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Abstract
This paper describes the design and implementation of a scal-
able run-time system and an optimizing compiler for Unified Par-
allel C (UPC). An experimental evaluation on BlueGene/L R©, a
distributed-memory machine, demonstrates that the combination of
the compiler with the runtime system produces programs with per-
formance comparable to that of efficient MPI programs and good
performance scalability up to hundreds of thousands of processors.

Our runtime system design solves the problem of maintain-
ing shared object consistency efficiently in a distributed memory
machine. Our compiler infrastructure simplifies the code gener-
ated for parallel loops in UPC through the elimination of affin-
ity tests, eliminates several levels of indirection for accesses to
segments of shared arrays that the compiler can prove to be lo-
cal, and implements remote update operations through a lower-
cost asynchronous message. The performance evaluation uses three
well-known benchmarks — HPC RandomAccess, HPC STREAM
and NAS CG — to obtain scaling and absolute performance num-
bers for these benchmarks on up to 131072 processors, the full
BlueGene/L machine. These results were used to win the HPC
Challenge Competition at SC05 in Seattle WA, demonstrating that
PGAS languages support both productivity and performance.

Categories and Subject Descriptors Software [Programming
Techniques]: Concurrent Programming

General Terms Performance, Experimentation

Keywords PGAS Programming Model, UPC, BlueGene

1. Introduction
With the advent of petascale computing, programming for large
scale machines is becoming evermore challenging. Traditional lan-
guages designed for uniprocessors, such as C or Fortran, allow only
the simplest kernels to scale to millions of threads of computation.
When building solutions for real-life applications, understanding
the problem and designing an algorithm that scales to a large num-
ber of processors is a challenge in itself. Thus, adequate program-
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ming tools are essential to increase the programming productivity
for scientific applications. Initiatives like the DARPA High Produc-
tivity Computing Systems (HPCS) program [13] are encouraging
industry and academia to take a fresh look at the issue of program-
ming large scale systems.

This paper describes the design and implementation of a Run-
Time System (RTS) and a compiler for Unified Parallel C (UPC) [7,
15] on the BlueGene/L machine. UPC is an example of the Par-
titioned Global Address Space (PGAS) programming model that
embeds a few simple shared-memory primitives into C to enable a
Single Program Multiple Data (SPMD) style of parallel program-
ming. In the UPC execution model, all the threads are started be-
fore the user code begins. Threads are synchronized using barriers
and locks. The PGAS memory model gives each thread access to
a private section, a shared-local section, and a shared-remote sec-
tion of memory. Threads have exclusive, low-latency, access to the
private section of memory. The latency to access data in the shared-
local section is typically lower than the latency to access data in the
shared-remote section.

UPC provides two memory consistency models: a strict model
and a relaxed model. Strict consistency is used to guarantee the
ordering of memory references at thread level. Relaxed consistency
is typically used for performance. The consistency model can be
specified globally or on a per-access basis. The UPC memory
and threading models can be mapped to either distributed-memory
machines, shared-memory machines or hybrid (clusters of shared-
memory machines). Our current implementation supports both a
shared-memory mapping and a distributed-memory mapping, and
it is available on the IBM alphaWorks [30].

BlueGene/L [16] is a distributed-memory machine that features
as many as 65,536 dual-processor compute nodes, each operating
at very low power, and hence at the relatively low frequency of
700 MHz. Designed for 360 Teraflop/s peak performance, the ma-
chine sustains 280 Teraflop/s when running the optimized version
of the Linpack benchmark [29]. In addition to the original Blue-
Gene/L installation at Lawrence Livermore National Labs (LLNL),
there are now a number of smaller installations scattered across the
globe.

The strength of BlueGene/L is its network — a 64 × 32 × 32
3D torus that spans all compute nodes. The default compute node
software includes a compact kernel and a port of the MPI library,
as well as the standard IBM Fortran, C and C++ compilers. It has
been shown that careful programming and judicious use of MPI
allow scaling of applications to the full size of the machine.

A long standing issue in high-performance computing is the
productivity of efficient software development for high-end parallel
machines. The expected increased dissemination of machines built



on a hybrid memory-access model compounds this problem. A hy-
brid memory-access model that consists of a collection of multi-
processor shared-address processing nodes connected through a
message-passing fast network is likely to be dominant for high-
performance computing in the near future. A programming lan-
guage that is designed under a PGAS programming model, such
as UPC, facilitates the encoding of data partitioning information
in the program. Closing the gap between the programming and the
machine models increases software productivity and results in the
generation of more efficient code.

UPC implementations prior to ours were designed for SMPs or
clusters composed of several hundred processors. Such a design
point was eminently justifiable until recently given the lack of avail-
ability of parallel machines at the scale of BlueGene/L. Given that
our implementation targets much larger systems, scalability was a
prime concern in our design, which required us to deviate from
certain design principles used in prior implementations. For exam-
ple, we use a Shared Variable Directory (SVD) to keep track of
the shared data, and thus avoid the possible memory fragmentation
which would occur if shared data had to be mapped to the same
address location in each node.

