
Multidimensional Blocking in UPC

Christopher Barton1, Călin Caşcaval2, George Almasi2, Rahul Garg1, Jośe Nelson
Amaral1, and Montse Farreras3

1 University of Alberta, Edmonton, Canada
2 IBM T.J. Watson Research Center

3 Universitat Polit̀ecnica de Catalunya

Abstract. Partitioned Global Address Space (PGAS) languages offer an attrac-
tive, high-productivity programming model for programming large-scale paral-
lel machines. PGAS languages, such as Unified Parallel C (UPC), combine the
simplicity of shared-memory programming with the efficiency of the message-
passing paradigm by allowing users control over the data layout. PGAS lan-
guages distinguish between private, shared-local, and shared-remote memory,
with shared-remote accesses typically much more expensive than shared-local
and private accesses, especially on distributed memory machines where shared-
remote access implies communication over a network.
In this paper we present a simple extension to the UPC language that allows the
programmer to block shared arrays in multiple dimensions. We claim that this
extension allows for better control of locality, and therefore performance, in the
language.
We describe an analysis that allows the compiler to distinguish between local
shared array accesses and remote shared array accesses. Local shared array ac-
cesses are then transformed into direct memory accesses by the compiler, saving
the overhead of a locality check at runtime. We present results to show that local-
ity analysis is able to significantly reduce the number of shared accesses.

1 Introduction

Partitioned Global Address Space (PGAS) languages, such as UPC [14], Co-Array For-
tran [10], and Titanium [16], extend existing languages (C, Fortran and Java, respec-
tively) with constructs to express parallelism and data distributions. They are based on
languages that have a large user base and therefore there is a small learning curve to
move codes to these new languages.

We have implemented several parallel algorithms — stencil computation and lin-
ear algebra operations such as matrix-vector and Cholesky factorization — in the UPC
programming language. During this effort we identified several issues with the current
language definition, such as: rudimentary support for data distributions (shared arrays
can be distributed only block cyclic), flat threading model (no ability to support subsets
of threads), and shortcomings in the collective definition (no collectives on subsets of
threads, no shared data allowed as target for collective operations, no concurrent partic-
ipation of a thread in multiple collectives). In addition, while implementing a compiler
and runtime system we found that naively translating all shared accesses to runtime
calls is prohibitively expensive. While the language supports block transfers and cast

operations that could alleviate some of the performance issues, it is more convenient to
address these problems through compiler optimizations.

Tackling some of these issues, this paper makes the following contributions:

– propose a new data distribution directive, called multidimensional blocking, that al-
lows the programmer to specify n-dimensional tiles for shared data (see Section 2);

– describe a compile-time algorithm to determine the locality of shared array ele-
ments and replace references that can be proven to be locally owned by the execut-
ing thread with direct memory accesses. This optimization reduces the overhead of
shared memory accesses and thus brings single thread performance relatively close
to serial implementations, thereby allowing the use of a scalable, heavier, runtime
implementation that supports large clusters of SMP machines (see Section 3);

– present several benchmarks that demonstrate the benefits of the multidimensional
blocking features and the performance results of the locality analysis; these perfor-
mance results were obtained on a cluster of SMP machines, which demonstrates
that the flat threading model can be mitigated through knowledge in the compiler
of the machine architecture (Section 5).

2 Multidimensional Blocking of UPC arrays

In this section we propose an extension to the UPC language syntax to provide addi-
tional control over data distribution: tiled (ormultiblocked) arrays. Tiled data structures
are used to enhance locality (and therefore performance) in a wide range of HPC ap-
plications [2]. Multiblocked arrays can help UPC programmers to better express these
types of applications, allowing the language to fulfill its promise of allowing both high
productivity and high performance. Also, having this data structure available in UPC
facilitates using library routines, such as BLAS [4], in C or Fortran that already make
use of tiled data structures.

Consider a simple stencil computation on a 2 dimensional array that calculates the
average of the four immediate neighbors of each element.

1 shared double A[M] [N] ;
2 . . .
3 f o r (i = 1 . .M−2, j = 1 . .N−2)
4 B[i] [j] = 0 . 2 5 ∗ (A[i −1][j]+A[i +1] [j]+A[i] [j −1]+A[i] [j + 1]) ;

Since it has no data dependencies, this loop can be executed in parallel. However,
the naive declaration ofAabove yields suboptimal execution, because e.g.A[i-1][j]
will likely not be on the same UPC thread asA[i][j] and may require inter-node
communication to get to. A somewhat better solution allowed by UPC is a striped 2D
array distribution:

shared double [M*b] A[M][N];

M × b is theblocking factorof the array; that is, the array is allocated in contiguous
blocks of this size. This however, limits parallelism toN

b processors and causesO(1
b)

remote array accesses. By contrast, a tiled layout providesM×N
b2 parallelism andO(1

b2)
of the accesses are remote. Typical MPI implementations of stencil computation tile
the array and exchange “border regions” between neighbors before each iteration. This
approach is also possible in UPC:

struct block { double tile[b][b]; };
shared block A[M/b][N/b];

However, the declaration above complicates the source code because two levels
of indexing are needed for each access. We cannot pretend thatA is a simple array
anymore. We propose a language extension that can declare a tiled layout for a shared
array, as follows:

shared <type> [b0][b1]...[bn] A[d0][d1] ... [dn];

Array A is ann-dimensional tiled (or “multi-blocked”) array with each tile being an
array of dimensions[b0][b1]...[bn]. Tiles are understood to be contiguous in memory.

