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This paper presents Forma, a practical, safe, and automatic data reshaping framework that re-

organizes arrays to improve data locality. Forma splits large aggregated data types into smaller
ones to improve data locality. Arrays of these large data types are then replaced by multiple
arrays of the smaller types. These new arrays form natural data streams that have smaller mem-
ory footprints, better locality, and are more suitable for hardware stream prefetching. Forma
consists of a field-sensitive alias analyzer, a data type checker, a portable structure reshaping
planner, and an array reshaper. An extensive experimental study compares different data reshap-

ing strategies in two dimensions: (1) how the data structure is split into smaller ones (maximal
partition × frequency-based partition × affinity-based partition); and (2) how partitioned arrays

are linked to preserve program semantics (address arithmetic-based reshaping × pointer-based
reshaping). This study exposes important characteristics of array reshaping. First, a practical

data reshaper needs not only an inter-procedural analysis but also a data type checker to make
sure that array reshaping is safe. Second, the performance improvement due to array reshap-
ing can be dramatic: standard benchmarks can run up to 2.1 times faster after array reshaping.

Array reshaping may also result in some performance degradation for certain benchmarks. An
extensive micro-architecture-level performance study identifies the causes for this degradation.
Third, the seemingly naive maximal partition achieves best or close-to-best performance in the

benchmarks studied. This paper presents an analysis that explains this surprising result. Finally,
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1. INTRODUCTION

Fast advances in semiconductor fabrication, architectural innovation and exploita-
tion of instruction-level parallelism (ILP) ensures that the performance potential
of modern processors continues to increase at a substantial speed. However, the
performance of a computer system is not solely determined by the processor. To
maintain a high utilization of its functional units, a fast processor must be efficiently
fed with instructions and data by a memory subsystem. Unfortunately, the speed
of memory continues to lag behind that of processors. In recent decades, the clock
rate of processors has approximately doubled every three years while the DRAM
access speed only increased about 50% [Luk 2000].

The solution to overcoming this increasingly insurmountable “memory wall” is
to improve caching systems. Because of fabrication constraints, power consump-
tion and economics, the cache size is often very limited when compared with main
memory. Hence, efficient utilization of cache is crucial for performance. However,
because cache is transparent to application programmers, programs are often writ-
ten without taking cache efficiency into account. The typical programmer designs
data structures in a semantic-oriented fashion. Such structures are usually easy
to read and understand, but often lead to suboptimal performance at run time.
A compiler can analyze the memory reference pattern of a program and devise a
new layout that increases locality of references and thus improves the efficiency of
the memory system. Similar to traditional code transformations, these data trans-
formations must be transparent to the programmer, performed automatically, and
safe.

This paper describes Forma1, a framework that improves the data cache efficiency
of arrays of aggregate data structures. An extension of this framework to handle
linked data structures (LDS) is discussed in Section 5. Aggregate data types (such
as structs and classes) are used to model objects in imperative programming
languages. When the object modeled has many features, the aggregate data type
becomes very large. Arrays that contain large data structures with many fields
occur frequently in contemporary programs. Because programmers often arrange
the fields in a data type in a way that is semantically meaningful, there is a ten-
sion between software engineering and performance engineering that presents itself
in two ways. First, the frequency of access to fields in the same data type may
vary significantly, with hot fields accessed very frequently and cold fields seldom
referenced. Placing fields with very different access frequencies together in memory
hurts performance because the cold fields pollute the data cache and waste memory
bandwidth. Second, the runtime data access pattern might not be consistent with
the access frequency distribution. In other words, hot fields are not necessarily
accessed together. The gap between software engineering and performance engi-
neering can be bridged by reshaping data at compile time. The compiler can split a
large data structure into two or more smaller ones that better capture data locality.
Correspondingly, an array of large data structures is partitioned into two or more
arrays of smaller data structures. For iterations that only manipulate certain fields
of the array, data reshaping can significantly improve data locality and reduce the

1Forma is a Latin, and Portuguese, word for “shape”.
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memory footprint, resulting in better data cache efficiency.
The main contributions of this paper are:

—Forma, a practical data reshaping framework that can be used to automatically
analyze and transform real C/C++ programs. Forma consists of a data shape
analysis, including both alias analysis and data type analysis, structure partition
planning and array reshaping transformation. Forma has been integrated into
the IBM R© XL C/C++ V7.0 compiler.

—A set of safety-checking rules to ensure that the compiler’s data reshaping plan is
safe in programs that are written in type-unsafe languages such as C and C++.

—An empirical study of two orthogonal reshaping decisions: frequency-based ob-
ject partition × affinity-based object partition × maximal object partition; and
address-arithmetic-based × pointer-based array splitting. Some important but
subtle insights on data reshaping are exposed by a thorough analysis and empir-
ical study.

The rest of the paper is organized as follows. Section 2 introduces Forma and
two design dimensions of data reshaping. Then the performance of the different
data reshaping approaches is studied in Section 3. Section 4 discusses related work
on data cache optimization. Finally, conclusions and a discussion on extensions of
Forma to handle data topology other than arrays appear in Section 5.

2. DATA RESHAPING

2.1 Overview

Previous research work on field placement and data structure splitting appears
in [Franz and Kistler 1998; Palem et al. 2000; Rabbah and Palem 2003; Zhong
et al. 2004]. However, some of these studies use error-prone human-inspection of
C applications to make sure that the transformation is safe [Franz and Kistler
1998; Zhong et al. 2004]. Applying a type-safe-oriented optimization to a type-
unsafe language without a proper safety assurance mechanism is unacceptable in
production compilers. Rabbah et al. use field-insensitive Steensgaard style analysis
to find the alias sets that need to be updated upon data splitting [Palem et al.
2000; Rabbah and Palem 2003]. However, alias analysis alone cannot guarantee
the transformation safety. Also, as our work illustrates, field-sensitivity in alias
analysis is crucial to uncovering important array reshaping opportunities in many
integer benchmarks.

This paper describes Forma, a complete framework that performs automatic

and safe data reshaping on type-unsafe programming languages such as C/C++.
In contrast with existing work, Forma is fully automatic, safety-guaranteed, and
more aggressive on alias analysis in terms of field sensitivity than previous work.
Forma was designed and implemented in the IBM � XL C/C++ V7.0 compiler suite.

As illustrated in Figure 1, Forma consists of three components: a data shape
analyzer, a structure partition planner, and a whole-program data reshaper. Forma

requires two passes through the entire program: a data shape analysis pass and a
data reshaping pass. The data shape analysis pass includes alias analysis and
data type analysis. In this pass, an storage shape graph (SSG) similar to the one
proposed in [Chase et al. 1990] is constructed to model the aliasing relationships
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Fig. 1. The Forma reshaping framework.

in the program. In the SSG used in Forma each node represents an alias set,
and the edges represent points-to information. Because Forma’s analysis is field-
sensitive, the edges of the SSG are annotated with the field of the alias set where the
pointer originates. Forma also examines whether the data types2 of the members
in an alias set are consistent throughout the entire program. If array reshaping is
deemed safe and beneficial, at the end of the first pass Forma creates a partition
plan for the composite data structure. Then the data reshaping pass adjusts the
memory accesses according to this plan.

