.||IH

IBM T.J. Watson Research Center

A Characterization of Shared Data Access
Patterns in UPC Programs

Christopher Barton, Calin Cascaval, Jose Nelson Amaral

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Outline

* Motivation

* Overview of Environment
* Benchmarks

* Results

* Conclusions

2 LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

PGAS Languages

 Offer attractive programming model for large-scale
machines

* Programmer specifies what data is shared and how it
Is distributed among threads

* Accesses to data follow shared memory-like style

* Compiler/runtime system manage moving shared
data to ensure it is available to the accessing thread

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Parallel execution environments

* Shared memory

— All memory locations are directly accessible, typically NUMA

* Distributed memory

— Local memory locations are directly accessible, but may incur
extra overheads if bookkeeping is done in the runtime

— Remote accesses require messages

* Hybrid
— Combination of shared memory and distributed memory
— At least 3 levels of latency: local, shared and remote

PGAS languages provide a unique programming model

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Shared data access patterns

* Understanding how shared data is accessed in a
program is crucial to performance

— Local accesses can be privatized to improve performance
— Blocking factor can be used to increase local accesses

* Programs that “exchange” data with only a few
threads could benefit from a hybrid architecture

— A group of threads maps to a truly shared address space

— Shared data access is now a direct access for threads in the
“neighborhood”, with much better latency than sending a

message

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

IBM xIUPC Compiler and Runtime System

* Development version of the IBM UPC compiler and
runtime system

* All shared variable accesses are transformed into
calls to the runtime system

* No aggressive optimizations were enabled In the
compiler

* The Shared Variable Directory (SVD) is used to
manage allocation, deallocation and access to
shared objects

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Performance and Environment Monitoring

* Framework
1. XML specification for events
2.Tool set to generate stubs
3.API that allows event selection and collection
4.Runtime that implements the API

* Manually instrumented the runtime calls to track the
allocation and accesses of shared objects

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

PEM Infrastructure

—

XML Event
1| specification

1) Language-independent specification of

events and their semantics

2) Generate language-specific event data structures
and header files (Java, C, C++, Fortran) to support

Layer instrumentation

Hardware/Simulator

PEM library
PEM CPO agent
2| Tools
3) PEM implementation with a platform-
independent API
Application I'-PI L, 2 ;f
, , = erformance
Virtual Machine - » PEM > Explorer
0/S c trace Visualizer
< A

Instrumented the xXIUPC runtime to collect allocation and accesses to shared objects

LCPC "06

November 2, 2006

© 2004 IBM Corporation

IBM TJ Watson Research Center

Benchmarks

- NAS Suite (GWU)
— CG
— MG
— IS

* Sobel Edge Detection

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

x 10 X 10
3.5)

I Local 35 Il Local

1st owner I 1st owner

I 2nd owner 3l | | I 2nd owner
% I 3rd owner ¢ I 3rd owner
0 [lathowner| o [|4th owner
D | L_Isthowner| § ,g | |[_J5th owner
3 [__J6thowner § [__I6th owner
< <
° o ol
o o
= £
-] 5 1.5¢
Z Z
) [0)
(o)) o)
: . I
o 0
> >
< <

0.5r
O [U U U s, |
4 8 16 32 4 8 16 32

Number of Threads in the Run Number of Threads in the Run

Blocking Factor = NUM_PROC COLS Blocking Factor = 1

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Local access ratio

Benchmark UPC Percentage of local shared accesses
Threads | 1TpG 2TpG 4TpG 8TpG 16TpG
4 50.2 83.4
8 45.6 72.8 90.9
CG Class B 16 | 411 683 864 909
32 40.8 59.5 78.2 90.6 93.8
2 50
4 25.1 50
IS Class S 8 13.2 25.2 50.1
16 7.6 13.7 25.7 50.5
32 6.2 9.3 15.2 27.1 51.4
2 74.8
4 62.2 74.8
MG Class S 8 55.4 62.3 74.9
16 52.3 56 62.3 74.9
32 50.6 52.9 56.1 62.5 75
2 26.68
4 23.3 60
Sobel Easter (BF 1) 8 21.7 56.7 76.7
16 20.8 55 73.3 85
32 20.4 54.1 71.7 81.7 89.2
2 93.2
4 89.7 93.2
Sobel Easter (Max BF) 8 87.7 89.7 93.2
16 86.2 87.7 89.7 93.2
32 84.3 86.2 87.7 89.7 93.2

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

L ocal-to-remote Access Ratio Lessons

* The majority of accesses are to local data
— Good for performance

— Locality optimization to reduce the translation overhead is
crucial

12 LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Distance to remote accesses (CG Class B)

4 Threads

10000

8000+

6000 |

4000}

Number of accesses

2000 ¢

0

-2

15000

10000

5000}

Number of accesses

LCPC "06

8 Threads
15000 - - ‘
10000 ¢ C}D
5000 ‘ ‘ |
O T T n
-4 -3 -2 -1 0 1 2 3 4
32 Threads
15000 T —
10000 ¢
5000 | H ‘
TII | T
S| R[e
o ledebocsecdo oL o ePomoncbuhe
-16 -12 -8 -4 0 4 8 12 16