2.1 UPC array layout

To describe the layout of multiblocked arrays in UPC, we first need to discuss conven-
tional shared arrays. A UPC array declared as below:

shared [b] <type> A[d0][d1]...[dn];

is distributed in memory in a block-cyclic manner with blocking factorb. Given an
array indexv = v0, v1, ...vn−1, to locate elementA[v] we first calculate the linearized
row-major index (as we would in C):

L(v) = v0 ×
n−1∏
j=1

dj + v1 ×
n−1∏
j=2

dj + ... + vn−1 (1)

Block-cyclic layout is based on this linearized index. We calculate the UPCthreadon
which array elementA[v] resides. Within the local storage of this thread the array is
kept as a collection of blocks. Thecourseof an array location is the block number in
which the element resides; thephaseis its location within the block.

thread(A,v) ::=
⌊

L(v)
b

⌋
mod T

phase(A,v) ::= L(v) mod b

course(A,v) ::=
⌊

L(v)
b×T

⌋
Multiblocked arrays: The goal is to extend UPC syntax to declare tiled arrays while
minimizing the impact on language semantics. The internal representation of multi-
blocked arrays should not differ too much from that of standard UPC arrays. Con-
sider a multiblocked arrayA with dimensionsD = {d0, d1, ...dn} and blocking factors

B = {b0, b1, ...bn}. This array would be allocated ink =
∏n−1

i=0

⌈
di

bi

⌉
blocks (or tiles)

of b =
∏n−1

i=0 bi elements. We continue to use the concepts ofthread, courseandphase
to find array elements. However, for multiblocked arrays two linearized indices must
be computed: one to find the block and another to find an element’s location within a

block. Note the similarity of Equations 2 and 3 to Equation 1:

Lin−block(v) =
n−1∑
k=0

((vk mod bk)×
n−1∏

j=k+1

bj) (2)

L(v) =
n−1∑
k=0

(
⌊

vk

bk

⌋
×

n−1∏
j=k+1

⌈
dj

bj

⌉
) (3)

The phaseof a multiblocked array element is its linearized in-block index. The
courseandthreadare calculated with a cyclic distribution of the block index, as in the
case of regular UPC arrays.

thread(A,v) ::=

⌊
L(v)Qn−1
i=0 bi

⌋
mod T

phase(A,v) ::= Lin−block(v)

course(A,v) ::=
⌊

L(v)Qn−1
i=0 bi×T

⌋ (4)

Array sizes that are non-multiples of blocking factors: The blocking factors of multi-
blocked arrays are not required to divide their respective dimensions, just as blocking
factors of regular UPC arrays are not required to divide the array’s dimension(s). Such
arrays are padded in every dimension to allow for correct index calculation.

2.2 Multiblocked arrays and UPC pointer arithmetic

The address of any UPC array element (even remote ones) can be taken with the
upc addressof function or with the familiar&operator. The result is called apointer-
to-shared, and it is a reference to a memory location somewhere within the space of the
running UPC application. In our implementation a pointer-to-shared identifies the base
array as well as the thread, course and phase of an element in that array.

UPC pointers-to-shared behave much like pointers in C. They can be incremented,
dereferenced, compared etc. The familiar pointer operators (* , &, ++) are available. A
series of increments on a pointer-to-shared will cause it to traverse a UPC shared array
in row-major order.

Pointers-to-shared can also used to point to multiblocked arrays. Users can expect
pointer arithmetic and operators to work on multiblocked arrays just like on regular
UPC shared arrays.
Affinity, casting and dynamic allocation of multiblocked arrays: Multiblocked ar-
rays can support affinity tests (similar to theupc threadof function) and type casts
the same way regular UPC arrays do.

Dynamic allocation of UPC shared arrays can also be extended to multiblocked
arrays. UPC primitives likeupc all alloc always return shared variables of type
shared void * ; multiblocked arrays can be allocated with such primitives as long
as they are cast to the proper type.

2.3 Implementation Issues

Pointers and dynamic allocation of arrays: Our current implementation supports only
statically allocated multiblocked arrays. Dynamically allocated multiblocked arrays
could be obtained by casting dynamically allocated data to a shared multiblocked type,
making dynamic multiblocked arrays a function of correct casting and multiblocked
pointer arithmetic. While correct multiblocked pointer arithmetic is not conceptually
difficult, implementation is not simple: to traverse a multiblocked array correctly, a
pointer-to-shared will have to have access to all blocking factors of the shared type.
Processor tiling: Another limitation of the current implementation is related to the
cyclic distribution of blocks over UPC threads. An alternative would be to specify a
processor grid to distribute blocks over. Equation 3 would have to be suitably modified
to take thread distribution into consideration. We have not implemented this yet in the
UPC runtime system, although performance results presented later in the paper clearly
show the need for it.
Hybrid memory layout: Our UPC runtime implementation is capable of running in
mixed multithreaded/multinode environments. In such an environment locality is inter-
preted on a per-node basis, but array layouts have to be on a per-UPC-thread basis to be
compatible with the specification. This is true both for regular and multiblocked arrays.