2.2 Data Shape Analysis

An inter-procedural data shape analysis generates information about alias rela-
tionships and data shape consistency. Alias information provides a conservative
approximation of sets of data objects that potentially reside in the same memory
location.3 Data shape includes structural shape and array shape. Structural shape
describes the field-level view of a singular data object, i.e. the number of byte-level
fields, the offset and length of each byte-level field. Array shape is the view of an
array. It consists of the number of dimensions and the stride for each dimension
of the array. If the view of an array throughout the program is not consistent,
the compiler must be conservative and give up data reshaping optimization on the
array.

2.2.1 Inter-procedural Alias Analysis. In a program written in a pointer-rich
language, such as C and C++, reshaping a data object might impact the whole
program because of aliasing relationships. Therefore, a compiler needs to modify all

2In this research, we use data type, data shape and data view interchangeably.
3In this paper the word “object” is used to refer to an instance of a data type. Forma is im-

plemented in the intermediate representation of the program in the middle-end of the compiler.
Thus it works with programs written in Fortran, C, and C++. As long as the safety requirements

are satisfied, the data reshaping can be applied both to structures in C and to objects in C++.
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the affected references when it reshapes a data object. Forma focuses on reshaping
arrays. If an array is to be reshaped, all the references to the array area need
to be modified accordingly. This comprehensive transformation requires Forma to
conduct an inter-procedural alias analysis to collect all the pointers pointing to the
array area.

char *pc; int i,j;

struct A {char *f1; struct A *f2;} *p1, *p2;

p1 = malloc (DIM * sizeof (A));

p2 = &(p1[j]);

p1[j].f1 = pc;

p1[i-1].f2 = &(p1[i]);

// pc = (char*) p1;

p1
p2
&(p1[j])
p1[i−1].f2
&(p1[i])

f1 p1[j].f1
pcf2

Fig. 2. Field-sensitive Steensgaard alias analysis and a storage shape graph.

Inter-procedural alias analysis techniques differ in flow sensitivity, context sensi-
tivity, field sensitivity, and so on. A good survey of these techniques can be found
in [Ryder 2003]. Forma implements a Steensgaard style alias analysis [Steensgaard
1996b] that has the following characteristics:

—It is flow-insensitive. It conservatively assumes that all the statements in a pro-
cedure will be executed in arbitrary order. Thus the control flow information is
irrelevant.

—It is context-insensitive. It does not differentiate the alias relationship created in
different calling contexts.

—It is unification-based. Whenever a pointer assignment is met in the analysis,
the alias sets represented by the right-hand side pointer and by the left-hand side
pointer are merged. The points-to sets of these pointers are also merged. This
assumption eliminates the iteration over the control flow graph (CFG) that is re-
quired by inclusion-based alias analysis. Therefore, the analysis can be completed
with a single pass through the entire program.

Steensgaard’s alias analysis was selected for Forma for two reasons. First, it is
much simpler and faster than other alias analysis [Hind and Pioli 2000]. Second,
we believe that the precision of alias relationships provided by Steensgaard’s alias
analysis is sufficient for data reshaping. To reshape an array, it is sufficient to know
all the data accesses to the array. There is no need to know precise aliasing rela-
tionships such as whether two pointers actually point to exactly the same element
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of the array. The extra precision provided by flow-sensitivity, context-sensitivity,
and directionality in a more complex and more expensive alias analysis would often
be redundant.

Field-sensitivity is important for data reshaping because large data structures,
which are amenable to data reshaping, often contain pointers pointing to different
data types. A field-sensitive alias analysis is necessary to distinguish the alias
relationships among different fields or between a field and its host object. The host
object is the object that contains the field.

For instance, Figure 2 depicts a code segment and the corresponding storage
shape graph generated by a field-sensitive Steensgaard alias analyzer. Each rectan-
gle is a node in the SSG and represents an alias set. The directed edges represent
points-to relationships. Forma only analyzes heap-allocated alias sets. The pointer
manipulation in the example in Figure 2 is pretty common in practice. In the ex-
ample, the points-to set is divided into two categories according to the fields where
the pointers appear: field f1 and field f2 should never reference the same address.

The field-sensitivity is crucial for this code segment. If a field-insensitive analysis
were used instead, access to any field would be regarded as an access to the entire
host object. Therefore, pc and p1[j].f1 would be in the same alias set as p1. In
that case Forma would conclude that the p1’s alias set could be either an A-typed
pointer or a char pointer. As a consequence, Forma would have to give up the data
reshaping of the p1’s alias set because the data types of the members in the alias
set would be regarded as inconsistent. In Forma, field-sensitivity is achieved by a
technique similar to those in [Steensgaard 1996a; Yong et al. 1999].

2.2.2 Reshaping Safety. C/C++ are weakly type-checked programming lan-
guages. This means that even extensive type checking in a compiler front-end
cannot detect all unsafe operations. Some of the type loopholes were intentionally
included in these languages to enable performance-efficient and code-convenient
implementations of system software. For example, let’s examine the commented
statement in Figure 2. The address of the allocated memory block is cast to type
char and assigned to pointer pc. This casting is very common in the implementation
of low-level communication libraries: a buffer is filled with an array of high-level
data objects and then streamlined and sent to the lower transferring layers. Re-
shaping on data that has incompatible type is dangerous and is strictly avoided in
our work.

In Forma two intrinsic data types are compatible if their data lengths are iden-
tical. This is a more relaxed definition than the definition of type compatibility
in ISO-C [ISO/IEC 1990]. For two types to be compatible in the ISO-C standard,
they not only have to be of the same length, but they also have to be the same
type. For instance a char and an unsigned char are compatible in Forma but are
not compatible in ISO-C. The reason for this relaxed definition of compatibility is
that Forma only moves the data, it is not concerned with type conversion. Two
aggregated data structures are compatible if (1) they have the same number of
byte-level fields4, (2) corresponding fields have the same offset and length, and (3)
their addresses are either identical or don’t overlap with each other. Two arrays

4We assume the bit fields are converted to byte-level fields.
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have compatible types if (1) their element types are compatible, (2) they have the
same dimensions, and (3) the strides of corresponding dimensions are also identi-
cal. Two pointers are of compatible types if and only if the data they point to have
compatible types.