All improvements in the runtime are contingent on the ability of
the compiler to exploit them efficiently. This paper describes new
compiler optimizations that simplify the code generated for paral-
lel loops in UPC by removing an affinity test from inside the loop
whenever possible. The compiler eliminates several levels of indi-
rection when it can prove that a segment of a shared array is local
to the processor referencing it. Finally, the compiler makes efficient
use of support for data-update operations implemented in the UPC
RTS. When these operations are used, an update on a remote data
item can be implemented through a single asynchronous message.

Thus, the main contributions of this paper are:

• a new UPC compiler and run-time system that allow scaling of
UPC programs to more than a hundred thousand processors;
• the design and implementation of a distributed shared variable

directory that solves the problem of addressing shared data in
very large scale PGAS systems;
• demonstrate that productivity through the use of PGAS lan-

guages for large scale machines is possible. Using very simple,
naı̈ve implementations of two of the HPC Challenge bench-
marks, we won the HPC Challenge Productivity Award [19],
receiving the community endorsement for this work.

The rest of the paper is organized as follows. Section 2 describes
the XL UPC compiler and UPC RTS. Section 3 describes the
compiler optimizations implemented in the XL UPC compiler.
Section 4 outlines the experiments and the results obtained from
running the benchmarks on a BlueGene/L system. The related work
is presented in Section 5 and finally conclusions and future work
are discussed in Section 6.

2. Environment
We implemented a UPC compiler based on a development version
of the IBM R©XL Compiler framework. Utilizing this framework
offers the advantage that the language semantics can be carried on
from parsing, through different levels of optimization, all the way to
the code generator. By contrast, source-to-source translators have to
rely on the native compiler and the run-time environment for many
low level optimizations. Experimental evaluation of global-address
systems have shown that the single thread performance may vary
dramatically [11].

2.1 XL Compiler Framework
The XL Compiler framework [23] has three main components:
a Front End (FE) that parses different languages into a common
intermediate representation (W-Code), the Toronto Portable Op-
timizer (TPO) – a high-level optimizer that performs machine-
independent compile-time and link-time optimizations, and a code
generator (TOBEY) that performs machine-dependent optimiza-
tions and generates code appropriate for the target machine. The
XL UPC compiler uses all these components, of which only TO-
BEY is unmodified.

Figure 1 shows the role of each component in the compilation
of UPC programs for a variety of platforms. The FE translates the
UPC source to W-Code. To deliver a functional system early in the
project, the FE translated UPC directly to calls to the UPC RTS.
This path is still available in the XL UPC compiler and is shown
as the left-hand-side path through TPO in Figure 1. Because of the
direct translation, the compilation can bypass the TPO component
and go directly to the code generation as shown with a dashed ar-
row. While this version of the compiler allowed for rapid prototyp-
ing, the performance of the generated code is not optimal. Specifi-
cally, when unmodified W-Code is used, each individual access to
a shared variable has to be converted to an appropriate RTS call.
This conversion has two implications for the optimizations that
are performed. First, unless it can prove otherwise, the compiler
must assume that the function calls have side-effects and therefore
must be treated as kill-sites. This assumption reduces the scope of
many data-flow optimizations such as copy propagation and com-
mon sub-expression elimination. Second, while the compiler will
inline many of the RTS function calls, the inlining occurs late –
after many of the optimization passes have run. Thus, the inlined
code is not exposed to several data-flow analyzes and transforma-
tions that could successfully optimize it.

As a result of these performance limitations, the translation of
the UPC code to calls to the RTS should be delayed until later
in the compilation process. To facilitate this delayed translation,
the XL UPC compiler enhances the intermediate language W-Code
with several primitives to support UPC. The extensions to W-Code
include the representation of shared variables, strict and relaxed
attributes for memory accesses, and the upc forall construct.

The FE uses the extended W-Code to annotates all the shared
variables and other constructs with their UPC semantics. TPO
processes the W-Code and performs optimization and translation,
shown in the right-hand path through the UPC TPO in Figure 1. The
advantage is that now all the optimization passes see the shared-
array references as memory accesses and can apply all the classical
code-optimizations available in TPO. These optimizations include
existing link-time optimizations because the entire UPC RTS code
is available as a library to the compiler. Although used in the
reported results, these optimizations are not further discussed in
this paper because they are not UPC specific. The UPC specific
optimizations are discussed in Section 3.

2.2 Runtime System
The UPC RTS provides a platform-independent interface that al-
lows compiler optimizations to be applied independent of the ma-
chine code generation. This interface can be implemented on a va-
riety of platforms. A similar approach was followed in the GAS-
Net runtime system [4]. We have implemented the UPC RTS in-
terface on three different platforms: (1) shared-memory multipro-
cessors (SMP) using the Pthreads library [5]; (2) clusters of work-
stations based on the Low-level Application Programming Inter-
face (LAPI) [27] library; and (3) BlueGene/L using the BlueGene/L
message layer [1]. In this paper we discuss results only on the Blue-
Gene/L machine. Most of the optimizations presented here are ap-
plicable to the other implementations.
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Figure 1. XL UPC Compiler and Runtime System

The UPC RTS exposes a few simple abstractions to the com-
piler, mainly derived from the UPC language features: a shared ob-
ject handle, a shared object address, the thread affinity of a shared
object, and an API to assign, dereference, and cast shared objects.
The RTS also implements the UPC predefined functions and li-
braries.

