memory subsystems. To facilitate this
study, each processor core in the model exported parameters rang-
ing from simple parameters which controlled the number of in-
structions that should be fetched per cycle to complex parameters
which controlled whether the processor can issue instructions out-
of-order. Other researchers have also used LSS and LSE to create
flexible models and libraries of flexible components. For exam-
ple, researchers at Rice University have used LSS to model pro-
grammable network interface architectures [19].

LSS’s features greatly simplified construction of these models.
Table 2 summarizes data that quantifies these benefits. Overall,
use-based specialization was able to infer 3904 port widths across

203

Instances Instances Modules Explicit Type Explicit Type Inferred
Model Hierarchical Leaf per from from Instantiations Instantiations Port
Name Instances Modules Modules Module Library Library w/o Type Infer. w/ Type Infer. Widths Connections

A 277 46 (10) 18 4.33 (8.61) 73% 13 115 8 816 919
B 281 46 (11) 18 4.39 (8.48) 73% 13 116 8 823 929
C 62 1 18 3.37 73% 10 38 30 147 304
D 192 4 25 6.62 86% 22 147 71 611 3975
E 329 4 26 10.97 89% 22 162 71 984 4528
F 183 18 (3) 19 4.95 (8.32) 82% 18 101 38 523 1395

Total 1324 69 (19) 39 12.26 (22.83) 80% 22 679 226 3904 12050
Model descriptions are in Table 3. Values in parenthesis discount trivial hierarchical modules used simply to wrap a collection of components.

Table 2: Quantity of Component-based Reuse

Model
Name Model Description

A A Tomasulo Style machine for the DLX instruction set.
B Same as A, but with a single issue window.
C A model equivalent to the SimpleScalar simulator [1].
D An out-of-order processor core for IA-64.
E Two of the cores from D sharing a cache hierarchy.
F A validated Itanium 2 processor model.

Table 3: Several models developed with LSS.

the models, obviating the need to keep these parameter values con-
sistent with the 12050 connections in the models. As is obvious
from these numbers, manually specifying all the connections would
be impractical; algorithmic specification of structure was vital in
developing this model. Further, notice that type inference reduced
the total number of required type instantiations from 679 to 226,
a 66% reduction. The aspect-oriented instrumentation features of
LSS also proved invaluable allowing easy migration between data
collection probes for experimentation and debugging probes to cor-
rect inaccuracies in the models.

Overall, the quality of the LSE system and degree of component
reuse has improved dramatically with the addition of LSS. From
Table 2 one can see that 80% of the 1324 component instances in
these models came from a library of only 22 components. Over all
the models, each module was used approximately 12 times. If triv-
ial hierarchical modules used simply to wrap a collection of com-
ponents are discounted each module is used about 22 times across
the models. This reuse translates into reduced specification time.
For example, a single student, in only 7 weeks, was able to specify
and validate, to within a few percent of hardware CPI (cycles per
instruction), the Itanium 2 model (Model F).

8. RELATED WORK
Section 3 described the two major classes of concurrent-structural

systems, OOP-based concurrent structural systems and static struc-
tural systems, and explained the strength and weakness of each. In
this section, we classify several well known concurrent-structural
modeling systems and explore their strengths and weaknesses.

SystemC. SystemC [11] is an OOP-based concurrent-structural
modeling system built as a library for the C++ programming lan-
guage. Its limitations are described in Section 3.2. In terms of sim-
ulation speed,reusablecomponents in LSE with LSS are at least as
fast ascustomcomponents written in SystemC [12].

Ptolemy II. Ptolemy II [7], when used without the Vergil inter-
face, is an OOP-based concurrent-structural modeling system for
systems with heterogeneous models of concurrency. Ptolemy al-
lows users to define system structure directly in Java. However,
when used in this way it suffers from the shortcomings of structural-
OOP systems described in Section 3.2. At no point during execu-

tion does structure need to be immutable limiting static analysis
capabilities described in Section 3. Using LSS with Ptolemy II as
a BSL, however, would address these shortcomings and bring pow-
erful reuse to heterogeneous system exploration.

Ptolemy II with Vergil. Ptolemy II, when used with the
Vergil interface, is a static structural modeling system that supports
structure based analyses such as parameterization of non-structural
specification (but not of structural specification). Ptolemy cannot
be used with and without Vergil simultaneously.