Forma conducts type-compatibility checks to avoid dangerous data reshaping.
Forma does not attempt to improve the type-safety of a program. On the other
hand, the data reshaping transformation must be carefully implemented to avoid
introducing new, potentially unsafe, runtime type errors to the program. Safety is
achieved by integrating a type compatibility analysis with the inter-procedural alias
analysis: the types of the members in an alias set must be compatible throughout
the application. The inter-procedural alias analysis keeps track of the types of
each alias set. Once a type incompatibility is found, the alias set is abandoned for
reshaping analysis.

The compatibility rule is necessary to ensure the safety of the transformation.
It requires that all the access patterns in an alias set be verifiably consistent. For
example, if a pointer is passed to system libraries and the compiler cannot examine
the access pattern in the libraries, the alias set represented by the pointer must be
abandoned. Fortunately, a large set of programs satisfy these seemingly restrictive
conditions [Condit et al. 2003; Necula et al. 2002].

Section 2.4, introduces two array splitting strategies. One of these strategies,
address-arithmetic-based splitting, requires an extra restriction to ensure its safety.

2.3 Structure Partition Plan and Array Reshaping

If an array is deemed safe for reshaping, Forma makes a partition plan for the
aggregated data structure of the elements of the array. The shape of the original
array will change to satisfy the data structure partition. Then Forma transforms
all the accesses to the array to make them compatible with the new array shape
and the new aggregated data structures.

This section describes three structure partition planners. Two approaches to
reshape an array according to the structure partition plan are discussed in Sec-
tion 2.4. Section 3 presents a detailed empirical performance study of reshaping
and splitting.

2.3.1 Structure Partition Planner. A structure partition plan determines how
the fields in the original data structure should be reorganized into new data struc-
tures. The partition plan uses frequency of field reference and field-affinity data
collected through a profiling run. For example, consider the four-field data struc-
ture, Oorig, in Figure 3. The fields of Oorig are numbered from F0 to F3. Each
rectangle represents a field, and rectangles with the same filling pattern are fields
that are always accessed together. In this example, field F0 and field F3 have high
access affinity, while field F2 is always accessed alone. Assume that field F1 is very
cold and the other fields are hot. In Figure 3, the fields in Oorig are reordered
and split into three smaller structures: Obase, Osat1 and Osat2 . Each new structure
has its own length and offset in the reorganized data structure. Obase is the base

structure or base object and starts from offset 0. The other new data structures,
Osat1 and Osat2 , are the satellite structures and are placed immediately after Obase.

Array reshaping is based on a data structure partition plan. After array reshap-
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ing, different partitions of the same object might be placed far apart from each
other. Figure 4(a) shows an array, Aorig, of four elements of type Oorig. Fig-
ures 4(b), 4(c), and 4(d) show the effects of different structure partition plans on
Aorig. In these figures, each rectangle is a field of Oorig and Fij represents the jth

field in the ith element of the original array. From the array point of view, the orig-
inal array Aorig is split into one base array Abase, which holds the base objects, and
one or more satellite arrays. For instance, each element might be split into three
new objects according to the partition plan shown in Figure 3. Correspondingly,
Aorig might be split into three arrays, as shown in Figure 4(b). The first two rows
in Figure 4(b) are the new base array Abase and the other two rows are the new
satellite arrays. How the satellite fields are accessed depends on the array-splitting
approach, as described in Section 2.4. To correctly reference satellite fields that are
placed in satellite objects, extra address calculations are needed. Therefore, if hot
fields are split into satellite objects, there might be a substantial increase in the
number of instructions executed to compute the address of hot satellite fields.

Forma implements the following three data structure partition strategies.
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Obase Osat1
Osat2

Affinity−based Reshaping Plan

F0

F0 F1

F1

F3F2

F3 F2

Fig. 3. Reshaping planning (affinity-based).

Affinity-Based Planner (ABP). Some of the hot fields in a data structure have
higher access affinity than others, i.e., they tend to be referenced together. There-
fore, a natural solution is to split a data structure according to access affinity: the
fields in a data structure are clustered by reference affinity and each group of fields
is split into an independent data structure. In Figure 3, the original data structure
is split into three new structures. The first structure contains fields F0 and F3.
The second and third structures hold fields F2 and F1, respectively. Guided by the
reshaping plan, a four-element array is split into three smaller arrays (Figure 4(b)).

Forma uses a very simple algorithm for affinity-based partition, shown in Figure 5,
that has worked well for all benchmarks studied. For each object that is a candidate
to reshape, Forma builds an undirected affinity graph whose nodes represent the
fields of the partitioned data structure. The weight of an edge represents the
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Fig. 4. Different reshaping planning strategies.

number of times that the two fields were referenced in the same iteration of a loop.
ABP then selects the heaviest edge and coalesces the two nodes connected by this
edge. The algorithm continues coalescing pairs of nodes until no edges above a
set threshold remain in the graph. In Forma this threshold is set to 80% of the
weight of the heaviest edge. In AffinityBasedPartition, CurrentEdge is a data
structure with three fields: a frequency value, and two node fields x and y. The
Coalesce function replaces two existing nodes in the graph by a single node. The
existing nodes are removed from V and their edges are reconnected to the new node.
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The ClosestNeighbor returns the heaviest edge that connects the SeedNode to
an adjacent node.

Although sharing similar motivation, our definition and analysis of data affinity is
different from the reference affinity in Zhong et al. [2004]. They compute reference
affinity by counting the amount of data accessed between two memory references at
runtime. We measure data affinity by counting the number of times two memory
references occur in the same loop, which is practical for compiler analysis. Their
approach is more suitable for program analysis than for a production compiler.
Thanks to personal communication with Zhong, we were able to verify that for the
benchmarks included in this study, our algorithm generates very similar partitions
to theirs.

AffinityBasedPartition(Object)
1. // Create the affinity graph

2. V ← ∅; E ← ∅
3. for each field u in Object

4. V ← V ∪ {u}
5. // Initialize the edges and the associated affinity
6. for each loop L in the program
7. for each field u referenced in L
8. for each field v 6= u accessed in L
9. CurrentEdge← (u, v)
10. if CurrentEdge /∈ E
11. E ← E ∪ {CurrentEdge}
12. CurrentEdge.affinity ← 0
13. CurrentEdge.affinity ← CurrentEdge.affinity + L.IterationCount

14. // Partition the affinity graph by clustering node pairs
15. Partition← ∅
16. while V 6= ∅
17. SeedEdge← HeaviestEdge(E)
18. Threshold← 0.8× SeedEdge.affinity

19. P ← P ∪ {SeedEdge.x, SeedEdge.y}
20. SeedNode← Coalesce(V, E, SeedEdge.x, SeedEdge.y)

21. CurrentEdge← ClosestNeighbor(SeedNode, E)
22. // Convention: CurrentEdge.x = SeedNode and CurrentEdge.y /∈ P

23. while CurrentEdge.affinity ≥ Threshold

24. P ← P ∪ CurrentEdge.y

25. SeedNode← Coalesce(V, E, SeedNode, CurrentEdge.y)
26. CurrentEdge← ClosestNeighbor(SeedNode, E)

27. E ← E − {(SeedNode, x)|∀x ∈ V }
28. V ← V − {SeedNode}
29. Partition← Partition ∪ {P}
30. return Partition

Fig. 5. Affinity-based Partition Algorithm.