Shared objects are a fundamental abstraction in UPC programs.
Our RTS recognizes five kinds of shared objects: shared scalars;
shared structures, unions, and enumerations; shared arrays; shared
pointers with shared targets; and shared pointers with private tar-
gets. A transparent handle is used to refer to a shared object. These
handles are kept internally, by the RTS, in a Shared Variable Di-
rectory (SVD). The UPC RTS provides routines to initialize and
manipulate these handles. It is the responsibility of the compiler to
manage the SVD entries when variables are created or go out of
scope.

UPC shared objects have affinity to a thread, i.e., they reside
in the shared memory section local to the thread. Shared handles
point to a structure representation of a shared address that allows
the program to reference shared objects anywhere in the partitioned
global address space (essentially a fat pointer representation of the
global address). The cost of accessing shared data through these
handles is significantly higher than a simple dereference of a tradi-
tional C pointer. Therefore, if the compiler can statically determine
the thread affinity of shared objects, it can convert these shared ac-
cesses to direct memory dereferences (C-like pointer accesses), and
thus improve performance. A detailed discussion on the analysis
required to determine thread affinity is presented in Section 3.

We designed the UPC RTS with extreme scalability in mind.
The SVD is a partitioned data structure used by the RTS to man-
age allocation, deallocation, and access to shared variables. It is de-
signed to scale to a large number of threads while allowing efficient
manipulation of shared data. As opposed to other UPC implemen-
tations, we do not require that local sections of arrays be mapped to
the same memory location in all the threads. Such restricted map-
ping can lead to unacceptable levels of wasted memory when am-
plified by the large number of processors we are targeting. Rather,
like Titanium [31], we allow the local sections of a shared array to
be of arbitrary length and rely on the RTS to do the bookkeeping.
The SVD has the following design principles:

1. Threads must be able to create and destroy shared variables
independent of each other and must keep the SVD consistent
with a minimum amount of communication;

2. For collective operations, such as upc all alloc, when all
the threads execute the same operation, no locking should be
required;

3. No structure other than the SVD is allowed to keep pointers or
references based on the number of threads; if remote informa-
tion about a variable is required, the requester should get the
information from the SVD. This in turn leads to a message ex-
change unless the SVD caches remote information to improve
performance.

An example of the SVD for a distributed memory machine is
presented in Figure 2. As specified by the UPC memory model,
each thread owns a section of the memory (the shared-local por-
tion) and also has a private section of the memory. The SVD con-
sists of a two-level data structure: at the first level there is an array
with THREADS+1 entries, where THREADS is the number of threads
in an UPC program. Each entry points to a partition. This partition
stores handles to shared variables that have affinity to the thread
identified by MYTHREAD. For instance, handles for variables allo-
cated using upc local alloc are stored in this partition. There is
one extra partition, we call it the ALL partition, which is used for
all statically declared non-scalar variables and for all variables allo-
cated using upc all alloc. The reason for this separation is that,
in a typical UPC program, there are many “globally” shared vari-
ables that belong to the ALL partition and only a few local shared
variables. Moreover, different threads may have different numbers
of shared variables. Using this design, the partitions can be resized
independently when threads allocate shared data dynamically.

The example in Figure 2 shows the steps needed to access a
shared array using the SVD. Given a shared-variable handle, the
system locates the control block (“fat-pointer”) for the shared array
by dereferencing the entry in the SVD pointed to by the handle. The
control block contains information about the layout of the array,
such as blocking factor and element size, as well as information
about the local section of the array, such as the local size and the
local address. Given an array element specified by a global index,
the layout information is used to compute the thread where the
element is located, while the local information is used to compute
the physical address of the element in the shared-local memory of
that thread. While each thread has a copy of the SVD, the data
stored in the control blocks are different, depending on the location
of the variable in the thread’s shared-local memory. Similar control
blocks are defined for the other types of shared variables.

As shown in Figure 2, several levels of indirection are needed to
address a shared variable. In Section 3.2 we discuss an optimization
that reduces the cost of addressing shared variables when the com-
piler can determine the affinity of the shared-variable access. Other
optimizations, such as caching the values of shared variables and
the addresses of shared objects, are possible, but are not addressed
in this paper.

UPC provides routines for dynamically allocated data, such
as upc global alloc, upc all alloc, and upc local alloc.
The SVD is designed to support both statically-declared shared
variables and dynamically-allocated shared data. For example,
upc all alloc is a collective operation that requires synchro-
nization and communication between threads. In a machine where
messages are not guaranteed to arrive in order, such as BlueGene/L,
this requirement could increase the cost of accessing the SVD be-
cause of additional locking. We addressed this issue by having each
thread manage its set of shared-local variables. Essentially, there
is no constraint on the message ordering because operations on
the SVD are “atomic”. Each thread is responsible for updating the
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Figure 2. Shared Variable Directory in a PGAS distributed-memory machine.

SVD. A thread T1 will not see the shared variables owned by thread
T2 6= T1 until its copy of the SVD is updated by T2. The variables
stored in the ALL partition are allocated through collective opera-
tions, and therefore guaranteed to be consistent.

2.3 Messaging Library
Although the UPC RTS was designed to leverage multiple types
of hardware, such as shared-memory machines and the LAPI li-
brary, all measurements presented in this paper were made on Blue-
Gene/L using a port of the UPC RTS to the BlueGene/L communi-
cation library.

