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Motivation

* Large scale machines (such as Blue Gene and large
clusters) and parallelism (such as multi-core chips)
are becoming ubiquitous

* Shared memory programming is accepted as an
easier programming model, but MPI is still the
prevalent programming paradigm

Why?

* Because typically the performance of the shared
memory programs lags behind and does not scale as
well as the performance of MPI codes
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Overview

* Demonstrate that performance on large scale
systems can be obtained without completely
overwhelming the programmer by:

— Taking Unified Parallel C (UPC), a Partitioned Global
Address Space (PGAS) language, that presents a shared
memory programming paradigm

— Using a combination of runtime system design and
compiler optimizations

— Running on Blue Gene/L, a distributed memory machine
and the largest supercomputer available today
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Outline

* Brief overview of UPC features

* The IBM xlupc compiler and run-time system
* Brief overview of the Blue Gene/L system

* Compiler optimizations

* Experimental results

® Conclusions
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Unified Parallel C (UPC)

* Parallel extension to C
— Programmer specifies shared data
— Programmer specifies shared data distribution (block-cyclic)

— Parallel loops (upc_forall) are used to distribute loop iterations
across all processors

— Synchronization primitives: barriers, fences, and locks

o gata can be private, shared local and shared remote
ata

— Latency to access local shared data is typically lower than
latency to access remote shared data

o FIa} threading model — all threads execute in SPMD
style
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xlupc Compiler Architecture
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Xlupc Runtime System

* Designed for scalability

* Implementations available for
— SMP using pthreads
— Clusters using LAPI
— BlueGene/L using the BG/L message layer

* Provides a unique API to the compiler for all the
above implementations

* Provides management of and access to shared data
in a scalable manner using the Shared Variable
Directory
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Shared Variable Directory
shared [SIZE/THREADS] int A[SIZE];
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BlueGene/L system
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BlueGene/L MPI Software Architecture
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Common Messaging Library

Common messaging API ]

Programming Language Design and Implementation June 12, 2006 © 2006 1BM Corporation



| IBM TJ Watson Research Center

Compiler Optimizations

* Memory affinity analysis and optimization
* Parallel loop overhead removal
* Remote update operations
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Memory affinity

®* The UPC RTS uses the SVD to manage and access
shared data, and thus there are several levels of
indirection that impact performance

* If we can prove that the data is local, the shared
memory access through SVD can be replaced with a
direct memory access to the shared local section of
memory of the thread

* For an affine array index expression of the form
f(i, I, ..., 1)anda upc_forall affinity expression g, the

condition for the array element to be local is:

(fliyiyi,))
blocksize

mod MYTHREAD=g
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Optimizing UPC Parallel Loops

shared [BF] int A[N];

upc_forall(i=0; i < N; i++; &A[i]) for (i=0; i < N; i++)

{
Ali] = ... if (upc_threadof(A[i]) == MYTHREAD)
Ali] = ...

for (=EMYTHREAD * BF; i < N; i+= THREADS*BF) {
for (j=i; j < i+BF; j++) {
Al = ..
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Remote update optimization

* |dentify read-modify-write operations of the form
AJi] = A[i] OP value

* Instead of issuing a get and then a put operation, we
iIssue a remote update operation, where we send the
address of A[i] and the value to the remote
processor

* Take advantage of existing hardware and software
primitives in Blue Gene/L.:

— Small hardware packet size and network guaranteed
delivery

— Active message paradigm in the message layer
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Experimental Environment

* Blue Gene/L machines

*From a small 1 node-card (64 processors, 8 GB memory) up
to 64 racks (128K processors, 32 TB memory)

* Benchmarks:
*HPC Challenge: Random Access and EP STREAM Triad
*NAS CG

* Software:

*Experimental versions of the xlupc compiler, runtime system,
messaging library and control system software
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Random Access

u64Int ran = starts (NUPDATE/THREADS * MYTHREAD) ;
upc_forall (i = 0; i < NUPDATE; i++; i) {
ran = (ran << 1) * (((s64Int) ran < 0) ? POLY : 0);
Table[ran & (TableSize-1)] ~= ran;

* Each update is a packet — performance is limited by
network latency

*Important compiler optimization:

*ldentify update operations and translate them to one sided
update in messaging library
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UPC Compiler Optimizations Impact

* 64 threads on a Blue Gene/L system

FE trans TPO frans
Noopt Indexing  Update Forall Al
Random  (GUPS 0.0031090 0.0027043 0.0027243 0.0056082 0.0043764 0.0191830
Access  [Time (s) 172681 198492 197.033 95729 122673  27.987
Speedup 11495  100.00 100.74 20735  161.81 709.23
Stream  GB/s 02028 01343 01769 01343 02831 32.3609
Triad Time (s) 23665 35730 27129 35730  16.952 0.148
Speedup 150.98  100.00  131.71 100.00 210.77  24076.95
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Theoretical GUPS limit on Blue Gene/L

Pre-condition: one packet per update (naive algorithm)

Update packets:

16 Byte header

4 Bytes target SVD
4 Bytes offset

4 Bytes op type,kind
8 Bytes update value

Packet size: 64 Bytes
75 Bytes on wire

Packet size: 75 Bytes
cycles

300
Wire speed: 4 gcles |~ packet 6 packets
Byl‘e —2.38-10 -
second-link

ns

CPU speed. 700 MHz =1.4
cycle
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Cross-section bandwidth:

64 x 32 x 32 torus:
2 wires/link x 32 x 32 x 2 (torus) = 4096 links

= 9.74-10° packets/s

Half of all packets travel across the cross-section;
GUPS limit = 19.5
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Blue Gene/L Performance Results

EP Stream Triad

Processors Problem Size

GB/s

1 2,000,001

0.73

2 2,000,001

1.4

04 357913941

46.72

2048 11,453,246,122

1472.00

Random Access

Processors Problem Size  GUPS
2"N

1 22 0.00054

2 22 0.00078

64 27 0.02000

2048 35 0.56000

65536 40  11.54000

131072 41 16.72500

63536 366,503,875,925

47830.00

131072 733,007,751,850

95660.00

Won the HPC Challenge Productivity Award
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NAS CG Class C
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Conclusions

* We have shown that scaling programs using the
shared memory programing paradigm to a large
number of processors is not a myth

* However, scaling to hundreds of thousands of
threads is far from trivial; it requires:

— Careful design of the algorithm and data structures

— Scalable design of run-time system and system software
(communication libraries)

— Support from the compiler

* Lots of challenges on pro%rammlng large scale
machines are still waiting for compiler attention
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