ABP captures the runtime reference locality more closely than the other two
planners discussed in this paper. Frequently, however, it is not easy to find clear-
cut affinity relationships like the ones in Figure 3. For example, a field A might
have high reference affinity with two other fields B and C in different iterations, but
B and C might never be accessed together. For programs with several independent
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loops traversing the same array and accessing different groups of fields, a prof-
itability analysis is required to find an optimal partition that respects competing
affinities. The second drawback of affinity-based splitting is that hot fields without
reference affinity may be placed into separate data structures and arrays. Placing
hot fields in satellite arrays results in substantial address computation overhead.
Frequency-Based Planner (FBP) or hot-cold planner uses runtime feedback in-
formation to partition a data structure into two. The first array contains hot fields
and the second array contains cold elements. For instance, the first data structure
in Figure 4(c) contains fields F0, F2 and F3. The second data structure contains
field F1. A frequency-based planner only needs to calculate addresses of satellite
fields that are infrequently accessed. Therefore, FBP does not require the execution
of many additional instructions. However, it neither captures the reference affinity
as well as ABP does nor reduces the memory footprint as aggressively as MSP, de-
scribed below, does. Moreover, FBP might waste memory bandwidth and pollute
the data cache. For instance, in the example of Figure 4(c), when the program
iterates through the fields F1, the fields F0 and F3 are uselessly fetched into cache.

Currently Forma uses 95% as a frequency-based planner threshold. That is, it
retains the most frequently referenced fields that account for 95% of the accesses
to the data structure in the base object. All other fields are treated as cold and are
split to a satellite object.
Maximal Splitting Planner (MSP) splits each field of a data structure into a
separate new data structure, as shown in Figure 4(d). After splitting, each data
structure field is stored in an independent array. An obvious advantage of MSP is
that it does not require profiling information. MSP ignores the reference affinity
among the fields in the same data structure and seems to be too simple to be good
for performance. Surprisingly, as shown in Section 3, MSP achieves the best or
close-to-best runtime performance among the different reshaping planners studied
in this paper. This is because MSP has three important but subtle advantages.

First, MSP always achieves the smallest memory footprint for stride-1 iterations
on the array. This is because each field has its own array and no irrelevant data
is fetched into cache. In contrast, neither ABP nor FBP can guarantee that the
partition respects access affinities for all traversals of the arrays. Therefore, even
when Forma attempts to take into account affinity or frequency information, there
may be traversals that fetch irrelevant fields into the cache. In modern processors,
where the latency to bring data from memory is high, the smaller memory footprint
generated by MSP can be a decisive advantage. For instance, it can significantly
reduce misses in the lower levels of the memory hierarchy as well as in the translation
look-aside buffer (TLB).

Second, MSP is especially suitable for processors that feature a hardware prefetch-
ing mechanism, such as the IBM POWER4TM processor [IBM 2001]. A stream is
a sequence of memory loads that access two or more contiguous data cache lines in
either ascending or descending order. The processor monitors cache misses closely.
Once misses on two consecutive cache lines are detected, a directed stream prefetch-
ing is triggered, and data from the memory area in the directed stream is fetched
into higher levels of the memory hierarchy. The combination of hardware stream
prefetching with high cache associativity allows independent streams that are ac-
cessed together to be simultaneously prefetched into different cache areas. This
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simultaneous prefetching tends to compensate for the loss of field affinity in MSP.
Because the stride on each split array is smaller than those in arrays organized
according to affinity, stream prefetching should work more efficiently. Therefore,
there is no need to worry about the field affinity because the prefetching mech-
anism covers multiple streams consisting of fields with affinity. Fortunately, each
processor supports eight independent streams, which seems to be sufficient for most
applications. In the entire SPEC2000 benchmark suite, we haven’t encountered any
important array traversal that accesses more than eight fields. Moreover, even when
there are more than eight streams in a loop, the XL compiler is able to distribute
them into several smaller loops through loop fission [Wolfe 1996].

Third, because maximal reshaping converts each field into a single object, the
host object of a field contains only the field itself. Therefore, the address of the host
object and the address of the field are the same and there is no need to compute the
field offset. As a consequence, the address calculation for satellite fields is simpler
when maximal reshaping is used.

MSP sacrifices field affinity to take advantage of field locality and reduce memory
footprint. Loss of field affinity is compensated for by hardware stream prefetching
and by higher associativity in modern cache systems.

A drawback of MSP is similar to the drawback of the affinity-based planner: all
the fields, except the field in Obase, need to be accessed indirectly. Thus, if the
field in Obase does not dominate the access frequency of the data structure, many
additional instructions are executed to calculate the address of satellite objects.

2.4 Array Reshaping

The last phase of array reshaping transforms the program according to the reshap-
ing plan. To apply array reshaping to an alias set, the allocation site and all related
data accesses through pointers in the alias set should be transformed to reflect the
change of the data view.

The design of Forma considered two transformation approaches: address-arithmetic-
based splitting and pointer-based splitting. In address-arithmetic-based splitting,
no extra fields are introduced during the transformation, and the address of a satel-
lite field is calculated from its corresponding base object. Examples include the
transformations shown in Figure 4(b), 4(c), and 4(d). In pointer-based splitting,
extra field pointers are introduced in the base object to link each satellite object
to its base object. Soon after the array is allocated, these extra field pointers are
initialized to point to the corresponding satellite objects. Therefore, accesses to the
satellite fields are transformed to accesses through extra pointer dereferences.

Tables I and II compare the differences between address-arithmetic-based re-
shaping and pointer-based reshaping. In the table, p is a pointer to an element in
the array; A is the array’s base address; basefield and satfield represent fields
falling in Obase and Osat in the plan, respectively. SatNum is the number of satellite
arrays. N is the number of elements in the array. E is the size of each element in
the original array and NewE is the size of the original element plus the sizes of the
pointer fields introduced in a base object. The primed versions (such as p’ and
satfield’) represent their counterparts after reshaping. Tables I and II presents
seven rules to transform references into reshaped objects and arrays.
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Rule Original
After address-arithmetic-based

transformation

1 (Oorig *) p (Obase *) p’

2 &(A[k]) &(Abase[k])

3 &(p -> basefield) &(p’ -> basefield’)

4 &(A[k].basefield) &(Abase[k].basefield’)

5 &(p -> satfield) index = (p’-Abase)/LEN(Obase)

&(Asati
[index].satfield’)

6 &(A[k].satfield) &(Asati
[k].satfield’)

7 allocation site: Abase=new(N*E)

A=new(N*E) for i ∈ [1, SatNum]

Asati
= Abase+ offseti*N

Table I. Address-arithmetic-based reshaping.