The communication library was designed to support both MPI
and lighter-weight communication paradigms. This communica-
tion library supports UPC, Global Arrays [24] and Hierarchically
Tiled Arrays [2]. Our design target was low overhead and high scal-
ability. This is how we achieved these goals:

• Messaging library choice: The relatively low ratio of CPU
speed to network speed makes it imperative to send and process
messages in as few CPU cycles as possible. Low overhead com-
munication is very important for UPC performance, because
non-optimized UPC code typically performs individual remote
variable dereferences. These references result in very short net-
work communications that are latency bound.
Implementing the UPC RTS on top of the standard Blue-
Gene/L MPI library would have caused unacceptably high la-
tency because of the software overhead of starting, monitoring,
and receiving an MPI message. Many of our communication
library optimizations address this problem.

• Packetization and network order: The BlueGene/L network
is packet-based with packets from 32 to 256 bytes long. Due
to the way packets are routed in the BlueGene/L network, ordi-
nary data packets can arrive out of order. Packets can be forced
to arrive in order, but doing so with a large number of packets
tends to create hot spots in the network. These hot spots de-
crease overall throughput.
In practice any data transfers in UPC that require more than
one packet of data have to be accomplished by handshake, re-
sulting in long latencies. We use ordered packets for very short
data communications, (e.g., single-value get/put operations)
to avoid the need to hand-shake with the receiver for the trans-
fer of a 4-byte value.
• Alignment issues: The CPU-network interface is accessible

only in 16-byte chunks. Moreover, each access has to be 16-
byte aligned. Thus, when UPC buffers are arbitrarily aligned the
messaging library has to copy data to and from aligned buffers
during send/receive. This copying results in CPU overhead —
memory copies are inordinately expensive on BlueGene/L—
that translates into higher latencies for short transfers and into
potentially decreased bandwidth when a node transmits and
receives simultaneously. We mitigate the bandwidth problem
by employing techniques already described in the context of
the MPI library implementation [1].
• Overlapping computation and communication: One-sided

communication is not directly supported by the BlueGene/L net-
work hardware. All packets are inserted into/extracted from
the network by the processor(s). Moreover, the same set of



double-wide floating-point registers are used by the machine to
perform floating point computation and to talk to the network
device, limiting the capability of a processor to compute and
communicate at the same time.
Each BlueGene/L node features two processors. The original
design point of BlueGene/L called for one of the processors
to act as a communication processor, while the other performs
computation. However, co-operation between the processors is
limited by a lack of coherent view of the memory, making
low-latency communication using a dedicated communication
processor impractical.
Another way to achieve the effect of overlapping computation
and communication would have been to interrupt the computa-
tion processor when a network packet arrives. However, switch-
ing to a network handler for every packet involves at least a
context switch, with the added burden (compared to other ma-
chines) of saving and restoring a relatively larger number of
registers, causing performance loss.
Ultimately, while running programs on BlueGene/L we noticed
that most applications that were written to scale to a high num-
ber of processors tend to perform synchronized (and most often,
collective) communication anyway. In hindsight, the problem
of overlapping computation and communication seems not to
be as important as it seemed.
• Memory and scaling issues: Because the network hardware

does not support one-sided communication, the remote get
operation has to be implemented by sending a request to the
processor that owns the data. This processor then has to send a
reply to the processor that originally requested it.
Therefore a remote get operation involves the allocation of re-
sources at the passive target. This allocation causes two prob-
lems. First, memory allocation on the passive target constitutes
overhead. We mitigate this overhead by allocating and main-
taining a pool of pre-allocated requests. The second problem
occurs when a processor is the target of too many remote get
requests. Applications written for scalability typically do not
exhibit such patterns, and thus we followed the decision made
in the BlueGene/L MPI implementation of shifting the burden
of managing high volume of communication to the program-
mer.

3. Compiler Optimizations
In this section we discuss three compiler transformations that im-
proved the performance for the set of benchmarks studied. These
optimizations are: reducing the overhead of the parallel loop con-
struct, transforming shared-variable accesses that have affinity to
the accessing thread into local accesses, and identifying and ex-
ploiting the update primitives of the UPC RTS.

3.1 upc forall Loop Simplification
The upc forall statement is used in UPC programs to distribute
iterations of a loop among all threads. Instead of each thread
executing all iterations of the loop, an iteration is conditionally
executed by a thread based on an affinity test. The affinity test
is specified by the programmer using a fourth parameter in the
upc forall loop declaration. This parameter must contain either
a pointer-to-shared type, an integer type or the continue keyword.
When a pointer-to-shared type is used, an iteration i of the loop is
executed by thread j if and only if j owns the shared data specified
in the affinity test. Thus, it is common to use the induction variable
in the affinity parameter in order to ensure iterations are evenly
distributed among the threads. When the affinity parameter is an
integer type, an iteration i is executed by a thread j if and only if

the integer value of the affinity parameter modulo the number of
threads is equal to j. When the continue keyword is used, or no
statement is specified, the loop body is executed by all threads.

