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Motivation

• Large scale machines (such as Blue Gene and large 
clusters) and parallelism (such as multi-core chips) 
are becoming ubiquitous

• Shared memory programming is accepted as an 
easier programming model, but MPI is still the 
prevalent programming paradigm

Why?

• Because typically the performance of the shared 
memory programs lags behind and does not scale as 
well as the performance of MPI codes
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Overview

• Demonstrate that performance on large scale 
systems can be obtained without completely 
overwhelming the programmer by:
– Taking Unified Parallel C (UPC), a Partitioned Global 
Address Space (PGAS) language, that presents a shared 
memory programming paradigm

– Using a combination of runtime system design and 
compiler optimizations

– Running on Blue Gene/L, a distributed memory machine 
and the largest supercomputer available today
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Outline

• Brief overview of UPC features

• The IBM xlupc compiler and run-time system

• Brief overview of the Blue Gene/L system

• Compiler optimizations

• Experimental results

• Conclusions
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Unified Parallel C (UPC)

• Parallel extension to C
– Programmer specifies shared data

– Programmer specifies shared data distribution (block-cyclic) 

– Parallel loops (upc_forall) are used to distribute loop iterations 
across all processors

– Synchronization primitives: barriers, fences, and locks

• Data can be private, shared local and shared remote 
data
– Latency to access local shared data is typically lower than 
latency to access remote shared data

• Flat threading model – all threads execute in SPMD 
style
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xlupc Compiler Architecture
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xlupc Runtime System

• Designed for scalability

• Implementations available for
– SMP using pthreads

– Clusters using LAPI

– BlueGene/L using the BG/L message layer

• Provides a unique API to the compiler for all the 
above implementations

• Provides management of and access to shared data 
in a scalable manner using the Shared Variable 
Directory
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Shared Variable Directory
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shared [SIZE/THREADS] int A[SIZE];
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BlueGene/L system
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MPICH2                                                                  

BlueGene/L MPI Software Architecture
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Compiler Optimizations

• Memory affinity analysis and optimization

• Parallel loop overhead removal

• Remote update operations
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Memory affinity

• The UPC RTS uses the SVD to manage and access 
shared data, and thus there are several levels of 
indirection that impact performance

• If we can prove that the data is local, the shared 
memory access through SVD can be replaced with a 
direct memory access to the shared local section of 
memory of the thread

• For an affine array index expression of the form     
f(i

1
, i

2
, ..., i

n
) and a upc_forall affinity expression g, the 

condition for the array element to be local is:

 f i1, i 2, ... , in
blocksize

mod MYTHREAD=g
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Optimizing UPC Parallel Loops

upc_forall(i=0; i < N; i++; &A[i]) 
{

A[i] = ...;

}

for (i=0; i < N; i++)  
{

if (upc_threadof(A[i]) == MYTHREAD)

   A[i] = ...;

}

for (i=MYTHREAD * BF; i < N; i+= THREADS*BF)  {

     for (j=i; j < i+BF; j++)  {
         A[j] = ...;
     }

}

shared [BF] int A[N]; affinity test branch
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Remote update optimization

• Identify read-modify-write operations of the form 

 A[i] = A[i] OP value

• Instead of issuing a get and then a put operation, we 
issue a remote update operation, where we send the 
address of A[i] and the value to the remote 
processor

• Take advantage of existing hardware and software 
primitives in Blue Gene/L:
– Small hardware packet size and network guaranteed 
delivery

– Active message paradigm in the message layer
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Experimental Environment

• Blue Gene/L machines
•From a small 1 node-card (64 processors, 8 GB memory) up 
to 64 racks (128K processors, 32 TB memory)

• Benchmarks: 
•HPC Challenge: Random Access and EP STREAM Triad
•NAS CG

• Software:
•Experimental versions of the xlupc compiler, runtime system, 
messaging library and control system software
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Random Access

● Each update is a packet – performance is limited by 
network latency
 
●Important compiler optimization:

•Identify update operations and translate them to one sided 
update in messaging library

u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);
upc_forall (i = 0; i < NUPDATE; i++; i) {
    ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);
    Table[ran & (TableSize-1)] ^= ran;
}
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UPC Compiler Optimizations Impact

FE trans TPO trans
No opt Indexing Update Forall All

Random GUPS 0.0031090 0.0027048 0.0027248 0.0056082 0.0043764 0.0191830
Access Time (s) 172.681 198.492 197.033 95.729 122.673 27.987

Speedup 114.95 100.00 100.74 207.35 161.81 709.23
Stream GB/s 0.2028 0.1343 0.1769 0.1343 0.2831 32.3609
Triad Time (s) 23.665 35.730 27.129 35.730 16.952 0.148

Speedup 150.98 100.00 131.71 100.00 210.77 24076.95

• 64 threads on a Blue Gene/L system



IBM TJ Watson Research Center

© 2006 IBM Corporation19 Programming Language Design and Implementation June 12, 2006

{{Packet size:75 Bytes

Wire speed: 4
cycles
 Byte } 300

cycles
packet

CPU speed: 700 MHz =1.4
ns
cycle

} 2.38⋅106 packets
second⋅link

16 Byte header
4 Bytes target SVD
4 Bytes offset
4 Bytes op type,kind
8 Bytes update value

Update packets:

Packet size: 64 Bytes
75 Bytes on wire

Cross-section bandwidth:
64 x 32 x 32 torus: 
2 wires/link x 32 x 32 x 2 (torus) = 4096 links
 = 9.74.109 packets/s

Half of all packets travel across the cross-section;
GUPS limit = 19.5

Pre-condition: one packet per update (naïve algorithm)
Theoretical GUPS limit on Blue Gene/L
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Blue Gene/L Performance Results

Processors Problem Size GUPS
2^N

1 22 0.00054

2 22 0.00078

64 27 0.02000

2048 35 0.56000

65536 40 11.54000

131072 41 16.72500

Processors Problem Size GB/s

1 2,000,001 0.73

2 2,000,001 1.46

64 357,913,941 46.72

2048 11,453,246,122 1472.00

65536 366,503,875,925 47830.00

131072 733,007,751,850 95660.00

Random Access EP Stream Triad

Won the HPC Challenge Productivity Award



IBM TJ Watson Research Center

© 2006 IBM Corporation21 Programming Language Design and Implementation June 12, 2006

NAS CG Class C
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Conclusions

• We have shown that scaling programs using the 
shared memory programing paradigm to a large 
number of processors is not a myth

• However, scaling to hundreds of thousands of 
threads is far from trivial; it requires: 
– Careful design of the algorithm and data structures

– Scalable design of run-time system and system software 
(communication libraries)

– Support from the compiler

• Lots of challenges on programming large scale 
machines are still waiting for compiler attention