Rule Original
After pointer-based

transformation

1 (Oorig *) p (Obase *) p’

2 &(A[k]) &(Abase[k])

3 &(p -> basefield) &(p’ -> basefield’)

4 &(A[k].basefield) &(Abase[k].basefield’)

5 &(p -> satfield) &(p’ -> pointeri -> satfield’)

6 &(A[k].satfield) &(Abase[k].pointeri → satfield’)

7 allocation site: Abase=new(N*NewE)

A=new(N*E) for i ∈ [1, SatNum]

for j ∈ [0, N-1]

Abase[j].pointeri = &(Asati
[j])

Table II. Pointer-based reshaping.

—The 1st and 2nd rules say that, after reshaping, the role of the original object is
taken by the base object. A pointer p that pointed to Oorig before reshaping is
replaced by a pointer p’ to Obase after reshaping. All the element-wise pointer
manipulations are transformed to manipulate the base object. For example, p++
means p = p + sizeof(Oorig) in the original program. It should be transformed
to p’ = p’ + sizeof(Obase) after array reshaping.

—The transformation for the base fields (rules 3 and 4) is straightforward: their
addresses are acquired by applying their new offsets in Obase to the pointer to
Obase.

—The address calculation for satellite fields (rules 5 and 6) differs between the
two approaches. In the pointer-based approach, the satellite fields are accessed
via newly introduced pointer fields for the corresponding satellite object. In
the address-arithmetic-based approach, the index of a satellite object equals
p′−Abase

LEN(Obase) , where LEN is the length, in bytes, of Obase. This index is then used to

access the corresponding element in the satellite array.
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—The allocation site also has to be handled differently for the two approaches (rule
7). For address-arithmetic-based reshaping, one base pointer for each satellite
array is introduced, and these base pointers are initialized after the array is
allocated. In the pointer-based strategy, the program enumerates each element
in the base array and initializes the pointer fields for the satellite objects.

Besides the type compatibility safety check, address-arithmetic-based splitting
has another restriction to avoid unsafe transformations: single-instantiation. Single-
instantiation restriction says that the entire alias set is instantiated by a single al-
location site in the program and that the allocation site is executed no more than
once at run time. This extra restriction makes sure that the base address of the
array is a constant at run time.

Both address-arithmetic-based and pointer-based reshaping have their advan-
tages and disadvantages. Pointer-based reshaping requires fewer address calcula-
tions and does not have the single-instantiation restriction. But it has two serious
drawbacks. First, it requires extra pointer fields in each base object. When the
reshaping plan splits Oorig into several new data structures, many extra fields are
required. This additional data may offset the array reshaping effort. If the plan
is frequency-based splitting, only one extra pointer field is needed. Second, each
access to satellite fields requires one extra pointer dereference, which is often very
expensive in today’s register-centered processors.

In contrast, address-arithmetic-based reshaping only requires extra address cal-
culations when the satellite fields are accessed via an element-wise pointer (rule 5).
Therefore, if individual fields are accessed often, many additional address calcula-
tions would occur. However, this problem can be mitigated by traditional optimiza-
tions such as constant propagation, common subexpression elimination, and pro-

motion of loop invariant expressions. For example, the address of Asati
[ p′−Abase

LEN(Obase) ]

is computed by the expression Asati
+ p′−Abase

LEN(Obase) ∗ LEN(Osati
). At compile time,

once reshaping is completed, K =
LEN(Osati

)

LEN(Obase) is constant. Consider the following ex-

treme case that highlights the optimization potential for address-arithmetic-based
reshaping: under maximal reshaping it is likely that LEN(Osati

) equals LEN(Obase)
because both the Obase and Osati

contain a single field, and thus K = 1. In this
case, &(p -> satfield), that equals p + OFFSET(satfield), is transformed to
Asati

+ (p′ − Abase) = p′ + (Asati
− Abase). The expression (Asati

− Abase) only
needs to be computed once at the allocation site. In this extreme, but not infre-
quent, case the same number of operations are needed before and after reshaping!

Additionally, in address-arithmetic-based reshaping, the array size is exactly the
same as the one before the transformation. Maintaining the same memory require-
ment makes the transformation safer than the pointer-based reshaping. The extra
memory necessary for pointer fields may cause the program to fail when there is
not enough free memory.

Although the address-arithmetic-based reshaping strategy requires single instan-
tiation, this restriction is not a serious problem for array-centered applications. It
may become a problem in applications that use linked data structures (LDS). Sec-
tion 5 discusses analysis and transformations that will be required to deal with the
multiple-instantiation problem in applications that use LDS extensively.
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With all these factors taken into account, Forma favors the use of the address-
arithmetic-based reshaping strategy.

3. EXPERIMENTAL STUDY

This section presents a performance study of array reshaping. The results of this
investigation may be summarized as follows:

—Data reshaping improves data-intensive programs dramatically. This study found
impressive performance gains — up to 2.1 times speedup — on three benchmarks.
Maximal reshaping achieves best or close-to-best performance improvement in the
benchmarks studied.

—Data reshaping degrades the perimeter benchmark. A micro-architectural per-
formance study reveals that in this benchmark additional instructions required
for address calculation offset the small improvement on cache efficiency achieved
by array reshaping.

—Maximal reshaping is best suited for programs with stride-1 iterations in archi-
tectures with hardware stream prefetching such as the IBM POWERTM family.

3.1 Experimental Platform

Forma is implemented in the IBM XL C/C++ V7.0 compiler. Thanks to the
modular structure of Forma, it is easy to switch on different reshaping strategies
and examine their effects. Table III shows the characteristics of the machines used
in this performance study.

Three of these machines use processors from the IBM POWER family. The
compiler is a development version of the IBM XL C/C++ that includes Forma. In
order to investigate the portability of the results obtained with Forma in the XL
compilers, the benchmarks were modified, by hand, and run in an Intel R© Itanium-
II machine. This hand modification consisted of inspecting the reshaping plans
created by Forma and mimicking them in the benchmark’s source codes. These
benchmarks were then compiled with the Open Research Compiler 2.1 at the O3
optimization level with inter-procedural optimization. Although not applicable to
a large number of benchmarks, this effort produced data that should convince
developers of other compilers to consider when implementing array reshaping.

CPU GHz L1D, L2D, L3D, Mem OS
Page
Size

G5 2.0 32K, 512K, 0 , 1G Darwin 7.5 4KB
POWER4 1.1 32K, 1.44M†, 32M †‡ , 32G AIX R© 5.2 4KB

POWER5TM 1.65 32K, 1.92M†, 36M†‡ , 16G AIX 5.3 4KB
Itanium-II 1.3 16K, 256K †, 1.5M† , 1G Linux R© 2.4.18 16KB

Table III. Characteristics of the experimental platforms, memory and page sizes
given in bytes (†: DCache+ICache, ‡: off-die).