All upc forall loops that use the (unmodified) induction vari-
able of the loop as the affinity parameter are optimized to remove
the branch condition from the loop body. The lower bound of the
loop is modified to start at the value MYTHREAD and the increment
of the loop is modified to increment iterations of the loop by the
number of threads. This transformation guarantees that each thread
only executes the iterations of the loop, as specified by the affin-
ity parameter, without requiring a branch inside the loop body. The
removal of the branch statement can benefit many code-reordering
optimizations. We are currently improving the way the compiler
optimizes upc forall loops to include integer affinity parameters
that use a modified induction variable as well as pointer-to-shared
affinity parameters. However, even this simple optimization cap-
tures many of the loops in the existing UPC benchmarks.

3.2 Local Memory Optimizations

OPTIMIZESHAREDARRAYINDEX(Procedurep)
1. for each loop Li in p
2. if Li is not a upc forall loop
3. continue
4. endif
5. for each shared memory reference Rs is Li do
6. if DIST MEM ARCH and Rs is non-local
7. continue
8. endif
9. Rhandle ← SVD handle for Rs

10. LPreheader
i .Add(Raddress ← BaseAddress(Rhandle))

11. off ← elt sz ∗ ((blk sz ∗ course) + phase)
12. if Rs is a def
13. symdata ← data to store to Rs

14. if Rs.DataType is intrinsic
15. LBody

i .Add(storeind(Raddress, off, data))
16. else
17. LBody

i .Add(memcpy(Raddress + off,data,elt sz))
18. endif
19. else
20. symdst ← location to store data from Rs

21. if Rs.DataType is intrinsic
22. LBody

i .Add(dst ← loadind(Raddress, off))
23. else
24. LBody

i .Add(memcpy(dst,Raddress + off,elt sz))
25. endif
26. endif
27. LBody

i .Remove(Rs)
28. endfor
29. endfor

Figure 3. Optimizing Shared Array Indexes (Local Memory).
DIST MEM ARCH is a flag indicating that the target architecture
is distributed memory.

This optimization consists of converting accesses to shared data
performed through shared handles (see Section 2.2) into pointer
dereferences when the location of the reference can be deter-
mined. As discussed before, the overhead of addressing shared data
through handles (fat pointers) can be significant; it requires several
levels of indirection in the SVD and the shared-variable control
block. Thus C like pointer dereferences are much less costly. In
a distributed-memory architecture, pointers that are known to be
non-local must remain fat because it is necessary to use functions
defined in the UPC RTS to perform the memory access.



Accesses to shared arrays are optimized using the OPTIMIZE-
SHAREDARRAYINDEX algorithm shown in Figure 3. The algo-
rithm examines each shared reference in each upc forall loop in
a given procedure. Non-local memory references in distributed-
memory architectures are not candidates for this optimization
(step 6 of the algorithm). The detection of remote accesses in this
algorithm relies on the affinity test of the upc forall loop.

In general, for an affine array-index expression f(i1, i2, . . . , in),
and a upc forall affinity expression g, the necessary condition
to ensure that an array element is local is:

(f(i1, i2, . . . , in)/blk sz)%THREADS = g.

Note that blk sz (the block size of the shared array or the shared
pointer) is known at compile time.

In many cases this condition can be statically verified. For any
fat-pointer shared-array reference that satisfies this condition the
compiler can transform the array access into a split operation: first,
the code to calculate the base address of the array is generated —
this code is common to all the elements of an array and can be
hoisted out of the innermost loop; and second, the code to calcu-
late the offset and to perform the actual memory operation using
traditional C pointers is generated. Array references for which the
affinity can not be determined statically will remain fat pointer ac-
cesses.

When computing the base address of the array, the same address
translation must be performed using the SVD as when the UPC
RTS functions are used to access the shared object. Thus, the base
address calculation has approximately the same cost as using the
UPC RTS functions to access the shared object. The benefit from
this optimization comes when the base address of an array is com-
puted once and subsequent shared-array accesses are transformed
to direct-memory accesses.

Step 9 obtains the handle used by the UPC RTS to identify
Rs. Step 10 inserts a call to a function in the UPC RTS to obtain
the base address of Rs in the SVD. The loop preheader contains
statements that should only be executed if the loop body executes
but do not need to be executed in every iteration of the loop. It is
typically used to initialize loop invariant variables used in the loop.

The offset from the base address of Rs is computed using the
following equation:

elt sz ∗ ((blk sz ∗ course) + phase)

The elt sz is the size of each shared-array element. The course is
used to identify the block that contains the given array element.
The phase indicates the element offset within the affinity block.
Computing the course and phase requires an integer divide by the
number of threads. When the number of threads is known to be a
power of two this division can be replaced by a shift operation.

The algorithm then determines the type of reference that Rs

represents. If Rs is a definition of (store to) shared data, the sym-
bol representing the data stored to Rs is obtained (Step 13). The
symdata symbol is obtained through the expression tree contain-
ing Rs (in TPO each reference can locate the expression tree that
contains it). If the data type of the reference (i.e. the type of the
shared array) is an intrinsic, an indirect store is generated to store
the data to the memory location Raddress + off (Step 15). If the
data type is not intrinsic, a call to memcpy is used to copy the data
to Raddress + off (Step 17). These instructions are inserted im-
mediately after the statement containing Rs in the statement list (in
TPO each reference can also identify the statement that contains it).

