
March 21, 2006 Paul Berube, ISPASS 2006 1

Aestimo: A Feedback-Directed
Optimization Evaluation Tool
A Compiler Perspective on Input Characterization

Paul Berube
Compiler Design and Optimization Laboratory

University of Alberta

March 21, 2006 Paul Berube, ISPASS 2006 2

Outline

• Background
• Brief Overview of Aestimo
• Difference Metric
• Alignment Metric

March 21, 2006 Paul Berube, ISPASS 2006 3

What Is FDO?

compile train

Feedback-Directed Optimization:

compile evaluate

training
input profile eval

input

March 21, 2006 Paul Berube, ISPASS 2006 4

What Is A Profile?
• Frequency counts for program elements that

determine program behavior:
– Block/Edge/Path profiles
– Branch probabilities
– Loop iteration counts
– Function call counts
– Function invocation counts
– Value profiles
– ...and more every year...

March 21, 2006 Paul Berube, ISPASS 2006 5

Performance Evaluation Space

Programs

Ev
al

ua
tio

n
In

pu
ts Static optimization

March 21, 2006 Paul Berube, ISPASS 2006 6

Performance Evaluation Space

Programs

Ev
al

ua
tio

n
In

pu
ts

Tr
ain

ing
 In

pu
ts

FDO

March 21, 2006 Paul Berube, ISPASS 2006 7

Performance Evaluation Space

Programs

Ev
al

ua
tio

n
In

pu
ts

Tr
ain

ing
 In

pu
ts

Often 1
Ref input

SPEC

March 21, 2006 Paul Berube, ISPASS 2006 8

Performance Evaluation Space

Programs

Ev
al

ua
tio

n
In

pu
ts

Tr
ain

ing
 In

pu
ts

Only 1
Train input

SPEC

Often 1
Ref input

March 21, 2006 Paul Berube, ISPASS 2006 9

Input Characterization
• Desired to help deal with the

{training input X evaluation input} space
• Determine algorithmically and quantitatively

the similarity between inputs
• If several inputs are similar, pick a

representative
– Otherwise, we need to consider all of them

• Previous work from a architecture/design-
space exploration perspective

March 21, 2006 Paul Berube, ISPASS 2006 10

Aestimo
• An FDO evaluation tool
• Automates training and evaluating on a

large number of inputs
• Isolates individual transformations

– Fewer experiment variables
– Results vary by transformation

• Measures:
– Differences in transformation decisions
– Performance differences

March 21, 2006 Paul Berube, ISPASS 2006 11

Aestimo
• An FDO evaluation tool
• Automates training and evaluating on a

large number of inputs
• Isolates individual transformations

– Fewer experiment variables
– Results vary by transformation

• Measures:
– Differences in transformation decisions
– Performance differences

March 21, 2006 Paul Berube, ISPASS 2006 12

Inputs for SPEC CINT2000
• Several additional inputs for SPEC CPU2000

integer benchmarks at:
– http://www.cs.ualberta.ca/~berube/compiler/fdo/inputs.shtml

• Goal: > 20 real program inputs per
benchmark that span the space of typical
usage

March 21, 2006 Paul Berube, ISPASS 2006 13

Input Characterization: Naive
• Are two inputs different?
• “diff” them!
• But this tells us nothing!

– Inputs might still cause the code to behave
identically

March 21, 2006 Paul Berube, ISPASS 2006 14

Inputs: Human Expert
• "Does the same kind of thing", “They're

quite different”
• Can intuition/experience be made explicit,

quantitative?
• Nobody can be an expert on every program

March 21, 2006 Paul Berube, ISPASS 2006 15

Inputs: Computer Architect
• Do the inputs stress the architecture in the

same way?
– IPL, branch predictability, cache behavior, etc...

• Metrics not unique
– Same ILP for two different functions
– Similar cache behavior for two different pieces

of code that do similar data structure traversals

March 21, 2006 Paul Berube, ISPASS 2006 16

Inputs: Compiler Designer
• Do the inputs exercises the same code in the

same way, have similar memory behavior?
• I.e., how similar are the profiles?

– Different behavior does not necessitate different
transformation decisions

• Scaled frequencies
• Same “hot” regions

• How different is different enough?
– Depends on the compiler heuristics!

March 21, 2006 Paul Berube, ISPASS 2006 17

Inputs: Compiler Heuristic
• Does the expected code behavior results in

the same transformation decisions?
• I.e., same results of cost-benefit analysis
• If all decisions are the same, then we get the

same binary even if:
– Different inputs
– Different ILP, cache behavior
– Different frequencies in profiles

March 21, 2006 Paul Berube, ISPASS 2006 18

The Difference Metric
• Let's quantitatively compare two inputs

based on transformation decisions!
• Output a log of decisions during FDO

compilation
– Multiple inputs used to create multiple logs

• Treat a log of decisions as a vector
– Yes/No decisions produce binary vectors
– Quantitative decisions produce integer vectors