There is a limited number of benchmarks that are affected by array reshaping
in standard benchmark suites. This study uses two benchmarks from the SPEC2K
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Label Partition Planner Reshaping Method

baseline — —
affinity affinity-based planner address-arithmetic-based reshaping
freq-a frequency-based planner address-arithmetic-based reshaping
freq-p frequency-based planner pointer-based reshaping
max maximal planner address-arithmetic-based reshaping

Table IV. Compiler versions in the performance study.

suite: art and mcf. Standard training data is used for profiling and the standard
reference data for final runtime benchmarking. The memory footprints in the final
run are 4.7MB for art and 190 MB for mcf. The other two benchmarks in this
study, tsp and perimeter, are from the array version of OLDEN 1.3 benchmark
suite. The profiling inputs used are 105 for tsp and 10 for perimeter. The inputs
for the final runtime measurement are 4 × 106 for tsp and 11 for perimeter. The
memory footprints for these final runs are 225MB and 256 MB, respectively.

Forma implements three partition planners and two reshaping methods. Table IV
lists the versions of the compiler that are included in this performance study along
with the label identifying each version in all the graphs. Pointer-based reshap-
ing requires many extra pointer fields in Obase when Oorig is broken into many
satellite objects. These additional pointers seriously offset the benefit of reshap-
ing. Therefore, pointer-based reshaping is not included in the performance study
of affinity-based splitting and maximal splitting.

3.2 Run Time Improvement

Figures 6-9 presents the runtime variations among the array reshaping versions
implemented in Forma in four hardware platforms. For each machine, the lower
graph presents the actual run times, and the upper graph is the normalized runtime
percent variation. The baseline compiler is a development version of the industry-
strong XL optimizing compiler running at optimization level O5 without any data
reshaping optimization. For the Itanium, the baseline is the Open Research Com-
piler (ORC) at O3 optimization level with inter-procedural optimizations enabled.
Array reshaping results in impressive performance improvement for art, mcf, and
tsp.

In the G5 system, the maximal split version of art runs more than twice as fast
as the baseline. In comparison, affinity-based reshaping improves art by about
17% and freq-a improves it by about 8.4%. The improvement by freq-p is negli-
gible mainly because art has only one cold field, and the introduced pointer field
completely nullifies the benefit of splitting this cold field. For mcf, affinity-based
reshaping and maximal reshaping result in a performance improvement of about
28%. Both versions of frequency-based reshaping improve mcf by about 16%. Max-
imal reshaping and affinity-based reshaping improve tsp by 6.7% and 6%, respec-
tively. For frequency-based reshaping, the improvements for tsp range from 5.6%
for freq-a to 1.3% for freq-p. The only benchmark where data reshaping results in
performance degradation is perimeter.5 All the iterative behavior of perimeter

5In perimeter, the major data structure of interest is quad struct. There is no infrequently
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Fig. 6. Run times in G5.

results from recursive function calls as it does not contain any loops. Many common
optimizations that reduce the cost of array reshaping, such as inlining and loop-
invariant expression promotion, are difficult to apply to recursive code. Inlining is
important because it enables further local optimizations. It is also difficult to lift
common subexpressions from iterative code when the iterations are the product
of recursion. A micro-benchmarking study, presented in Section 3.4, found that
reshaping in perimeter significantly increased the number of instructions executed
and had little effect on cache efficiency. Therefore, it is not surprising that data
reshaping degrades the performance of perimeter. Future work will improve the
reshaping heuristics to make them more conservative for recursive code.

The performance of array reshaping on POWER4 is similar to that on G5. The
superior memory hierarchy in POWER4 reduces the impact of the poor memory
reference in the baseline on the run time of the benchmarks. Therefore, though
still impressive, the performance improvement is less significant than that on G5.
The effect of a richer memory hierarchy on the baseline is even more pronounced
on POWER5. As shown in Figure 7, freq-a performs better than affinity-based

accessed fields in quad struct. Therefore the two versions of frequency-based reshaping choose

not to do any reshaping. While this information could be added to the affinity-based reshaper

heuristic, it may be desirable to keep the maximal reshaper independent of feedback information.
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Fig. 7. Run times in POWER4.

reshaping on tsp. Forma splits fields that account for 95% of the total accesses into
the base object, in contrast Zhong et al. [2004] uses a threshold of 50%. Compared
with ABP and MSP, the only advantage of FBP is that it incurs negligible extra
address calculation. A lower threshold in FBP may generate many extra address
calculations and thus eliminates its only advantage.

The Itanium-II’s architecture is very different from the architecture of the pro-
cessors in the POWER family. The performance results reflect these differences.
The performance improvement for art — 20% for maximal reshaping — is less
impressive than that in the POWER family processors. This is because art often
iterates on an array with stride 1, which best suits the hardware stream prefetch-
ing in the POWER processors. The most significant improvement in Itanium-II is
a 45% reduction in run time for the maximal reshaping of mcf. Array reshaping
in tsp results in more significant performance improvement in Itanium-II, from
12.4% to 22.6%, than in the POWER processors. The degradation of perimeter
in Itanium-II indicates that the ORC 2.1 optimizations are also limited by the
problems caused by recursion.

In summary, maximal reshaping performs best, or close-to-best, amongst all the
strategies for the benchmarks in this study.
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Fig. 8. Run times in POWER5.

3.3 Analysis Coverage and Precision

Some important questions6 address the coverage and the precision of the reshaping
analysis used in this paper: (1) how many potential reshaping candidates are found
in each benchmarks? (2) How many are abandoned and what is the reason to
abandon them? (3) For how many cases data reshaping is legal, but does not take
place because of imprecision in the alias or safety analyzes? Answering this last
question would require an abacus that knows the true number of safe reshaping
opportunities. This number could be obtained by a human inspection of each
benchmark code, however such an effort is well beyond the scope of this paper.
Efforts are underway to create compiler-supported program instrumentation to both
(a) increase the understanding of the reasons potential opportunities are missed;
and (b) eliminate some of these reasons.

The data on Table V answers the other two questions for the benchmarks studied
in this paper. The first column lists the number of allocation sites after front-end
code transformations. The last column indicates that a single site was reshaped
in each benchmark. A site candidate is abandoned as soon as it does not meet a
single reshaping condition. In mcf two sites are initialized in multiple places and one

6Thanks to an anonymous referee.
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Fig. 9. Run times in Itanium II.

Benchmarks mallocs non-aggreg m-init type-incomp reshaped
mcf 4 0 2 1 1
art 11 10 0 0 1
tsp 1 0 0 0 1

perimeter 1 0 0 0 1

Table V. Number of opportunities for reshaping, and reshaping conditions that were
violated.

failed the type compatibility analysis. In art 10 of the 11 allocations are for non-
aggregated types. A single successful reshaping transformation in each benchmark
produced the significant performance variations shown in Figure 7 and 9 because
these aggregated data types are accessed inside important loops.