If Rs is a use of (load from) shared data, the symbol represent-
ing the location to store the data is obtained. If the type of the shared
data represented by Rs is an intrinsic, then an indirect load is used
to obtain the data, which is stored to the destination (Step 22). If

the type is not an intrinsic, a call to memcpy is inserted to copy the
shared data from Raddress + off to the destination (Step 24).

Note that the data types used to test for intrinsics (Steps 14 and
21) must be obtained from Rs. The symdata and symdst symbols
could represent addresses (i.e. pointers to shared data) and thus they
would not contain information about the underlying type. However,
the algorithm can safely assume that the address represented by the
pointer will point to memory large enough to contain the shared
data because the front end would have generated an error in the
event of a type mismatch.

Step 27 removes the statement containing Rs. Because the
new statement that replaces Rs was inserted immediately after the
statement containing Rs, the original data flow is maintained and
no data dependencies are violated.

3.3 Update Optimizations
The RandomAccess benchmark (see Section 4)is part of an im-
portant class of applications that use read-modify-update opera-
tions. The BlueGene/L messaging library supports an active mes-
sage paradigm, which enables the following optimization: when the
data is not used by the local thread, the update can be performed by
the thread that owns the data, remotely. We discuss next how the
compiler can detect this situation and what are the benefits.

A read-modify-update operation for a memory reference Rs is
defined as Rs = RsOPB, where OP is a binary logical operator
and B is a variable or constant. TPO recognizes this operation as
a scalar reduction on Rs. The challenge for this optimization is
to have the analysis recognize shared memory references in this
operation and compute the correct affinity, so that optimal code is
generated.

The read-modify-update statement is replaced with a call to an
appropriate RTS function, specifying the SVD handle for Rs, the
logical operation, the data type for the operation, and the value used
in the logical operation (B).

If Rs has affinity with the thread P performing the operation, no
communication is required, and the update is done in place, by P .
Otherwise, an asynchronous message is sent from P to the owner
of Rs. This update message will trigger an action when received
by the owner of Rs. Since the message is asynchronous, the sender
will not receive a confirmation.

When the update message is received by the owner of Rs its
handler is triggered. The SVD handle is used to locate the under-
lying memory for Rs. The operation specified in the message is
performed using the data value. Finally, the result is assigned to the
shared memory location.

The thread performing the remote update does not know when
the update has completed. Thus, the remote update optimization is
limited to relaxed shared accesses. Remote updates to strict shared
accesses are performed using the traditional approach (get the cur-
rent value of the shared memory location, perform the update and
write the new value back to the shared memory location) because
execution cannot proceed until the update has finished.

The main benefit of the update optimization is the reduction
of inter-node communication from potentially three messages to
a single message.

4. Experimental Results
This section presents the environment used to run experiments, the
benchmarks used to evaluate the UPC compiler, and the perfor-
mance results obtained.

4.1 Hardware
The benchmark runs for this paper were done on a number of
BlueGene/L installations. Most of the development work was done



on free-standing “node cards” (64 processors) each, and on a single
rack of BlueGene/L (2048 processors). The production runs were
scheduled on the BG/W machine at IBM TJ Watson (20 racks,
40960 processors) and at the LLNL installation (64 racks, 131072
processors).

In all the runs one UPC thread is scheduled for each Blue-
Gene/L processor. Therefore in the following discussion threads
and processors are used interchangeably.

4.2 Random Access Benchmark
RandomAccess is one of the four benchmarks that constitute the
HPC Challenge Competition [19]. We implemented the UPC ver-
sion of the benchmark from first principles, following instructions
laid out on the HPC Challenge web site. To keep the source code
simple, we used the simplest possible algorithm. The resulting UPC
code has 111 lines.

Algorithm: the main loop in RandomAccess resolves to a num-
ber of read-modify-write (RMW) operations to remote locations
across the machine. Each remote RMW operation translates to at
least one network packet. We expected performance of this code to
be bounded by network latency. Hence good run-time and commu-
nication library performance are crucial, as is the compiler’s update
optimization (Section 3.3.

The RandomAccess benchmark is designed to scale weakly (the
memory required by the program is directly proportional to the
number of processors). We arranged for 50% of the memory to be
used. With perfect scaling, a RandomAccess run should take about
300 seconds regardless of the number of processors it is running
on. Since performance does not scale linearly (see the efficiency
column in Table 1), the total runtime increases on larger runs.

Verification: the RandomAccess benchmark can be easily ver-
ified by running it twice. All updates are exclusive-or operations.
They restore the original content of the array when executed for the
second time. Verification is part of our benchmark implementation.

Performance: Table 1 show the absolute and scaling perfor-
mance of RandomAccess measured on up to 64 racks of Blue-
Gene/L. The following definition of efficiency for N processors
is used to measure scaling performance:

Tsingle

Tparallel ×N
.

The benchmark is affected by two performance limiting ef-
fects. At low numbers of processors the gating factor is commu-
nication latency. For large numbers of processors the gating factor
becomes the torus network’s cross-section bandwidth. The cross-
section bandwidth of a booted BlueGene/L partition is determined
by its longest torus dimension; cubic partitions have the highest
cross-section bandwidth relative to the number of nodes they con-
tain.