VHDL. VHDL [6] is a tool commonly used for RTL-level
modeling and synthesis of hardware systems rather than high-level
modeling. Despite its low-level target, VHDL does have a flex-
ible type system, limited support for parameter-based structure,
and syntax for behavioral (as opposed to RTL) specification. But,
VHDL does not support many of the features outlined in Section 3,
making component reuse difficult. For example, VHDL does not
support polymorphic types, thus forcing reimplementation of com-
mon components like arbiters based on the datatypes involved. Fur-
thermore, VHDL has no inheritance mechanism to allow the cus-
tomization and extension of components. Finally, VHDL does not
support use-based specialization. It may be possible, however, to
add these capabilities to VHDL by using it as a BSL for LSS.

Balboa. Balboa [2] is a structural modeling system designed
to allow components developed in various otherwise incompatible
C++ modeling environments to be composed. Balboa separates in-
terface definition and structure from component behavior by using
an interface definition language (IDL), with behavior is specified in
C++. They call this approachsplit-level programming. The com-
position language in Balboa is a program, and thus split-level pro-
gramming is closely related to the compilation process with LSS.

Unlike LSS, however, the Balboa structure specification language
is evaluated at simulator run-time and thus suffers from problems
similar to structural-OOP systems. However, Balboa does use run-
time component connection to provide component overloading. The
IDL program is run to determine the structure of the model and the
resulting structure is used to infer the particular version of an over-
loaded component that should be instantiated and the correct com-
ponent is connected. Unfortunately, this approach cannot resolve
parametric polymorphism via structure since the resolved types di-
rect compilation of behavioral code at compile-time.

Note that the techniques Balboa uses to reconcile differences be-
tween components from different simulation systems can be used
in conjunction with LSS to gain the benefits of both LSS and Bal-
boa. Also note that Balboa’s type inference problem [3] is closely
related to LSS’s type inference problem. However, the LSS al-
gorithm is more closely related to the basic unification algorithms
used in languages such as ML [9].

Polylith. Outside the hardware specification domain, structural
interface definition languages (IDL) such as the MIL language used
in the Polylith software bus system [13] also employ concurrent-

204

structural modeling. This approach is a natural fit since the goal
of these tools is to separate the specification of functionality from
the specification of interface and communication. Similar to static
structural systems, Polylith’s MIL structure specification language
uses a declarative syntax to specify component interconnectivity.
Most of the features related to reuse involve resolving differences in
datatypes and communication semantics in systems written in dif-
ferent languages or running on different platforms in a distributed
computing environment. Since these systems specify the behavior
of a program by structurally composing components, the ideas pre-
sented in this paper can be used to add reuse, such as the ability
to reuse components to structurally build new easy-to-use reusable
components. Other IDL systems, similar to Polylith, exist, but a
comparison to these systems is beyond the scope of this paper.

Asim. Asim [4] is a pseudo-structural processor modeling tool
developed at Digital Equipment Corporation (and now worked on
at Intel). Of all the related work, its high-level architectural model-
ing goals are perhaps the most in line with LSE’s. Asim uses struc-
tural composition between components, but uses functional com-
position for communication within a clock cycle. Thus, the system
is notpurelyconcurrent-structural, making component based reuse
difficult [17]. Since the system is not a pure concurrent-structural
system, the techniques presented in this paper may not be directly
applicable to Asim. Asim, however, does support some component
reuse through inheritance. Asim details are difficult to evaluate be-
cause the tool is not openly available.

9. CONCLUSION
This paper presents several programming language techniques

targeted at improving hardware systems development by increas-
ing the rate at which ideas can be evaluated. These techniques,
described in the context of the design and implementation of the
Liberty Structural Specification language (LSS), increase designer
productivity by encouraging wide-scale component-based reuse.
While prior structural modeling approaches forced a trade-off be-
tween easy reuse and easy construction of reusable components,
LSS provides the best of both through a hybrid solution. The LSS
language provides imperative programming constructs to allow for
programmatic control of structure in flexible hierarchical compo-
nents, but is evaluated at compile time thusalso allowing static
analysis of the model structure. These static analyses allow the
many properties of flexible components to be inferred, reducing
specification overhead. This paper presents the static type infer-
ence algorithm used in LSS to resolve both parametric polymor-
phism and component overloading. It also presents a new program-
ming language technique, calleduse-based specialization, which,
in a manner analogous to type inference, customizes reusable com-
ponents by statically inferring component parameter values that
would otherwise have had to be specified manually. Experience
with LSS indicates that these features significantly improve the
reusability of components, dramatically improving productivity in
hardware modeling.