3 Locality Analysis for Multi-Dimensional Blocking Factors

This section describes a compile-time analysis for multi-dimensional blocking factors
in UPC shared arrays. The analysis considers loop nests that contain accesses to UPC
shared arrays and finds shared array references that are provably local (on the same
UPC thread) or shared local (on the same node in shared memory, but on different UPC
threads). All other shared array references are potentially remote (reachable only via
inter-node communication).

The analysis enables the compiler to refactor the loop nest to separate local and
remote accesses. Local and shared local accesses cause the compiler to generate simple
memory references; remote variable accesses are resolved through the runtime with a
significant remote access overhead. We consider locality analysis crucial to obtaining
good performance with UPC.

In Figure 1 we present a loop nest that will be used as an example for our analysis.
In this form the shared array element in the affinity test — the last parameter in the
upc forall statement — is formed by the current loop-nest index, while the single
element referenced in the loop body has a displacement, with respect to the affinity
expression, specified by the distance vectork = [k0, k1, . . . , kn−1]. Any loop nest in
which the index for each dimension, both in the affinity test and in the array reference,
is an affine expression containing only the index in the corresponding dimension can be
transformed to this cannonical form.4 Table 1 summarizes the notation used throughout
this section and the expressions used by the locality analysis to compute the locality of

4 An example of a loop nest that cannot be transformed to this cannonical form is a two-level nest
accessing a two-dimensional array in which either the affinity test or the reference contains an
expression such asA[v0 + v1][v1] .

shared [b0][b1] · · · [bk−1] int A[d0][d1] · · · [dk−1];
for(v0=0 ; v0 < d0 − k0 ; v0++)

for(v1=0 ; v1 < d1 − k1 ; v1++) {
· · ·
upc forall (vn−1=0 ; vn−1 < dn−1 − kn−1 ; vn−1++ ; &A[v0][v1] . . .[vn−1])

A[v0 + k0][v1 + k1] . . .[vn−1 + kn−1] = v0 ∗ v1 ∗ . . . ∗ vn−1;
}

Fig. 1.Multi-level loop nest that accesses a multi-dimensional array in UPC.

Ref Expression Description
1 n number of dimensions
2 bi blocking factor in dimensioni
3 di array size in dimensioni
4 vi position index in dimensioni
5 v = [v0, v1, . . . , vn−1] Index of an array element
6 T number of threads
7 t number of threads per node
8 Bi =

¨
vi
bi

˝
Block index in dimensioni

9 L(v) =
Pn−1

i=0 Bi ×
Qn−1

j=i+1

˚ dj

bj

ˇ
Linearized block index

10 L′(v) = L(v)%T Normalized linearized block index

11 N (v) =
¨ L′(v)

t

˝
Node ID

12 O(v) = L(v)%t Block offset within a node
Table 1.Expressions used to compute the node ID that each elementA[v] of arrayA belongs to.

array elements. The goal of the locality analysis is to compute symbolically the node
ID of each shared reference in the loop and compare it to the node ID of the affinity
expression. All references having a node ID equal to the affinity expression’s node ID
are local.

Locality analysis is done on then-dimensional blocks of the multiblocked arrays
present in the loop. For conventional UPC shared arrays declared with a blocking factor
b, the analysis uses blocking factors of 1 in all dimensions except the last dimension,
whereb is used. The insight of the analysis is that a block shifted by a displacement
vectork can span at most two threads along each dimension. Therefore locality can
only change in one place in this dimension. We call this place the cut.

Once the cut is determined, our analysis tests the locality of the elements at the2n

corners of the block. If a corner is found to be local, all the elements in the region from
the corner up to the cuts in each dimension are also local.

Definition 1. The value of a cut in dimensioni, Cuti, is the distance, measured in
number of elements, between the corner of a block and the first transition between
nodes on that dimension.

Consider the two-level loop nest that accesses a two-dimensional blocked array shown
in Figure 2. The layout of the array used in the loop is shown to the right of the code.
Thin lines separate the elements of the array. Large bold numbers inside each block of
2×3 elements denote the node ID to which the block is mapped. Thick lines separate
nodes from each other. The grey area in the array represents all elements that are ref-

1 /∗ 8 t h r e a d s and 2 t h r e a d s / node∗ /
2

3 shared [2] [3] i n t A[8] [8] ;
4

5 f o r (v0 = 0 ; v0<7 ; v0++){
6 u p c f o r a l l (v1 = 0 ; v1<6 ; v1 ++; &A[v0] [v1]) {
7 A[v0 +1] [v1 + 2] = v0∗v1 ;
8 }
9 }

