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PGAS Languages

● Offer attractive programming model for large-scale 
machines

● Programmer specifies what data is shared and how it 
is distributed among threads

● Accesses to data follow shared memory-like style

● Compiler/runtime system manage moving shared 
data to ensure it is available to the accessing thread
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Parallel execution environments

● Shared memory
– All memory locations are directly accessible, typically NUMA

● Distributed memory
– Local memory locations are directly accessible, but may incur 

extra overheads if bookkeeping is done in the runtime

– Remote accesses require messages

● Hybrid
– Combination of shared memory and distributed memory

– At least 3 levels of latency: local, shared and remote

PGAS languages provide a unique programming model
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Shared data access patterns

● Understanding how shared data is accessed in a 
program is crucial to performance

– Local accesses can be privatized to improve performance

– Blocking factor can be used to increase local accesses

• Programs that “exchange” data with only a few 
threads could benefit from a hybrid architecture

– A group of threads maps to a truly shared address space

– Shared data access is now a direct access for threads in the 
“neighborhood”, with much better latency than sending a 
message
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IBM xlUPC Compiler and Runtime System

● Development version of the IBM UPC compiler and 
runtime system

● All shared variable accesses are transformed into 
calls to the runtime system

● No aggressive optimizations were enabled in the 
compiler

● The Shared Variable Directory (SVD) is used to 
manage allocation, deallocation and access to 
shared objects
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Performance and Environment Monitoring

● Framework

1.XML specification for events

2.Tool set to generate stubs

3.API that allows event selection and collection

4.Runtime that implements the API

● Manually instrumented the runtime calls to track the 
allocation and accesses of shared objects
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O/S

PEM Infrastructure
1) Language-independent specification of 
events and their semantics

2) Generate language-specific event data structures 
and header files  (Java, C, C++, Fortran) to support
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Instrumented the xlUPC runtime to collect allocation and accesses to shared objects 
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Benchmarks

● NAS Suite (GWU)

– CG

– MG

– IS

● Sobel Edge Detection
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Local-to-remote Access Ratio for CG class B

Blocking Factor = NUM_PROC_COLS Blocking Factor = 1
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Local access ratio
Benchmark

UPC Percentage of local shared accesses
Threads 1TpG 2TpG 4TpG 8TpG 16TpG

CG Class B

4 50.2 83.4     
8 45.6 72.8 90.9            
16 41.1 68.3 86.4 90.9     
32 40.8 59.5 78.2 90.6 93.8

IS Class S

2 50
4 25.1 50
8 13.2 25.2 50.1
16 7.6 13.7 25.7 50.5
32 6.2 9.3 15.2 27.1 51.4

MG Class S

2 74.8
4 62.2 74.8
8 55.4 62.3 74.9
16 52.3 56 62.3 74.9
32 50.6 52.9 56.1 62.5 75

Sobel Easter (BF 1)

2 26.68
4 23.3 60
8 21.7 56.7 76.7
16 20.8 55 73.3 85
32 20.4 54.1 71.7 81.7 89.2

Sobel Easter (Max BF)

2 93.2
4 89.7 93.2
8 87.7 89.7 93.2
16 86.2 87.7 89.7 93.2
32 84.3 86.2 87.7 89.7 93.2
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Local-to-remote Access Ratio Lessons

● The majority of accesses are to local data

– Good for performance

– Locality optimization to reduce the translation overhead is 
crucial
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Distance to remote accesses (CG Class B)
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Distance to remote accesses (IS Class S)
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Distance to remote data

● Each thread typically exchanges data within a small 
neighborhood, even when run with a relatively large 
number of threads (except IS)

– Potential to exploit hybrid architectures if mapping of 
threads to processors is taken into account

– The vast majority of data can become “local”
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Distribution of shared accesses (CG Class B)

Blocking Factor = NUM_PROC_COLS Blocking Factor = 1
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Effects of blocking factor (MG Class S)

Original Blocking Factor Blocking Factor = 1
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Effects of blocking factor (Sobel)

Blocking Factor = 1 Blocking Factor = MAX_BLOCK

MAX_BLOCK = (ROWS*COLUMS) / THREADS
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Blocking Factor

● Semantically trivial

● Can have a significant effect on performance

– Crucial to get cache locality for single thread performance

– Affects the amount of communication in distributed memory 
machines

– Many scientific algorithms will benefit from data layout 
directives 
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Related Work

● Performance of UPC compared to other languages

– UPC vs MPI for NPB (El-Ghazawi & Cantonnet, SC '02)

– Private local access vs shared local access (Berlin et. al., LCPC '03)

– UPC vs CAF (Coarfa et. al., PpoPP '05)

– UPC vs MPI + Pthreads (Zhang and Seidel, IPDPS '05)

● Programming models for hybrid architecture

– Cluster OpenMP (Hoeflinger, Intel 2006).

– MPI + OpenMP (Smith & Bull, WOMPAT '00)
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Conclusions

● PGAS languages (UPC included) are attractive for HPC 
because they can provide a unique programming 
model for hierarchical machines

● Challenges:
– Performance on par with Fortran and MPI

– Fix some of the peculiarities

● Opportunities:
– Local accesses to shared data identifiable by the compiler

– Small “teams” of threads that typically exchange data that will map 
well to hybrid architectures and increase the likelihood of local 
accesses

– Layout directives that can increase locality