March 21, 2006 Paul Berube, ISPASS 2006 19

Converting Logs to Vectors

void foo () {}
void bar() {
 foo();
}
int main(int argc, char* argv[]) {
 foo();
 bar();
}

March 21, 2006 Paul Berube, ISPASS 2006 20

Converting Logs to Vectors

void foo () {}
void bar() {
 foo();
}
int main(int argc, char* argv[]) {
 foo();
 bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

March 21, 2006 Paul Berube, ISPASS 2006 21

Converting Logs to Vectors

void foo () {}
void bar() {
 foo();
}
int main(int argc, char* argv[]) {
 foo();
 bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

callsite v 1 v 2 v 3 v 4
bar.foo
main.foo
main.bar
main.bar.foo

March 21, 2006 Paul Berube, ISPASS 2006 22

Converting Logs to Vectors

void foo () {}
void bar() {
 foo();
}
int main(int argc, char* argv[]) {
 foo();
 bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

callsite v 1 v 2 v 3 v 4
bar.foo 1 1
main.foo 1
main.bar 1 1 1
main.bar.foo 1 1 1

March 21, 2006 Paul Berube, ISPASS 2006 23

Converting Logs to Vectors

void foo () {}
void bar() {
 foo();
}
int main(int argc, char* argv[]) {
 foo();
 bar();
}

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

callsite v 1 v 2 v 3 v 4
bar.foo 1 0 1 0
main.foo 0 0 0 1
main.bar 0 1 1 1
main.bar.foo 1 1 1

March 21, 2006 Paul Berube, ISPASS 2006 24

void foo () {}
void bar() {
 foo();
}
int main(int argc, char* argv[]) {
 foo();
 bar();
}

Converting Logs to Vectors

callsite v 1 v 2 v 3 v 4
bar.foo 1 0 1 0
main.foo 0 0 0 1
main.bar 0 1 1 1
main.bar.foo 0 1 1 1

callsite log 1 log 2 log 3 log 4
bar.foo inline call inline call
main.foo call call call inline
main.bar call inline inline inline
main.bar.foo inline inline inline

March 21, 2006 Paul Berube, ISPASS 2006 25

Difference: Definition
• d(va,vb) = |va – vb|2

– L2-norm of vector difference, squared
– Hamming Distance if vectors are binary

• Count of bit-wise differences
• Linear and intuitive

March 21, 2006 Paul Berube, ISPASS 2006 26

Difference: What it tells us
• Does the compiler transform the program the

same way?
• Not:

– Importance of any decision for performance
– Inputs are equivalent for use as a training input
– Inputs are equivalent for use for evaluation

March 21, 2006 Paul Berube, ISPASS 2006 27

The Alignment Metric
• Can we say more if we have many inputs?
• Are there decisions that are made the same

way for all inputs?
• Alternately, how “conformist” are the logs?
• Can we quantify “conformity” with a single

number?

March 21, 2006 Paul Berube, ISPASS 2006 28

Alignment: Graphical Analogy
• 8 logs
• Two clusters of similar logs
• One very distinct log
• 32 pairwise difference scores!

March 21, 2006 Paul Berube, ISPASS 2006 29

Alignment: Definition
T = ∑ vi

α i = T•vi = T•vi
∑ iT[i] |T|1

α i = T•vi = T•vi
∑ iT[i] |T|1

• T summarizes/accumulates all the logs
• With binary vectors:

– dividing by |T|
1
 normalizes alignment

– T·v filters T by choices in v
• Recall: inner product = |a||b|cosθ

March 21, 2006 Paul Berube, ISPASS 2006 30

Alignment: What it tells us
• Big angle, very different from all the others

T

March 21, 2006 Paul Berube, ISPASS 2006 31

Alignment: What it tells us
• Moderate angle, a bit different from T
• All blue logs have similar alignment

T

March 21, 2006 Paul Berube, ISPASS 2006 32

Alignment: What it tells us
• Small angle, fairly similar to T
• All red logs have similar alignment

T

March 21, 2006 Paul Berube, ISPASS 2006 33

Alignment: What it tells us
• Does NOT tell us:

– Green will perform poorly
– Red will perform well
– Anything else about relative performance!

T

March 21, 2006 Paul Berube, ISPASS 2006 34

Getting More Information: Cuts
• A real situation:

– All average difference scores are high
• 16 logs = 128 pairwise differences

– Half the alignment scores are low
– Half the alignment scores are moderate

March 21, 2006 Paul Berube, ISPASS 2006 35

Cuts
• Separate based on alignment and recalculate:

– Blue inputs really are different
• Alignment scores still low
• Difference scores still high

– Red inputs are very similar
• High alignments
• Low differences

March 21, 2006 Paul Berube, ISPASS 2006 36

Summary
• Input Characterization is important due to

sensitivity of performance evaluation to
input selection

• For FDO compiler work, it makes sense to
characterize training inputs based on the
transformations they induce

• Metrics based on transformation logs can
discriminate between inputs

March 21, 2006 Paul Berube, ISPASS 2006 37

Thanks

Questions?