1
T2 T2 T

TTT

2

222

1
T3 T3 T

TTT

3

333
2

T4 T4 T

TTT

4

444

T5 T5 T

TTT

5

555

3
T7 T7 T

TTT

7

777
0

T0 T0 T

TTT

0

000

T1 T1 T

TTT

1

111
0 1

T3 T3 T

TTT

3

333

0
T2 T2 T

TT

2

22

T1 T1 T

TT

1

11
0

T0 T0 T

TTT

0

000

1 2 3 4 5 6 70 8

1
T2

2

11 T

2

3

4

5

6

7

0

v0

v1

3
T6 T6 T

TTT

6

666

Fig. 2.A two-dimensional array node example.

erenced by iterations of theforall loop that are affine with&A[0][0] ; cuts in this
iteration space are determined by the thick lines (node boundaries).
Finding the cuts: In general, for dimensionsi = 0 to n− 2 the value of the cut in that
dimension is given by the following expression.

Cuti = bi − ki%bi (5)

Thus in the exampleCut0 = 1, which means that the only possible change of
locality value happens between the first and second row of the block being accessed.

The cuts in the last dimension of the array are not necessarily the same for each
corner. In Figure 2, for the top corners the cut is 4 but for the bottom corners the cut is
1. This happens when there are multiple colocated UPC threads in a node (in a hybrid
setup); because the blocks in a node may “wrap around” the rows in the array.

Thus the analysis has to compute two separate values for the last cut: one for the
upper corners and a second one for the lower corners. Upper and Lower refers to the
last dimension in a multi-dimensional array. Letk′ = [k0 + b0 − 1, k1, . . . , kn−1]. The
expression for the last cut in the upper corner is as follows:

CutUpper
n−1 = (t −O(k))× bn−1 − kn−1%bn−1 (6)

CutLower
n−1 = (t −O(k′))× bn−1 − kn−1%bn−1 (7)

wheret is the number of threads per node.
When there is a single thread per node (i.e. t = 1), the normalized linearized block

index is zero, and thus equations 6 and 7 simplify to equation 5.

Axiom 3.01 Given anupc forall loop with affinity testAffTest = A(v) and a
shared array referenceRef = A(v + k), this reference is local if and only ifN (AffTest) =
N (Ref)

Theorem 1. LetA be ann-dimensional shared array with dimensionsd0, d1, . . . , dn−1

and with blocking dimensionsb0, b1, . . . , bn−1. Letw = v0, v1, . . . , vp, . . . , vn−1 and
y = v0, v1, . . . , vp + 1, . . . vn−1 be two vectors such thatA(w) andA(y) are elements
of A. LetBOff = O(v0, v1, . . . , 0) be the block offset for the first element in the block
in dimensionn− 1. Let

v′i =
{

vi%bi − ki%bi if i 6= n− 1
(vi + BOff × bi)%(bi × t) Otherwise. (8)

if v′p 6= Cutp − 1 thenN (w) = N (y).

Proof. We only present the proof for the casep 6= n − 1 here. The proof for the case
p = n − 1 follows a similar reasoning but is more involved because it has to take into
account the block offset for the first element in dimensionn− 1.
From the expressions in Table 1 the expression for the node id of elementsw andy are
given by:

N (w) =
⌊

L(w)%T
t

⌋
andN (y) =

⌊
L(y)%T

t

⌋
(9)

The linearized block index forw andy can be written as:

L(w)=
n−1∑
i=0

⌊
vi

bi

⌋
×

n−1∏
j=i+1

⌈
dj

bj

⌉
(10)

L(y)= L(w) +
(⌊

vp + 1
bp

⌋
−

⌊
vp

bp

⌋)
×

n−1∏
j=p+1

⌈
dj

bj

⌉
(11)

From equations 5 and 8:

v′p = Cutp − 1 (12)

vp% bp − kp% bp = bp − kp% bp − 1 (13)

From equation 13, the conditionv′p 6= Cutp − 1 implies thatvp% bp 6= bp − 1, which
implies thatvp% bp ≤ bp − 2. Therefore:⌊

vp + 1
bp

⌋
=

⌊
vp

bp

⌋
(14)

Substituting this result in equation 11 results thatL(y) = L(w) and thereforeN(w) =
N(y).

Theorem 1 is the theoretical foundation of locality analysis based on corners and
cuts. It establishes that the only place within a block where the node ID may change is
at the cut. The key is that the elementsA(w) andA(y) are adjacent elements ofA.

4 Identifying Local Shared Accesses

In this section we present an algorithm that splits a loop nest into a number of smaller
regions in the iteration space, such that in each region, each shared reference is known
to be local or known to be remote. In a region, if a shared reference is determined to be
local then the reference is privatized otherwise a call to the runtime is inserted.

To determine such regions, our analysis reasons about the positions of various
shared references occuring in the loop nest relative to the affinity test expression. For
each region, we keep track of apositionrelative to the affinity test shared reference. For
each shared reference in the region, we also keep track of position of each reference
relative to the region.