Acknowledgments
We thank Jason Blome, Azmat Hussain, Sharad Malik, Vijay Pai,
David Penry, Ram Rangan, Paul Willmann, and the entire Liberty
Research Group for their support throughout the development of
LSE and LSS. This work has been supported by the National Sci-
ence Foundation (NGS-0305617) and Intel Corporation. Opinions,
findings, conclusions, and recommendations expressed throughout
this work are not necessarily the views of the National Science
Foundation or Intel Corporation.

10. REFERENCES

[1] BURGER, D., AND AUSTIN, T. M. The SimpleScalar tool
set version 2.0. Tech. Rep. 97-1342, Department of
Computer Science, University of Wisconsin-Madison, June
1997.

[2] DOUCET, F., OTSUKA, M., SHUKLA , S.,AND GUPTA, R.
An environment for dynamic component composition for
efficient co-design. InProceedings of the Conference on
Design, Automation and Test in Europe(2002).

[3] DOUCET, F., SHUKLA , S.,AND GUPTA, R. Typing
abstractions and management in a component framework. In
Proceedings of Asia and South Pacific Design Automation
Conference(2003).

[4] EMER, J., AHUJA, P., BORCH, E., KLAUSER, A., LUK ,
C.-K., MANNE, S., MUKHERJEE, S. S., PATIL , H.,
WALLACE , S., BINKERT, N., ESPASA, R., AND JUAN , T.
Asim: A performance model framework.IEEE Computer
0018-9162(February 2002), 68–76.

[5] HARPER, R. Programming Languages: Theory and
Practice. Draft, 2002.

[6] IEEE. VHDL: IEEE Standard 1076. http://www.ieee.org.
[7] JANNECK, J. W., LEE, E. A., LIU , J., LIU , X.,

NEUENDORFFER, S., SACHS, S.,AND X IONG, Y.
Disciplining heterogeneity – the Ptolemy approach. InACM
SIGPLAN 2001 Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2001)(June 2001).

[8] K ICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA ,
C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J.
Aspect-oriented programming. InProceedings of the 11th
European Conference for Object-Oriented Programming
(1997), pp. 220–242.

[9] M ILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN,
D. The Definition of Standard ML (Revised). The MIT Press,
Cambridge, MA, 1997.

[10] ODERSKY, M., WADLER, P.,AND WEHR, M. A second
look at overloading. InProceedings of the Conference on
Functional Programming Languages and Computer
Architecture(1995), pp. 135–146.

[11] OPEN SYSTEMC INITIATIVE (OSCI).Functional
Specification for SystemC 2.0, 2001. http://www.systemc.org.

[12] PENRY, D., AND AUGUST, D. I. Optimizations for a
simulator construction system supporting reusable
components. InProceedings of the 40th Design Automation
Conference(June 2003).

[13] PURTILO, J. M. The Polylith Software Bus.ACM
Transactions on Programming Languages and Systems
(TOPLAS) 16, 1 (January 1994), 154–174.

[14] SEIDL , H. Haskell overloading is dexptime-complete.
Information Processing Letters 52, 2 (1994), 57–60.

[15] SKADRON, K., MARTONOSI, M., AUGUST, D. I., HILL ,
M. D., L ILJA , D. J.,AND PAI , V. S. Challenges in
computer architecture evaluation.IEEE Computer(August
2003), 30–36.

[16] SMITH , G. Principal type schemes for functional programs
with overloading and subtyping.Science of Computer
Programming 23, 2-3 (1994), 197–226.

[17] VACHHARAJANI , M., VACHHARAJANI , N., PENRY, D. A.,
BLOME, J. A., AND AUGUST, D. I. Microarchitectural
exploration with Liberty. InProceedings of the 35th
International Symposium on Microarchitecture(November
2002), pp. 271–282.

205

[18] VACHHARAJANI , M., VACHHARAJANI , N., PENRY, D. A.,
BLOME, J. A., MALIK , S.,AND AUGUST, D. I. The
Liberty Simulation Environment: A deliberate approach to
high-level system modeling. Tech. Rep. Liberty-04-02,
Liberty Research Group, Princeton University, January 2004.

[19] WILLMANN , P., BROGIOLI, M., AND PAI , V. Spinach: A
Liberty-based simulator for programmable network interface
architectures. InProceedings of the SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for
Embedded Systems(June 2004).

[20] X IONG, Y., AND LEE, E. A. An extensible type system for
component-based design. InProceedings of the 6th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems(March 2000),
pp. 20–37.

206