The largest machine configuration we ran RandomAccess on
(128K processors), has an effective cross section of:

32× 32× 2× 2 = 4096

network links. This results from the 32×32 geometry of the cross-
section and two doubling factors: each link is bi-directional and the
machine is a 3D torus, not a mesh.

Thus cross-section bandwidth for the 128K processor machine
configuration can be determined as the product of the wire speed,
175 MBytes/s, and the number of links in the cross-section, yield-
ing 175× 4096 = 716, 625 MBytes/s, or approx. 716.6 GBytes/s.

Given that RandomAccess update packets end up as 75 bytes
each on the wire, and that only half of all RandomAccess updates
have to travel through the cross section, the maximum theoretical
GUPs number for the benchmark on this configuration can be
calculated as:

2× 716.6

75
= 19.1 GUPS

As Table 1 shows, the actual measured benchmark performance
is very close to this theoretical peak.

Threads Performance Memory TBytes efficiency
(GUPS) used total (%)

1 5.4E-4 0.000128 0.000512 100
2 7.8E-4 0.000256 0.000512 72
4 1.3E-3 0.000512 0.001 61

64 0.02 0.008192 0.016 61
2048 0.56 0.250000 0.500 51
4096 1.11 0.500000 1.000 50
8192 1.70 1.000000 2.000 38

16384 3.36 2.000000 4.000 38
32768 6.10 4.000000 8.000 34
65536 11.54 8.000000 16.000 33

131072 16.72 8.000000 16.000 23

Table 1. Random Access performance results.

Our benchmark beats the absolute performance of Rando-
mAccess measured on any machine other than BlueGene/L, and
achieves about 50% of the best known hand-coded optimization
written for the same machine.

4.3 EP STREAM Triad Benchmark
EP STREAM Triad is another of the HPC Challenge benchmarks.
As with RandomAccess, we implemented this code from first prin-
ciples, ending up with 105 lines of code.

In the EP (embarrassingly parallel) version of the STREAM
triad, all the computation is done locally. We obtained this effect
in UPC by using the affinity clause of the upc forall loop.

The memory requirements of STREAM are dictated by 3 shared
arrays: the HPC Challenge requirement is that the size of these
arrays has to be more than a quarter of the main memory and may
not fit in the cache. Thus, STREAM scales weakly. We chose to be
conservative and selected the arrays to fill half the memory in each
machine where STREAM run.

Verification: on a single processor for an array of more than 366
billion elements verification is expensive and would consume all
our machine allocation quota. Therefore we chose to do verification
by sampling. Each thread randomly selects a set of indices (the set
size being the number of threads running the program) and verifies
that the array element at that location has the correct value. Note
that as opposed to the embarrassingly parallel triad operation, in
which each node operates on local data exclusively, the verification
step involves communication across the machine.

Performance: because the benchmark (Table 2) is embarrass-
ingly parallel, there is no scaling drop. Results for 128, 256, and up
to 32768 nodes are left out of the table because they contribute no
information.

Threads Performance Memory efficiency
(GB/s) TBytes (%)

1 0.73 0.000128 100
2 1.46 0.000256 100
4 2.92 0.000512 100

64 46.72 0.008192 100
65536 47827.00 8.000000 100

131072 95660.77 8.000000 100

Table 2. STREAM Triad performance results.



Figure 4. UPC vs MPI scaling on CG class C.

4.4 NAS Conjugate Gradient Benchmark
For this benchmark we used the NAS CG code as implemented
by El-Ghazawi and F. Cantonnet [14], with a few changes – we
privatized a number of shared variables in the benchmark imple-
mentation that need not be shared, for purposes of code clarity and
performance.

The resulting code looks similar to the MPI version of the
benchmark. A butterfly pattern is set up by the code to aid in the
execution of Allreduce operations, which are executed by MPI
point-to-point primitives. In the UPC version of the code these
primitives are replaced by calls to upc memget, upc memput and
upc barrier. We ended up using barrier calls because point-to-
point synchronization primitives are not yet available in the runtime
and in the communication library. NAS CG has built-in verification.

Performance: Figure 4 compares the scaling of the UPC ver-
sion of the CG benchmark with the NAS NPB MPI version, on in-
put size class C. For up to about 512 processors the performance of
both UPC and MPI is equivalent. However, for more than 512, since
the problem size remains constant (strong scaling), message sizes
become too small to hide MPI overheads for two-sided commu-
nication. In the UPC implementation, due to the use of one-sided
communication, the overheads are smaller and the benefits appear
at 1024 processors and up. The scaling trend in Figure 4 suggests
that CG class C will not scale much beyond 2048 processors.

4.5 Effect of compiler optimizations
What is the effect of the compiler optimizations presented in Sec-
tion 3 in the performance? Table 3 shows the performance obtained
by enabling each optimization in isolation. The optimizations pre-
sented are as follows: FE trans – the translation is done in the FE,
no opt – TPO translation without any UPC specific optimization,
indexing – the indexing optimization discussed in Section 3.2, up-
date – the update optimization presented in Section 3.3 and forall
– the forall loop optimization shown in Section 3.1.

An analysis of the results in Table 3 leads to the following
observations:

• the baseline code generated by the FE translator already does
optimizations, especially inlining and array-access splitting.