We start with the original loop nest as a single region. This region is analyzed and
the cuts are computed. The region is then split according to the cuts generated. The
new generated regions are again analyzed and split recursively until no more cuts are
required. When all of the regions have been generated, we use the position of the region,
and the position of the shared reference within the region to determine if it is local or
remote. All shared references that are local are privatized. Figure 3 provides a sample

1 shared [5] [5] i n t A[2 0] [2 0] ;
2 i n t main () {
3 i n t i , j ;
4 f o r (i = 0 ; i < 1 9 ; i ++)
5 u p c f o r a l l (j = 0 ; j < 2 0 ; j ++; &A[i] [j]) {
6 A[i +1] [j] = MYTHREAD ;
7 }
8 }

Fig. 3.Exampleupc forall loop containing a shared reference

loop nest containing aupc forall loop and a shared array access. We will assume
the example is compiled for a machine containing 2 nodes and will run with 8 UPC
threads, creating a thread group size of 4. In this scenario, the shared array access on
Line 6 will be local for the first four rows of every block owned by a threadT and
remote for the remaining row. The LOCALITYANALYSIS algorithm in Figure 4 begins
by collecting all top-level loop nests that contain a candidateupc forall loop. To
be a candidate for locality analysis, aupc forall loop must be normalized (lower
bound begins at 0 and the increment is 1) and must use a pointer-to-shared argument for
the affinity test. The algorithm then proceeds to analyze each loop nest independently
(Step 2).

Phase 1of the per-loopnest analysis algorithm finds and collects theupc forall
loop lforall . The affinity statement used inlforall , Astmt is also obtained. Finally the
COLLECTSHAREDREFERENCESprocedure collects all candidate shared references in
the specifiedupc forall loop. In order to be a candidate for locality analysis, a
shared reference must have the same blocking factor as the shared reference used in
the affinity test. The compiler must also be able to compute thedisplacement vector
k = ref shared − affinityStatement for the shared reference, the vectorized difference
between the indices of the reference and of the affinity statement.

In the example in Figure 3 the loop nest on Line 4 is collected as a candidate for
locality analysis. The shared reference on Line 6 is collected as a candidate for locality
analysis; the computed displacement vector is [1,0].

Phase 2of the algorithm restructures the loop nest by splitting the iteration space of
each loop intoregionswhere the locality of shared references is known. Each region has
a statement listassociated with it, i.e. the lexicographically ordered list of statements
as they appear in the program. Each region is also associated with aposition in the
iteration space of the loops containing the region.

In the example in Figure 3 the first region,R0 contains the statements on Lines 5 to
7. The position ofR0 is 0, since the iteration space of the outermost loop contains the
location 0. Once initialized, the region is placed into a list of regions,LR (Step 8).

The algorithm iterates through all regions inLR. For each region, a list of cuts is
computed based on the shared references collected in Phase 1. The cut represents the

LOCALITYANALYSIS(Procedurep)
1. NestSet← GATHERFORALLLOOPNESTS(p)
2. foreach loop nestL in NestSet
Phase 1 - Gather Candidate Shared References
3. lforall ← upc forall loop found in loop nestL
4. nestDepth← depth ofL
5. Astmt ← Affinity statement used inlforall
6. SharedRefList ← COLLECTSHAREDREFERENCES(lforall , Astmt)
Phase 2 - Restructure Loop Nest
7. FirstRegion← INITIALIZE REGION(L)
8. LR ← FirstRegion
9. while LR not empty
10. R← Pop head ofLR
11. CutList← GENERATECUTL IST(R,SharedRefList)
12. nestLevel← R.nestLevel
13. if nestLevel < nestDepth− 1
14. LR ← LR∪ GENERATENEWREGIONS(R, CutList)
15. else
16. Lfinal

R ← Lfinal
R ∪ GENERATENEWREGIONS(R, CutList)

17. endif
18. end while
Phase 3 - Identify Local Accesses and Privatize
19. foreachR in Lfinal

R

20. foreach ref shared in SharedRefList
21. refPosition ←COMPUTEPOSITION(ref shared, R)
22. nodeId← COMPUTENODEID(ref shared, refPosition)
23. if nodeId = 0
24. PRIVATIZE SHAREDREFERENCE(ref shared)
25.endfor

Fig. 4.Locality analysis for UPC shared references

transition between a local access and a remote access in the given region. The GEN-
ERATECUTL IST algorithm first determines the loop-variant induction variableiv in R
that is used inrefshared. The use ofiv identifies the dimension in which to obtain the
blocking factor and displacement when computing the cut. Depending on the dimension
of the induction variable, either Equation 5 or Equations 6 and 7 are used to compute
the cuts.

GENERATECUTL IST sorts all cuts in ascending order. Duplicate cuts and cuts out-
side the iteration space of the region (Cut = 0 or Cut ≥ b) are discarded. Finally, the
current region is cut into multiple iteration ranges, based on the cut list, using the GEN-
ERATENEWREGION algorithm. Newly created regions are separated by an if statement
containing acut expressionof the formiv%b < Cut (the modulo is necessary since a
cut is always in the middle of a block).

