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Outline

• Background
• Brief Overview of Aestimo
• Difference Metric
• Alignment Metric
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What Is FDO?

compile train

Feedback-Directed Optimization:

compile evaluate

training
input profile eval

input
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What Is A Profile?
• Frequency counts for program elements that 

determine program behavior:
– Block/Edge/Path profiles
– Branch probabilities
– Loop iteration counts
– Function call counts
– Function invocation counts
– Value profiles
– ...and more every year...
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Input Characterization
• Desired to help deal with the 

{training input X evaluation input} space
• Determine algorithmically and quantitatively 

the similarity between inputs
• If several inputs are similar, pick a 

representative
– Otherwise, we need to consider all of them

• Previous work from a architecture/design-
space exploration perspective
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Aestimo
• An FDO evaluation tool
• Automates training and evaluating on a 

large number of inputs
• Isolates individual transformations

– Fewer experiment variables
– Results vary by transformation

• Measures:
– Differences in transformation decisions
– Performance differences
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Aestimo
• An FDO evaluation tool
• Automates training and evaluating on a 

large number of inputs
• Isolates individual transformations

– Fewer experiment variables
– Results vary by transformation

• Measures:
– Differences in transformation decisions
– Performance differences
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Inputs for SPEC CINT2000
• Several additional inputs for SPEC CPU2000 

integer benchmarks at:
– http://www.cs.ualberta.ca/~berube/compiler/fdo/inputs.shtml

• Goal: > 20 real program inputs per 
benchmark that span the space of typical 
usage
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Input Characterization: Naive
• Are two inputs different?
• “diff” them!
• But this tells us nothing!

– Inputs might still cause the code to behave 
identically
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Inputs: Human Expert
• "Does the same kind of thing", “They're 

quite different”
• Can intuition/experience be made explicit, 

quantitative?
• Nobody can be an expert on every program
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Inputs: Computer Architect
• Do the inputs stress the architecture in the 

same way?
– IPL, branch predictability, cache behavior, etc...

• Metrics not unique
– Same ILP for two different functions
– Similar cache behavior for two different pieces 

of code that do similar data structure traversals
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Inputs: Compiler Designer
• Do the inputs exercises the same code in the 

same way, have similar memory behavior?
• I.e., how similar are the profiles?

– Different behavior does not necessitate different 
transformation decisions

• Scaled frequencies
• Same “hot” regions

• How different is different enough?
– Depends on the compiler heuristics!
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Inputs: Compiler Heuristic
• Does the expected code behavior results in 

the same transformation decisions?
• I.e., same results of cost-benefit analysis
• If all decisions are the same, then we get the 

same binary even if:
– Different inputs
– Different ILP, cache behavior
– Different frequencies in profiles
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The Difference Metric
• Let's quantitatively compare two inputs 

based on transformation decisions!
• Output a log of decisions during FDO 

compilation
– Multiple inputs used to create multiple logs

• Treat a log of decisions as a vector
– Yes/No decisions produce binary vectors
– Quantitative decisions produce integer vectors



March 21, 2006 Paul Berube, ISPASS 2006 19

Converting Logs to Vectors

void foo () {}
void bar() {
  foo();
}
int main(int argc, char* argv[]) {
  foo();
  bar();
}
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Converting Logs to Vectors

void foo () {}
void bar() {
  foo();
}
int main(int argc, char* argv[]) {
  foo();
  bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline
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Converting Logs to Vectors

void foo () {}
void bar() {
  foo();
}
int main(int argc, char* argv[]) {
  foo();
  bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

callsite v 1 v 2 v 3 v 4
bar.foo
main.foo
main.bar
main.bar.foo
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Converting Logs to Vectors

void foo () {}
void bar() {
  foo();
}
int main(int argc, char* argv[]) {
  foo();
  bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

callsite v 1 v 2 v 3 v 4
bar.foo 1 1
main.foo 1
main.bar 1 1 1
main.bar.foo 1 1 1
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Converting Logs to Vectors

void foo () {}
void bar() {
  foo();
}
int main(int argc, char* argv[]) {
  foo();
  bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

callsite v 1 v 2 v 3 v 4
bar.foo 1 0 1 0
main.foo 0 0 0 1
main.bar 0 1 1 1
main.bar.foo 1 1 1
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void foo () {}
void bar() {
  foo();
}
int main(int argc, char* argv[]) {
  foo();
  bar();
}

Converting Logs to Vectors

callsite v 1 v 2 v 3 v 4
bar.foo 1 0 1 0
main.foo 0 0 0 1
main.bar 0 1 1 1
main.bar.foo 0 1 1 1

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline
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Difference: Definition
• d(va,vb) = |va – vb|2

– L2-norm of vector difference, squared
– Hamming Distance if vectors are binary

• Count of bit-wise differences
• Linear and intuitive
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Difference: What it tells us
• Does the compiler transform the program the 

same way?
• Not:

– Importance of any decision for performance
– Inputs are equivalent for use as a training input
– Inputs are equivalent for use for evaluation
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The Alignment Metric
• Can we say more if we have many inputs?
• Are there decisions that are made the same 

way for all inputs?
• Alternately, how “conformist” are the logs?
• Can we quantify “conformity” with a single 

number?
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Alignment: Graphical Analogy
• 8 logs
• Two clusters of similar logs
• One very distinct log
• 32 pairwise difference scores!
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Alignment: Definition
T = ∑ vi

α i = T•vi      =  T•vi
∑ iT[i]       |T|1

α i = T•vi      =  T•vi
∑ iT[i]       |T|1

• T summarizes/accumulates all the logs
• With binary vectors:

– dividing by |T|
1
 normalizes alignment

– T·v filters T by choices in v
• Recall: inner product = |a||b|cosθ
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Alignment: What it tells us
• Big angle, very different from all the others

T
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Alignment: What it tells us
• Moderate angle, a bit different from T
• All blue logs have similar alignment

T
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Alignment: What it tells us
• Small angle, fairly similar to T
• All red logs have similar alignment

T
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Alignment: What it tells us
• Does NOT tell us:

– Green will perform poorly
– Red will perform well
– Anything else about relative performance!

T
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Getting More Information: Cuts
• A real situation:

– All average difference scores are high
• 16 logs = 128 pairwise differences

– Half the alignment scores are low
– Half the alignment scores are moderate
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Cuts
• Separate based on alignment and recalculate:

– Blue inputs really are different
• Alignment scores still low
• Difference scores still high

– Red inputs are very similar
• High alignments
• Low differences
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Summary
• Input Characterization is important due to 

sensitivity of performance evaluation to 
input selection

• For FDO compiler work, it makes sense to 
characterize training inputs based on the 
transformations they induce

• Metrics based on transformation logs can 
discriminate between inputs
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Thanks

Questions?