Neighboring distance

November 2, 2006

© 2004 IBM Corporation

IBM TJ Watson Research Center

Distance to remote accesses (IS Class S)

« 10" 4 Threads « 10" 8 Threads 16 Threads
6 & T T] 4 15000
] ¢ ¢
» 5
2 3 1
D 4 , 10000 ¢
3
303
5 3 2
3 "0
2 - | 5000-C q h
3 1]
=
1
0 : : : 0 0 -
-2 -1 0 1 2 -4 -3-2-1 0 1 2 3 4 -87654321012345678
32 Threads 64 Threads 128 Threads
10000 —_—— 6000 — — 8000 ————
| 5000 1
§ 8000 6000 - &
8 4000 , ‘
S 6000
[ye) _
5 3000 e
g 4000 I
(= 2000
Z
2000 () IRl DTS mmmm)‘ 1000 |

0 0 . 0] A
-16-12 -8 -4 0 4 8 12 16 —32—24—16 -8 0 8 16 24 32 —64—48—32—16 0 16 32 48 64
Neighboring distance Neighboring distance Neighboring distance

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Distance to remote data

» Each thread typically exchanges data within a small
neighborhood, even when run with a relatively large
number of threads (except IS)

— Potential to exploit hybrid architectures if mapping of
threads to processors is taken into account

— The vast majority of data can become “local”

November 2, 2006 © 2004 IBM Corporation

LCPC "06

IBM TJ Watson Research Center

Distribution of shared accesses (CG Class B)

16 C) ‘ 16 [o o0 [
® 0 C X ([o0) [
14 -) CN) o 14 () o0 [o
° X) oo o O °
12- o000 e 12 o [J 00
g Y C X o [LN) L
Q10 ® o0) 0 10 [o000 : [
= ° @0 o F | ee0e® < °
o g o000 ® 28 [L o0
% ® @06 o 8 © : N o
8 6 . . ® 8 6r . o . ®
< ® ® oo < (N - @ o
4 o000 ® 4 o [Qo
® ® o () [Qe o
2 @ (N 2 () Qo [
@oo Qo [°
00 .‘I2 4‘1- é é 1I0 1I2 1I4 1‘6 C.0 2 4‘1 é EIS ‘I‘O 1é 1‘4 1‘6
Owner Thread Owner Thread
Blocking Factor = NUM_PROC COLS Blocking Factor = 1

LCPC "06 November 2, 2006 © 2004 IBM Corporation

© 2004 IBM Corporation

|
I
—
)
15
S
o
z b
7, as
S Z
©
@
O =\
= =y
- @o? s
o =) 2
= I 05 ™
O 00’0‘) &N
= O) oﬁ%/ . =
- Woo© % 2
5] k2 0A. Q
ke S g%/ =2
: 'e) G . aa
2 = KX —
= O o‘:t 3
— L ““/ g ©
= S) 5h 2
= (5K 5= o
=) SN S
e = N &
g=
LL] =

IBM TJ Watson Research Center

Effects of blocking factor (Sobel)

MAX BLOCK = (ROWS*COLUMS) / THREADS

35¢
35~
. 30 L
30 -
I 25
2 ;s
0 3
i 20- S 20
(@] (@)}
= k=
(%)) L) |
§ 15 (dl)) 15
o O
< <
10~ 10
5 L
S 5 L
[§°000000000000000000000000000¢() 4N
OO 5 10 15 20 o5 30 35 0! ..?....?....,....’....,....,..
Owner Thread 0 5 10 15 20 25 30 35
Owner Thread
Blocking Factor = 1 Blocking Factor = MAX BLOCK

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Blocking Factor

* Semantically trivial

* Can have a significant effect on performance
— Crucial to get cache locality for single thread performance

— Affects the amount of communication in distributed memory
machines

— Many scientific algorithms will benefit from data layout
directives

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Related Work

* Performance of UPC compared to other languages
— UPC vs MPI for NPB (El-Ghazawi & Cantonnet, SC '02)
— Private local access vs shared local access (Berlin et. al., LCPC '03)
— UPC vs CAF (Coarfa et. al., PpoPP '05)
— UPC vs MPI + Pthreads (Zhang and Seidel, IPDPS '05)

* Programming models for hybrid architecture
— Cluster OpenMP (Hoeflinger, Intel 2006).
— MPI + OpenMP (Smith & Bull, WOMPAT '00)

LCPC "06 November 2, 2006 © 2004 IBM Corporation

IBM TJ Watson Research Center

Conclusions

* PGAS languages (UPC included) are attractive for HPC
because they can provide a unique programming
model for hierarchical machines

* Challenges:
— Performance on par with Fortran and MPI

— Fix some of the peculiarities

* Opportunities:
— Local accesses to shared data identifiable by the compiler

— Small “teams” of threads that typically exchange data that will map
well to hybrid architectures and increase the likelihood of local

accesses
— Layout directives that can increase locality

November 2, 2006 © 2004 IBM Corporation

21 LCPC "06