Step 13 determines if the regionR is located in the innermost loop in the current
loop nest (i.e. there are no other loops inside ofR). If R contains innermost statements
the regions generated by GENERATENEWREGIONSare placed in a separate list of final
regions.Lfinal

R . This ensures that at the end of Phase 2, the loop nest has been refactored
into several iteration ranges and final statement lists (representing the innermost loops)
are collected for use in Phase 3.

1 shared [5] [5] i n t A[2 0] [2 0] ;
2

3 i n t main () {
4 i n t i , j ;
5 f o r (i = 0 ; i < 1 9 ; i ++)
6 i f ((i % 5) < 4) {
7 u p c f o r a l l (j = 0 ; j < 2 0 ; j ++;
8 &A[i] [j]) {
9 A[i +1] [j] = MYTHREAD ;

10 }
11 }
12 e l s e {
13 u p c f o r a l l (j = 0 ; j < 2 0 ; j ++;
14 &A[i] [j]) {
15 A[i +1] [j] = MYTHREAD ;
16 }
17 }
18 }

Fig. 5.Example after first cut

1 shared [5] [5] i n t A[2 0] [2 0] ;
2 i n t main () {
3 i n t i , j ;
4 f o r (i = 0 ; i < 1 9 ; i ++)
5 i f ((i % 5) < 4) {
6 u p c f o r a l l (j = 0 ; j < 2 0 ; j ++;
7 &A[i] [j]) {
8 o f f s e t = ComputeOf fse t (i , j) ;
9 base A+ o f f s e t = MYTHREAD ;

10 }
11 }
12 e l s e {
13 u p c f o r a l l (j = 0 ; j < 2 0 ; j ++;
14 &A[i] [j]) {
15 A[i +1] [j] = MYTHREAD ;
16 }
17 }
18 }

Fig. 6.Example after final code generation

The second phase iterates through the example in Figure 3 three times. The first
region,R0 and theCutList = 4, calculated by GENERATECUTL IST are passed in
and the intermediate code shown in Figure 5 is generated. GENERATENEWREGIONS

inserts theif ((i \% 5)< 4) branch and replicates the statements in regionR0. Two new
regions,R1 containing statements between lines 8 to 10 andR2, containing lines 14 to
16, are created and added to theNewList. The respective positions associated withR1

andR2 are [0] and [4], respectively.
The new regions,R1 andR2 are popped off of the region listLR in order. Neither

region requires any cuts. GENERATENEWREGIONScopiesR1 andR2 into R3 andR4

respectively. SinceR1 andR2 represent the innermost loops in the nest, the new regions
R3 andR4 will be placed into the final regions list (Step 16 in Figure 4). The position
of regionR3 is [0,0] and the position of regionR4 is [4,0].

Phase 3of the algorithm uses the position information stored in each of the final
regions to compute the position of each shared reference in that region (Step 21). This
information is then used to compute the node ID of the shared reference using the equa-
tions presented in Section 3 (Step 22). All shared references with a node ID of 0 are
local and are privatized (Step 24). The shared referencerefR3

shared located inR3 is com-
puted to have a position of[1, 0] based on the position ofR3,[0, 0], and the displacement
vector ofrefshared, [1, 0]. The node ID for this position is 0 and thusrefR3

shared is lo-
cal. The shared referencerefR4

shared is computed to have a position of[5, 0] using the
position for regionR4, [4, 0]. The node ID for this position is 1, and thus this reference
is remote. Figure 6 shows the final code that is generated.

5 Experimental evaluation

In this section we propose to evaluate the claims we have made in the paper: namely
the usefulness of multiblocking and locality analysis. For our evaluation platform we
used 4 nodes of an IBM SquadronTMcluster. Each node has 8 SMP Power5 processors
running at 1.9 GHz and 16 GBytes of memory.
Cholesky factorization and Matrix multiply : Cholesky factorization was written to
showcase multi-blocked arrays. The tiled layout allows our implementation to take di-
rect advantage of the ESSL [5] library. The code is patterned after the LAPACK [4]
dpotrf implementation and adds up to 53 lines of text. To illustrate the compactness

of the code, we reproduce one of the two subroutines used, distributed symmetric rank-k
update, below.

1 vo id update mb (shared double [B] [B] A[N] [N] , i n t co l0 , i n t co l1) {
2 double a l o c a l [B∗B] , b l o c a l [B∗B] ;
3 u p c f o r a l l (i n t i i = co l1 ; i i <N ; i i +=B ; con t inue)
4 u p c f o r a l l (i n t j j = co l1 ; j j < i i +B ; j j +=B; &A[i i] [j j]) {
5 upc memget (a l o c a l , &A[i i] [co l0] , s i z e o f(double)∗B∗B) ;
6 upc memget (b l o c a l , &A[j j] [co l 0] , s i z e o f(double)∗B∗B) ;
7 dgemm (”T” , ”N” , &n , &m, & p , & a lpha , b l o c a l , &B , a l o c a l ,
8 &B, & beta , (vo id ∗)&A[i i] [j j] , &B) ;
9 }

