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PGAS Languages

 Offer attractive programming model for large-scale
machines

* Programmer specifies what data is shared and how it
Is distributed among threads

* Accesses to data follow shared memory-like style

* Compiler/runtime system manage moving shared
data to ensure it is available to the accessing thread
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Parallel execution environments

* Shared memory

— All memory locations are directly accessible, typically NUMA

* Distributed memory

— Local memory locations are directly accessible, but may incur
extra overheads if bookkeeping is done in the runtime

— Remote accesses require messages

* Hybrid
— Combination of shared memory and distributed memory
— At least 3 levels of latency: local, shared and remote

PGAS languages provide a unique programming model

LCPC "06 November 2, 2006 © 2004 IBM Corporation




IBM TJ Watson Research Center

Shared data access patterns

* Understanding how shared data is accessed in a
program is crucial to performance

— Local accesses can be privatized to improve performance
— Blocking factor can be used to increase local accesses

* Programs that “exchange” data with only a few
threads could benefit from a hybrid architecture

— A group of threads maps to a truly shared address space

— Shared data access is now a direct access for threads in the
“neighborhood”, with much better latency than sending a

message
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IBM xIUPC Compiler and Runtime System

* Development version of the IBM UPC compiler and
runtime system

* All shared variable accesses are transformed into
calls to the runtime system

* No aggressive optimizations were enabled In the
compiler

* The Shared Variable Directory (SVD) is used to
manage allocation, deallocation and access to
shared objects
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Performance and Environment Monitoring

* Framework
1. XML specification for events
2.Tool set to generate stubs
3.API that allows event selection and collection
4.Runtime that implements the API

* Manually instrumented the runtime calls to track the
allocation and accesses of shared objects
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PEM Infrastructure

—

XML Event
1| specification

1) Language-independent specification of

events and their semantics

2) Generate language-specific event data structures
and header files (Java, C, C++, Fortran) to support

Layer instrumentation

Hardware/Simulator

PEM library
PEM CPO agent
2| Tools
3) PEM implementation with a platform-
independent API
Application I'-PI L, 2 ;f
, , = erformance
Virtual Machine - » PEM > Explorer
0/S c trace Visualizer
< A

Instrumented the xXIUPC runtime to collect allocation and accesses to shared objects
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Benchmarks

- NAS Suite (GWU)
— CG
— MG
— IS

* Sobel Edge Detection
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Local access ratio

Benchmark UPC Percentage of local shared accesses
Threads | 1TpG 2TpG 4TpG 8TpG  16TpG
4 50.2 83.4
8 45.6 72.8 90.9
CG Class B 16 | 411 683 864 909
32 40.8 59.5 78.2 90.6 93.8
2 50
4 25.1 50
IS Class S 8 13.2 25.2 50.1
16 7.6 13.7 25.7 50.5
32 6.2 9.3 15.2 27.1 51.4
2 74.8
4 62.2 74.8
MG Class S 8 55.4 62.3 74.9
16 52.3 56 62.3 74.9
32 50.6 52.9 56.1 62.5 75
2 26.68
4 23.3 60
Sobel Easter (BF 1) 8 21.7 56.7 76.7
16 20.8 55 73.3 85
32 20.4 54.1 71.7 81.7 89.2
2 93.2
4 89.7 93.2
Sobel Easter (Max BF) 8 87.7 89.7 93.2
16 86.2 87.7 89.7 93.2
32 84.3 86.2 87.7 89.7 93.2
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L ocal-to-remote Access Ratio Lessons

* The majority of accesses are to local data
— Good for performance

— Locality optimization to reduce the translation overhead is
crucial
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Distance to remote accesses (CG Class B)
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Distance to remote accesses (IS Class S)
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Distance to remote data

» Each thread typically exchanges data within a small
neighborhood, even when run with a relatively large
number of threads (except IS)

— Potential to exploit hybrid architectures if mapping of
threads to processors is taken into account

— The vast majority of data can become “local”
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Distribution of shared accesses (CG Class B)
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Effects of blocking factor (Sobel)

MAX BLOCK = (ROWS*COLUMS) / THREADS
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Blocking Factor

* Semantically trivial

* Can have a significant effect on performance
— Crucial to get cache locality for single thread performance

— Affects the amount of communication in distributed memory
machines

— Many scientific algorithms will benefit from data layout
directives
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Related Work

* Performance of UPC compared to other languages
— UPC vs MPI for NPB (El-Ghazawi & Cantonnet, SC '02)
— Private local access vs shared local access (Berlin et. al., LCPC '03)
— UPC vs CAF (Coarfa et. al., PpoPP '05)
— UPC vs MPI + Pthreads (Zhang and Seidel, IPDPS '05)

* Programming models for hybrid architecture
— Cluster OpenMP (Hoeflinger, Intel 2006).
— MPI + OpenMP (Smith & Bull, WOMPAT '00)
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Conclusions

* PGAS languages (UPC included) are attractive for HPC
because they can provide a unique programming
model for hierarchical machines

* Challenges:
— Performance on par with Fortran and MPI

— Fix some of the peculiarities

* Opportunities:
— Local accesses to shared data identifiable by the compiler

— Small “teams” of threads that typically exchange data that will map
well to hybrid architectures and increase the likelihood of local

accesses
— Layout directives that can increase locality
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