
IBM TJ Watson Research Center

© 2006 IBM Corporation

Shared Memory Programming for Large Scale
Machines

Kit Barton, Călin Caşcaval, George Almási,
Yili Zheng, Montse Farreras, Siddhartha
Chatterjee, and José Nelson Amaral

IBM TJ Watson Research Center

© 2006 IBM Corporation2 Programming Language Design and Implementation June 12, 2006

Motivation

• Large scale machines (such as Blue Gene and large
clusters) and parallelism (such as multi-core chips)
are becoming ubiquitous

• Shared memory programming is accepted as an
easier programming model, but MPI is still the
prevalent programming paradigm

Why?

• Because typically the performance of the shared
memory programs lags behind and does not scale as
well as the performance of MPI codes

IBM TJ Watson Research Center

© 2006 IBM Corporation3 Programming Language Design and Implementation June 12, 2006

Overview

• Demonstrate that performance on large scale
systems can be obtained without completely
overwhelming the programmer by:
– Taking Unified Parallel C (UPC), a Partitioned Global
Address Space (PGAS) language, that presents a shared
memory programming paradigm

– Using a combination of runtime system design and
compiler optimizations

– Running on Blue Gene/L, a distributed memory machine
and the largest supercomputer available today

IBM TJ Watson Research Center

© 2006 IBM Corporation4 Programming Language Design and Implementation June 12, 2006

Outline

• Brief overview of UPC features

• The IBM xlupc compiler and run-time system

• Brief overview of the Blue Gene/L system

• Compiler optimizations

• Experimental results

• Conclusions

IBM TJ Watson Research Center

© 2006 IBM Corporation5 Programming Language Design and Implementation June 12, 2006

Unified Parallel C (UPC)

• Parallel extension to C
– Programmer specifies shared data

– Programmer specifies shared data distribution (block-cyclic)

– Parallel loops (upc_forall) are used to distribute loop iterations
across all processors

– Synchronization primitives: barriers, fences, and locks

• Data can be private, shared local and shared remote
data
– Latency to access local shared data is typically lower than
latency to access remote shared data

• Flat threading model – all threads execute in SPMD
style

IBM TJ Watson Research Center

© 2006 IBM Corporation6 Programming Language Design and Implementation June 12, 2006

xlupc Compiler Architecture

UPC Program

TOBEY

TPO xlupc
TPO

Linker/Loader

Executable

Runtime
Library

xlupc Front-end

UPC source

w-code

w-code w-code

Object code

UPC enhanced
w-code

IBM TJ Watson Research Center

© 2006 IBM Corporation7 Programming Language Design and Implementation June 12, 2006

xlupc Runtime System

• Designed for scalability

• Implementations available for
– SMP using pthreads

– Clusters using LAPI

– BlueGene/L using the BG/L message layer

• Provides a unique API to the compiler for all the
above implementations

• Provides management of and access to shared data
in a scalable manner using the Shared Variable
Directory

IBM TJ Watson Research Center

© 2006 IBM Corporation8 Programming Language Design and Implementation June 12, 2006

Shared Variable Directory

0

1

A
L
L

typelocal
addrlocal sizeblock

factorelem size

var
1var
2var
3

0

1

A
L
L

typelocal
addrlocal sizeblock

factorelem size

var
1var
2var
3

0

1

A
L
L

typelocal
addrlocal sizeblock

factorelem size

var
1var
2var
3

Thread 0 Thread 1 Thread THREADS-1

. . .

shared [SIZE/THREADS] int A[SIZE];

IBM TJ Watson Research Center

© 2006 IBM Corporation9 Programming Language Design and Implementation June 12, 2006

BlueGene/L system

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Card
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

IBM TJ Watson Research Center

© 2006 IBM Corporation10 Programming Language Design and Implementation June 12, 2006

MPICH2

BlueGene/L MPI Software Architecture

collectivespt2pt datatype topo

CH3

socket

MM

Common Messaging
Library

bgl

torus tree GI

Torus
Device

Tree
Device

GI
Device

Packet
Layer

Abstract Device Interface

IBM TJ Watson Research Center

© 2006 IBM Corporation11 Programming Language Design and Implementation June 12, 2006

Common Messaging Library

Sysdep
arch specific
initialization

IPC
vnmode

copromode

Tree
collectives
point-to-

point

Torus
collectives
point-to-

point

GI

Advance
interrupts
polling
locks

Common messaging API

MPICH ARMCI/GA UPC User apps

2sided ops 1sided ops collectives

IBM TJ Watson Research Center

© 2006 IBM Corporation12 Programming Language Design and Implementation June 12, 2006

Compiler Optimizations

• Memory affinity analysis and optimization

• Parallel loop overhead removal

• Remote update operations

IBM TJ Watson Research Center

© 2006 IBM Corporation13 Programming Language Design and Implementation June 12, 2006

Memory affinity

• The UPC RTS uses the SVD to manage and access
shared data, and thus there are several levels of
indirection that impact performance

• If we can prove that the data is local, the shared
memory access through SVD can be replaced with a
direct memory access to the shared local section of
memory of the thread