10 }

The matrix multiply benchmark is written in a very similar fashion. It amounts to little
more than a (serial)k loop around theupdate function above with slightly differ-
ent loop bounds and three shared array argumentsA, B andC instead of only one. It
amounts to 20 lines of code. Without question, multiblocking allows compact code

Cholesky Performance (GFlops)
1 node2 nodes3 nodes4 nodes

1 TPN 5.37 10.11 15.43 19.63
2 TPN 9.62 16.19 28.64 35.41
4 TPN 14.98 23.03 45.43 59.14
6 TPN 18.73 35.29 52.57 57.8
8 TPN 26.65 23.55 59.83 74.14

Matrix Multiply Performance (GFlops)
1 node2 nodes3 nodes4 nodes

1 TPN 5.94 11.30 16.17 22.24
2 TPN 11.76 21.41 29.82 42.20
4 TPN 23.24 39.18 51.05 73.44
6 TPN 31.19 54.51 66.17 89.55
8 TPN 44.20 63.24 79.00 99.71

1 2 4 6 8
0

10

20

30

40

50

60

70

80
1 node
2 nodes

3 nodes
4 nodes

Threads

GF
lop

s

1 2 4 6 8
0

10

20

30

40

50

60

70

80

90

100
1 node
2 nodes
3 nodes
4 nodes

threads

G
Fl

op
s

Fig. 7. Performance of multiblocked Cholesky and matrix multiply as a function of participating
nodes and threads per node (TPN). Theoretical peak:6.9 GFlops× threads× nodes

representation. The benchmark numbers presented in Figures 7 show mediocre scaling
and performance “hiccups”, which we attribute to communication overhead and poor
communication patterns. Clearly, multiblocking syntax needs to be extended with a dis-
tribution directive. Also, the UPC language could use better collective communication
primitives; but that is in the scope of a future paper.
Dense matrix-vector multiplication: This benchmark multiplies a two-dimensional
shared matrix with a one-dimensional shared vector and places the result in a one-

Matrix-vector multiply

Naive 1 node2 nodes3 nodes4 nodes
1 TPN 27.55 16.57 14.13 9.21
2 TPN 16.57 8.59 7.22 4.32
4 TPN 8.57 4.3 3.63 2.18
6 TPN 7.2 3.62 2.43 1.89
8 TPN 4.33 2.2 1.96 1.28

Opt. 1 node2 nodes3 nodes4 nodes
1 TPN 2.08 1.22 0.78 0.6
2 TPN 1.7 0.85 0.63 0.43
4 TPN 0.85 0.44 0.33 0.23
6 TPN 0.65 0.35 0.25 0.19
8 TPN 0.44 0.23 0.22 0.17

Stencil benchmark
Naive 1 node2 nodes3 nodes4 nodes

1 thread 35.64 24.59 19.04 13.41
2 threads 18.85 13.56 9.82 7.9
4 threads 9.8 13.64 5.58 8.9
6 threads 10.85 8.98 7.53 6.12
8 threads 4.9 5.58 9.52 3.66

Opt. 1 node2 nodes3 nodes4 nodes
1 thread 0.30 1.10 1.41 0.74

2 threads 0.73 0.72 0.75 1.06
4 threads 0.44 1.19 0.39 0.84
6 threads 0.32 0.30 1.11 0.75
8 threads 0.22 0.63 1.07 1.02

Fig. 8.Runtime in seconds for the matrix-vector multiplication benchmark (left) and for the sten-
cil benchmark (right). The tables on the top show naive execution times; the tables on the bottom
reflect compiler-optimized runtimes.

dimensional shared vector. The objective of this benchmark is to measure the speed
difference between compiler-privatized and unprivatized accesses.

The matrix, declared of size14400× 14400, the vector as well the result vector are
all blocked using single dimensional blocking. The blocking factors are equivalent to
the [*] declarations. Since the vector is shared, the entire vector is first copied into a
local buffer usingupc memget. The matrix-vector multiplication itself is a simple 2
level nest with the outer loop beingupc forall . The address of the result vector
element is used as the affinity test expression.

Results presented in Figure 8 (left side) confirm that compiler-privatized accesses
are about an order of magnitude faster than unprivatized accesses.
5-point Stencil: This benchmark computes the average of a 4 immediate neighbors
and the point itself at every point in a 2 dimensional matrix and stores the result in a
different matrix of same size. The benchmark requires one original data matrix and one
result matrix. 2-d blocking was used to maximize the locality. The matrix size used for
the experiments was5760× 5760. Results, presented in Figure 8 (right side), show that
in this case, too, run time is substantially reduced by privatization.

6 Related Work

There is a significant body of work on data distributions in the context of High Per-
formance Fortran (HPF) and other data parallel languages. Numerous researchers have
tackled the issue of optimizing communication on distributed memory architectures
by either finding an appropriate distribution onto processors [1, 9] or by determining a
computation schedule that minimizes the number of message transfers [7, 12]. By con-
trast to these works, we do not try to optimize the communication, but rather allow the
programmer to specify at very high level an appropriate distribution and then eliminate
the need for communication all together using compiler analysis. We do not attempt to
restructure or improve the data placement of threads to processors in order to minimize
communication. While these optimizations are certainly possible in our compiler, we
leave them as future work.