3.4 Micro-architecture Performance Study

This section presents measurements obtained with the pfmon performance mon-
itoring tool in the Itanium-II workstation. These measurements further the un-
derstanding of the performance impact of data reshaping. This micro-architecture
performance study examined the number of retired instructions, the miss rates at
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different cache levels, the TLB miss rates, and so on. This section presents only
the measurements that showed a correlation with array reshaping.
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Fig. 10. Retired instructions on Itanium-II.

The number of instructions retired by each version of array reshaping in the
Itanium-II workstation, shown as a percentage variation over the baseline in Fig-
ure 10, provides important insights on the effects of array reshaping at the micro-
architectural level. Frequency-based reshaping has negligible instruction increases
and results in fewer instructions retired in tsp. The reduction in the number of
retired instructions after frequency-based reshaping in tsp is probably a result of
Forma’s field reordering. For the frequency-based reshaping Forma orders the fields
to place the most frequently referenced field at the beginning of the reshaped ob-
ject. If this hot field was not the first field in the base case, then a frequently
executed address computation instruction is eliminated. These measurements indi-
cate that the profiling input data is indeed representative and allows the compiler
to precisely identify cold fields. Affinity-based reshaping and maximal reshaping
may significantly increase the number of retired instructions. The most significant
results of this metric are the significant increase in the number of instructions exe-
cuted for perimeter and the difference in the number of instructions executed for
affinity-based and maximal reshaping. A comparison of this data with the execu-
tion times in Figure 9 reveals a positive correlation with the execution time of the
benchmarks.

Figure 11(a) shows the first-level data cache miss rates. Maximal reshaping pro-
duces significantly fewer misses in art: the level 1 data cache (L1D) miss rate is
reduced by 12.8% compared with baseline. For mcf, frequency-based and affinity-
based reshaping reduce the L1D cache miss rate by 21.6% and 15.6%. The effect
of maximal reshaping on level 1 data cache in mcf is quite small. For tsp and
perimeter, maximal reshaping and affinity-based reshaping achieve similar im-
provement over baseline.

Figure 11(b) shows the second-level data cache miss rates. Different reshaping
strategies make little difference on the L2D miss rate for tsp and perimeter. For
art and mcf, the situation is similar to that in the L1D cache miss rate: maximal
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(a) L1D Cache Miss Rate on Itanium-II.
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(b) L2D Cache Miss Rate.

Fig. 11. Data cache (levels 1 and 2) efficiency.

reshaping performs best on art and frequency-based reshaping is most effective on
mcf. But the difference of effectiveness on mcf is not as significant as in L1D.

The L3D cache miss rates is shown in Figure 12(a). There is no significant effect
on the L3D miss rate of different reshaping strategies for art, tsp and perimeter.
The important data in this graph is the significant reduction, 56.3%, in the L3D miss
rate of mcf produced by maximal reshaping. With more than 40% access misses on
both first- and second level-data cache, at least 16% of mcf’s data accesses turn to
the third-level data cache. Therefore, the improvement on the L3D cache miss rate
avoids a substantial number of memory references (about 6% of the total memory
accesses). This improvement is important because the cost of physical memory
accesses in this Itanium-II system is about 103.1 nanoseconds, which amounts to
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Fig. 12. Data cache (level 3) and TLB efficiency.

about 143 cycles7.
TLB efficiency is another important performance factor for benchmarks with

large memory footprints. The Itanium-II has two levels of data TLBs (DTLB). To
translate a virtual address into a physical address, the processor first looks up the
first-level DTLB (L1DTLB). If L1DTLB does not hold the mapping, a four-cycle
latency second-level DTLB (L2DTLB) access is required. If L2DTLB also fails, a
TLB miss occurs. Itanium-II has a hardware virtual hash page table (VHPT) walker
that reduces the overhead of TLB misses [Intel 2002]. If the translation is not found
in the VHPT, the execution traps to the operating system and a software handler is
invoked to handle the TLB miss. Software handlers are extremely expensive because

7This estimate for the physical memory access latency was obtained with Lmbench 3.0.
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they execute hundreds of instructions. Of the four benchmarks studied, mcf is the
only one that has a relatively high TLB miss rate. However, only about 0.5% mcf’s
TLB misses result in software handler traps. All the other TLB misses are handled
successfully by hardware VHPT walkers. The Itanium-II workstation used in this
study has an average TLB miss latency of about 50 cycles8. Figure 12(b) shows
the variations in TLB misses for all benchmarks and reshapers studied. Maximal
reshaping reduces the TLB miss rate of mcf by 2.3%. This is because maximal
reshaping always has the smallest memory footprint. The reduced TLB miss rate
combined with the reduced DL3 miss rate (see Figure 12(a)) explain the impressive
runtime improvement of maximal reshaping for mcf in the Itanium-II workstation
(see Figure 9).

4. RELATED WORK

Because data cache efficiency is a major performance bottleneck in modern com-
puter systems, extensive research effort has been dedicated to improving data cache
utilization. Extant research falls into three categories: data layout optimization,
data prefetching, and loop restructuring. This section presents a sample of relevant
work in this area.

4.1 Data Layout Optimization

The goal of data layout optimizations is to reduce data cache misses by improving
data locality or by reducing cache conflicts.

4.1.1 Structure Splitting or Reshaping. Extensive research effort has been ded-
icated to the study of field placement and data splitting. Using the accumulated
frequencies of the member fields, Franz and Kistler [1998] split an aggregate data
type into a hot structure and a cold one. Chilimbi et al. [1999] describe an structure-
splitting technology and a field-reordering technology for type-safe programs. Their
structure splitting is essentially the frequency-based splitting in this paper. Zhong
et al. [2004] presents K-distance analysis to group fields in a structure according
to their access affinity. These three approaches orient their techniques for type-
safe programming languages. However, their performance studies use error-prone
human-inspected C applications. Applying a type-safe oriented optimization to
a type-unsafe language without proper alias analysis is dangerous in production
compilers.

Rabbah et al. split a structure completely and group the respective fields of
various data objects together [Palem et al. 2000; Rabbah and Palem 2003], which
is essentially the maximal splitting in this work. In their work, objects may be
organized in an array, or may be linked through pointers in the original program.
Their research has two shortcomings. First, they use imprecise field-insensitive alias
analysis. With this conservative alias information, either important optimization
opportunities will be missed or runtime checks must be inserted into the executable,
potentially offsetting the data reshaping benefit. Moreover, their analysis does not
include safety analysis.