Therefore, the baseline TPO-generated code is slower on both
benchmarks, by as much as 50% on STREAM;
• the indexing optimization affects mainly the STREAM bench-

mark, because all accesses are local, as opposed to Random Ac-
cess where most accesses are remote;
• the update optimization improves Random Access by as much

as 200%, because it essentially replaces two messages and three
trips across the network (a get and a put) with a single message
(the update);
• the forall optimization benefits both benchmarks, slightly more

STREAM because of the tighter loop;

The most interesting observation is that while each of these
optimizations show modest (up to 210% gains), by combining all
of them together, we obtain speedups of 7 for Random Access and
240 for STREAM. The compiler was able to transform most of the
fat pointers into standard C pointers (local references), enabling the
code generation step to optimize the code in the same way that it
optimizes a sequential program.

5. Related Work
In addition to UPC, there are a number of partitioned global address
space (PGAS) language extensions available. Co-array Fortran [25]
and Titanium [32] are the representatives for Fortran and Java,
respectively. The family of UPC implementations include Berke-
ley UPC [9], Cray UPC [12], HP UPC [20], GCC-based Intrepid
UPC [17] and MTU UPC [26].

The Berkeley UPC compiler is a source-to-source (UPC-to-C)
translator. Its companion runtime system is built on top of GASNet.
While a source-to-source translation scheme improves portability,
it incurs optimization limitations for accommodating the impact
to different back-end compilers. It remains to be seen how the
Berkeley UPC compiler and its runtime will scale to hundreds of
thousand of threads since current published results are limited to
the current generation of machines with a few hundred threads. The
SVD design discussed in this paper allows us to scale our runtime
to the full size of BlueGene/L.

Chen et al. implemented redundancy elimination, split-phase
communication and message coalescing in the Berkeley UPC Com-
piler [10]. When tested with the GUPS benchmark, which per-
forms random read/modify/write accesses to a large distributed ar-
ray, they observed speedups of 29.3 22.8 and 39.1 on Alpha, Ita-
nium2, and Opteron systems containing 32 processors. They were
able to perform split-phase communication by unrolling the read-
/modify/write loops in GUPS. Further analysis revealed that mes-
sage coalescing could not be performed for GUPS because of the
presence of indirect memory accesses. Their approach did not dis-
tinguish between local and remote accesses and did not attempt
to remove unnecessary communication for local shared pointer ac-
cesses. However, they did identify this technique as a potential op-
timization for future work. In the XL UPC compiler, this technique
has been implemented and hence the optimization is done automat-
ically.

For communication analysis and optimization, Zhu and Hen-
dren use compiler analysis to select the “best” place for insert-
ing communication, reduce redundant remote access and increase
message aggregation [33]. Significant research effort has been also
focused on communication optimizations for data parallel pro-
grams [8, 18, 28].

Iancu et al. optimize communication by demand-driven syn-
chronization [22]. Their runtime system uses virtual memory sup-
port to determine the dynamic program point before which the
communication should complete. Cantonnet et al. propose a tech-
nique that resembles the Translation Look Aside Buffers (TLBs)



Benchmark Measure FE trans TPO trans
no opt indexing update forall all opts

GUPS 0.00311 0.00270 0.00272 0.00561 0.00438 0.01918
Random Access Time (sec) 172.681 198.492 197.033 95.729 122.673 27.987

Speedup 1.15 1.00 1.01 2.07 1.62 7.09
GB/s 0.2028 0.1343 0.1769 0.1343 0.2831 32.3609

Stream Time (sec) 23.665 35.730 27.129 35.730 16.952 0.148
Speedup 1.51 1.00 1.32 1.00 2.11 240.77

Table 3. Compiler optimizations effects on Random Access and Stream Benchmarks, running on 64 threads. Speedups are measured relative
to the TPO no opt case.

to reduce address-translation overhead [6]. The BlueGene/L UPC
runtime runs on top of a polling-based light-weight message layer.
Therefore, it does not incur the software overhead caused by inter-
rupt handling.

There is a considerable amount of work evaluating the perfor-
mance of UPC programs [3, 11, 14, 21]. However, in all these stud-
ies, scalability has been studied up to a few hundred processors.
This is the first study evaluating the scalability of UPC to hundreds
of thousands of processors.

6. Conclusions
The results in this paper show that shared-memory programming
for large-scale distributed-memory machines is not a myth. Scal-
ing non-trivial shared-memory programs to hundreds of thousands
of threads is possible with the right support from the compiler and
from the run-time system. We have described our XL UPC com-
piler infrastructure and the UPC Run-Time System. We presented
the essential compiler optimizations and the runtime features that
contributed to high performance. We also illustrated our work with
three benchmarks, two of which scaled to more than a hundred-
thousand processors on the BlueGene/L machine.

In the course of this evaluation, we encountered several chal-
lenging problems, which we will continue to address. One of these
challenges is the lack of benchmarks and algorithms written in UPC
that can scale to the size of a BlueGene/L computer. Existing ef-
forts, such as the DARPA HPCS program, to provide scalable al-
gorithms and applications for Petaflops computing are the right ap-
proach. Using PGAS languages to develop these applications will
enable programmers to be more productive, while not sacrificing
performance. This paper shows that this is possible.
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