The locality analysis presented in this paper is also similar to array privatization [13,
11]. However, array privatization relies on the compiler to provide local copies and/or
copy-in and copy-out semantics for all privatized elements. In our approach, once own-
ership is determined, private elements are directly accessed. In future work we will
determine if there is sufficient reuse in UPC programs to overcome the cost of copying
array elements into private memory.

Tiled and block distributions are useful for many linear algebra and scientific codes [2].
HPF-1 provided the ability to choose a data distribution independently in each dime-
sion if desired. Beside HPF, several other languages, such as ZPL [3] and X10 [15]
provide them as standard distributions supported by the language. In addition, libraries
such as the Hierarichical Tiled Arrays library [2] provide tiled distributions for data de-
composition. ScaLAPACK [6], a widely used parallel library provides a 2 dimensional
block-cyclic distribution for matrices which allows the placement of blocks over a 2-
dimensional processor grid. The distribution used by ScaLAPACK is therefore more
general than the distribution presented in the this paper.

7 Conclusions and Future Work

In this paper we presented a language extension for UPC shared arrays that provides
fine control over array data layout. This extensions allows the programmer to obtain
better performance while simplifying the expression of computations, in particular ma-
trix computations. An added benefit is the ability to integrate existing libraries written
in C and Fortran, which require specific memory layouts. We also presented a compile-
time analysis and optimization of shared memory accesses. Using this analysis, the
compiler is able to reduce the overheads introduced by the runtime system.

A number of issues still remain to be resolved, both in the UPC language and more
importantly in our implementation. For multiblocked arrays, we believe that adding
processor tiling will increase the programmer’s ability to write codes that scale to large
numbers of processors. Defining a set of collectives that are optimized for the UPC pro-
gramming model will also address several scalability issues, such as the ones occuring
in the LU Factorization and the High Performance Linpack kernel [8].

Our current compiler implementation suffers from several shortcomings. In partic-
ular, several loop optimizations are disabled in the presence of upcforall loops. These
limitations are reflected in the results presented in this paper, where the baseline C
compiler offers a higher single thread performance compared to the UPC compiler.

Acknowledgements

This material is based upon work supported in part by the Defense Advanced Research
Projects Agency under its Agreement No. HR0011-07-9-0002. We also want to thank
Philip Luk and Ettore Tiotto for their help with the IBM xlUPC compiler.

References

1. E. Ayguade, J. Garcia, M. Girones, J. Labarta, J. Torres, and M. Valero. Detecting and using
affinity in an automatic data distribution tool. InLanguages and Compilers for Parallel
Computing, pages 61–75, 1994.

2. G. Bikshandi, J. Guo, D. Hoeflinger, G. Alḿasi, B. B. Fraguela, M. J. Garzarán, D. A. Padua,
and C. von Praun. Programming for parallelism and locality with hierarchically tiled arrays.
In PPOPP, pages 48–57, 2006.

3. B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and D. Weathersby. ZPL: A
machine independent programming language for parallel computers.Software Engineering,
26(3):197–211, 2000.

4. J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN
Basic Linear Algebra Subprograms.ACM Transactions on Mathematical Software, 14(1):1–
17, 1988.

5. ESSL User Guide. http://www-03.ibm.com/systems/p/software/essl.html.
6. L. S. B. et al. ScaLAPACK: a linear algebra library for message-passing computers. In

Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing
(Minneapolis, MN, 1997), page 15 (electronic), Philadelphia, PA, USA, 1997. Society for
Industrial and Applied Mathematics.

7. M. Gupta, E. Schonberg, and H. Srinivasan. A unified framework for optimizing communi-
cation in data-parallel programs:.IEEE Transactions on Parallel and Distributed Systems,
7(7):689–704, 1996.

8. HPL Algorithm description. http://www.netlib.org/benchmark/hpl/algorithm.html.
9. U. Kremer. Automatic data layout for distributed memory machines. Technical Report

TR96-261, 14, 1996.
10. R. W. Numrich and J. Reid. Co-array fortran for parallel programming.ACM Fortran Forum,

17(2):1 – 31, 1998.
11. Y. Paek, A. G. Navarro, E. L. Zapata, and D. A. Padua. Parallelization of benchmarks for

scalable shared-memory multiprocessors. InIEEE PACT, pages 401–, 1998.
12. R. Ponnusamy, J. H. Saltz, A. N. Choudhary, Y.-S. Hwang, and G. Fox. Runtime support

and compilation methods for user-specified irregular data distributions.IEEE Transactions
on Parallel and Distributed Systems, 6(8):815–831, 1995.

13. P. Tu and D. A. Padua. Automatic array privatization. InCompiler Optimizations for Scalable
Parallel Systems Languages, pages 247–284, 2001.

14. UPC Language Specification, V1.2, May 2005.
15. The X10 programming language. http://x10.sourceforge.net, 2004.
16. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,

S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance java dialect.
Concurrency: Practice and Experience, 10(11-13), September-November 1998.