8We used a program at http://www.gelato.unsw.edu.au/IA64wiki/PageFaultTiming to measure

TLB miss latency.
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4.1.2 Array Padding and Array Permutation. Inter-array padding adjusts array-
based addresses by inserting memory space between arrays while intra-array padding
modifies array dimensions by inserting spaces between array elements [Rivera and
Tseng 1998; Ishizaka et al. 2003]. The motivation for array padding is to change
the array layout so that array elements that are accessed at the same time are not
mapped into the same cache address. Array padding is very useful for applications
such as dense numerical linear algebra, finite-difference and partial differential equa-
tion solvers, and image processing. Array padding and array reshaping work with
different data granularities. While array padding treats objects (such as structs

and classes) as atomic, array reshaping works at the field level. Array reshaping is
only good for arrays of large aggregate data elements. Moreover, the two techniques
have different benefit models: array padding reduces cache conflict misses between
frequently referenced data objects while array reshaping tries to avoid bringing
useless data into cache.

Strip-mining and array permutation are used to reorganize data in multi-processor
systems to make each individual processor’s data share contiguous [J. M. Anderson
and Lam 1995].

4.2 Loop Restructuring

Loop restructuring has been used to improve cache efficiency for a long time. Loop
fusion might improve cache efficiency if both fused loops have access to the same
data elements [Kennedy 2000; McKinley et al. 1996; Singhai and McKinley 1996;
1997; Wolfe 1996]. Loop fission, also called loop distribution, splits a loop into two
or more smaller loops, each of which accesses independent arrays [Wolfe 1996]. Loop
interchange, also known as loop permutation, reorders the iterations over a multi-
dimensional array so that the access pattern is more amenable to data layout [Allen
and Kennedy 1984; Wolfe 1996]. Loop tiling, also referred to as loop blocking,
improves cache efficiency by dividing the iteration space of a loop into tiles that
have better spatial and temporal locality [Hsu and Kremer 2000; Rivera and Tseng
1999; Wolfe 1987; 1996]. Loop tiling can only be applied to perfectly nested loops.
Some imperfectly nested loops can be converted to perfectly nested ones so that
tiling can be applied. Kodukula et al. [1997] proposes a “data-centric” approach,
called data shackling or data blocking, to localize data accesses. Intuitively, the
compiler divides an array into a sequence of smaller blocks, as in loop tiling, and
schedules, or shackles, the statements that operate on each block close together.
At run time, once the data block is fetched into memory hierarchy, the shackled
statements are all executed.

All these loop restructuring techniques are compile-time optimizations. These
techniques require that access patterns be known to the compiler. However, in
some applications the access patterns are hard to predict at compile time. To deal
with these situations, researchers have proposed runtime data layout or control
flow transformations [Ding and Kennedy 1999; Strout et al. 2003]. However, these
approaches have two drawbacks. First, they often ignore practical problems, such as
alias analysis for safety, that are indispensable in a production compiler. Second,
the optimization targets are often very specific, and reducing the overhead for
general runtime transformation is still an open question.
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4.3 Data Prefetching

Data Prefetching can be seen as an orthogonal optimization to data reshaping.
Even though they share the goal of alleviating the memory bottleneck problem
by reducing memory latency, data prefetching and data reshaping approach the
problem from different angles. Data prefetching is a technique to tolerate memory
latency by loading data into the cache when the data is expected to be used soon.
Data prefetching does not reduce cache misses; rather it reduces the cache miss
penalty. Data prefetching tries to handle a cache miss earlier by overlapping the
data fetching with other computations so that the data is already in cache when
it is needed. Comparatively, data reshaping reduces memory latency by improving
data locality and improving cache hit rates.

Data prefetching has been studied extensively. A good survey can be found
in [VanderWiel and Lilja 2000]. Data prefetching can be either hardware based,
software based [Karlsson et al. 2000; Luk and Mowry 1996; Stoutchinin et al. 2001]
or a joint effort of hardware and compiler support [Al-Sukhni et al. 2003; Roth
et al. 1998].

The drawback of data prefetching is that it may increase substantially the number
of memory accesses and the demand for memory bandwidth. This problem becomes
dominant in systems where interconnections to a memory subsystem are shared
by several processors. From this perspective, data reshaping is superior to data
prefetching because it attacks the problem at its cause, by reducing misses, instead
of at its observed effect, i.e. by tolerating misses.

Badawy et al. [2001] found that software data prefetching outperforms loop re-
structuring when there is enough memory bandwidth available. In the same work,
they also found that naively integrating software prefetching with loop restructuring
does not yield additional performance improvements.

Sometimes the effects of data prefetching and reshaping might overlap. With
careful data layout or reshaping, the effect of data prefetching might become smaller
because the reshaped data has better locality and is likely to be in cache already
when it is referenced, thus eliminating the need for prefetching. If the cache miss
pattern can be predicted well by the data prefetching mechanism, data reshaping
is not necessary unless memory bandwidth becomes a problem. However, data
prefetching and reshaping are not necessarily mutually exclusive. Data reshaping
might also facilitate data prefetching. The cooperation between maximal splitting
and hardware stream prefetching in PowerPC R© processors is a good example.

5. CONCLUSION AND FUTURE WORK

Forma is a practical array reshaping framework that guarantees safe automatic
array reorganization. The experimental evaluation of Forma studied the effects
of design decisions on two dimensions: the reshaping planner and the reshaping
method.

Forma has limitations. Although it catches important cases in standard bench-
marks and produces impressive performance improvements, the single instantiation
rule for array reshaping is restrictive. Because of this restriction, currently Forma

only handles dynamically allocated arrays. However, many programs operate on
linked data structures that are typically not allocated monolithically into a dy-
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namic array. The next step on the development of Forma is to handle these cases.
The challenge to handle individually allocated objects is the difficulty to analyze
all the dynamically allocated objects involved in a linked data structure at compile
time. Therefore, Forma will need to insert a sophisticated memory pool manage-
ment mechanism into the program and integrate this mechanism into the programs’
memory management. Recently, there has been some work in this direction [C. Lat-
tner and V. Adve 2002; Palem et al. 2000; Rabbah and Palem 2003]. Adding this
feature will increase the number of opportunities for reshaping covered by Forma.

A common shortcoming of existing automatic data layout optimization tech-
niques is that they only capture very simple access patterns or use imprecise approx-
imations. To accommodate more complex data access patterns, researchers in the
area of cache-conscious algorithms have manually re-engineered applications [Holte
et al. 1996; Niewiadomski et al. 2003; 2004]. Re-crafting an algorithm can pro-
duce impressive performance improvements but its high cost makes it prohibitive
for a large number of applications. It will be interesting to compare the perfor-
mance potential of existing automatic reshaping strategies with complex manual
transformations. If these manual transformations are general and much more supe-
rior, we should investigate more sophisticated program analysis techniques that are
necessary to automate this process. These techniques include phase recognition,
access pattern (or shape) analysis, and so on. As the impact of memory accesses
on performance grows, automatic data reorganization will be justified in spite of
its complexity.
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