• For an affine array index expression of the form
f(i

1
, i

2
, ..., i

n
) and a upc_forall affinity expression g, the

condition for the array element to be local is:

 f i1, i 2, ... , in
blocksize

mod MYTHREAD=g

IBM TJ Watson Research Center

© 2006 IBM Corporation14 Programming Language Design and Implementation June 12, 2006

Optimizing UPC Parallel Loops

upc_forall(i=0; i < N; i++; &A[i])
{

A[i] = ...;

}

for (i=0; i < N; i++)
{

if (upc_threadof(A[i]) == MYTHREAD)

 A[i] = ...;

}

for (i=MYTHREAD * BF; i < N; i+= THREADS*BF) {

 for (j=i; j < i+BF; j++) {
 A[j] = ...;
 }

}

shared [BF] int A[N]; affinity test branch

IBM TJ Watson Research Center

© 2006 IBM Corporation15 Programming Language Design and Implementation June 12, 2006

Remote update optimization

• Identify read-modify-write operations of the form

 A[i] = A[i] OP value

• Instead of issuing a get and then a put operation, we
issue a remote update operation, where we send the
address of A[i] and the value to the remote
processor

• Take advantage of existing hardware and software
primitives in Blue Gene/L:
– Small hardware packet size and network guaranteed
delivery

– Active message paradigm in the message layer

IBM TJ Watson Research Center

© 2006 IBM Corporation16 Programming Language Design and Implementation June 12, 2006

Experimental Environment

• Blue Gene/L machines
•From a small 1 node-card (64 processors, 8 GB memory) up
to 64 racks (128K processors, 32 TB memory)

• Benchmarks:
•HPC Challenge: Random Access and EP STREAM Triad
•NAS CG

• Software:
•Experimental versions of the xlupc compiler, runtime system,
messaging library and control system software

IBM TJ Watson Research Center

© 2006 IBM Corporation17 Programming Language Design and Implementation June 12, 2006

Random Access

● Each update is a packet – performance is limited by
network latency

●Important compiler optimization:

•Identify update operations and translate them to one sided
update in messaging library

u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);
upc_forall (i = 0; i < NUPDATE; i++; i) {
 ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);
 Table[ran & (TableSize-1)] ^= ran;
}

IBM TJ Watson Research Center

© 2006 IBM Corporation18 Programming Language Design and Implementation June 12, 2006

UPC Compiler Optimizations Impact

FE trans TPO trans
No opt Indexing Update Forall All

Random GUPS 0.0031090 0.0027048 0.0027248 0.0056082 0.0043764 0.0191830
Access Time (s) 172.681 198.492 197.033 95.729 122.673 27.987

Speedup 114.95 100.00 100.74 207.35 161.81 709.23
Stream GB/s 0.2028 0.1343 0.1769 0.1343 0.2831 32.3609
Triad Time (s) 23.665 35.730 27.129 35.730 16.952 0.148

Speedup 150.98 100.00 131.71 100.00 210.77 24076.95

• 64 threads on a Blue Gene/L system

IBM TJ Watson Research Center

© 2006 IBM Corporation19 Programming Language Design and Implementation June 12, 2006

{{Packet size:75 Bytes

Wire speed: 4
cycles
 Byte } 300

cycles
packet

CPU speed: 700 MHz =1.4
ns
cycle

} 2.38⋅106 packets
second⋅link

16 Byte header
4 Bytes target SVD
4 Bytes offset
4 Bytes op type,kind
8 Bytes update value

Update packets:

Packet size: 64 Bytes
75 Bytes on wire

Cross-section bandwidth:
64 x 32 x 32 torus:
2 wires/link x 32 x 32 x 2 (torus) = 4096 links
 = 9.74.109 packets/s

Half of all packets travel across the cross-section;
GUPS limit = 19.5

Pre-condition: one packet per update (naïve algorithm)
Theoretical GUPS limit on Blue Gene/L

IBM TJ Watson Research Center

© 2006 IBM Corporation20 Programming Language Design and Implementation June 12, 2006

Blue Gene/L Performance Results

Processors Problem Size GUPS
2^N

1 22 0.00054

2 22 0.00078

64 27 0.02000

2048 35 0.56000

65536 40 11.54000

131072 41 16.72500

Processors Problem Size GB/s

1 2,000,001 0.73

2 2,000,001 1.46

64 357,913,941 46.72

2048 11,453,246,122 1472.00

65536 366,503,875,925 47830.00

131072 733,007,751,850 95660.00

Random Access EP Stream Triad

Won the HPC Challenge Productivity Award

IBM TJ Watson Research Center

© 2006 IBM Corporation21 Programming Language Design and Implementation June 12, 2006

NAS CG Class C

64 128 256 512 1024 2048
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

MPI

UPC

Threads

T
o
ta

l
M

o
p
/s

IBM TJ Watson Research Center

© 2006 IBM Corporation22 Programming Language Design and Implementation June 12, 2006

Conclusions

• We have shown that scaling programs using the
shared memory programing paradigm to a large
number of processors is not a myth

• However, scaling to hundreds of thousands of
threads is far from trivial; it requires:
– Careful design of the algorithm and data structures

– Scalable design of run-time system and system software
(communication libraries)

– Support from the compiler

• Lots of challenges on programming large scale
machines are still waiting for compiler attention

