
Benchmark Design for Robust Profile-Directed Optimization

Paul Berube, José Nelson Amaral
Dept. of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada

Abstract

Profile-guided code transformations specialize program
code according to the profile provided by execution on train-
ing data. Consequently, the performance of the code gener-
ated usind this feedback is sensitive to the selection of train-
ing data. Used in this fashion, the principle behind profile-
guided optimization techniques is the same as off-line learn-
ing commonly used in the field of machine learning. How-
ever, scant use of proper validation techniques for profile-
guided optimizations have appeared in the literature. Given
the broad use of SPEC benchmarks in the computer archi-
tecture and optimizing compiler communities, SPEC is in
a position to influence the proper evaluation and valida-
tion of profile-guided optimizations. Thus, we propose an
evaluation methodology appropriate for profile-guided op-
timization based on cross-validation. Cross-validation is a
methodology from machine learning that takes input sensi-
tivity into account, and provides a measure of the general-
izability of results.

1. Introduction

The SPEC CPU benchmark suite is likely the most sig-
nificant performance evaluation tool for computer systems
and compilers available today. SPEC CPU is the standard
used for performance comparison across platforms. SPEC
scores are used both as targets for development teams and as
a quantification of performance advantage for sales teams.
The SPEC CPU programs are a component of the testing
framework for compiler teams, both to ensure functional-
ity and to detect performance bugs or new performance-
enhancing transformation opportunities. These industrial
uses of the SPEC CPU are the primary concern of SPEC’s
industrial partners, and SPEC CPU fulfills this role very
well.

Another significant group of consumers of SPEC CPU
are academic researchers. While researchers seldom run
the suite as prescribed by SPEC, and hence seldom pub-
lish reportable SPEC performance scores, the benchmark

programs are well-known to the research community and
provide a common framework for the discussion and com-
parison of research results. Furthermore, SPEC CPU is
endorsed by industry as representative of a wide range of
important applications, and comes complete with program
input sets. Thus, using the benchmark suite minimizes re-
search time for experimental design while providing an im-
plicit suggestion of the general applicability of experimental
results. Therefore, in a very significant way, the SPEC CPU
benchmark suite guides compiler and architecture research.

Therefore, while the academic community is indebted to
SPEC for the value provided by its benchmark suites, we
also have an interest and responsibility to help ensure that
SPEC CPU maintains the highest possible levels of scien-
tific utility and integrity. Since profile-guided compiler op-
timization, also known as feedback-directed optimization
(FDO) or as profile-directed feedback (PDF), has recently
been disallowed from reported peak scores in CPU2006,
this is an ideal time to reevaluate both the benchmark con-
tents and the prescribed methodologies as they relate to
PDF. Our concern does not lie in whether or not PDF is
allowed when reporting SPEC performance scores. Instead,
we want PDF to be evaluated in a scientifically sound man-
ner, both in industry and in academia.

PDF has not achieved wide acceptance by compiler
users. There are several reasons for this fact, but one sig-
nificant barrier to acceptance is that the performance ob-
tained without PDF meets or exceeds the requirements of
most users. Thus, extra effort for training runs and recom-
pilation does not provide these users with any additional
utility. Also, PDF is not widely regarded as robust: it may
not improve program performance (and may possibly hurt
performance), while users worry about the representative-
ness of the training inputs they might select. Nonetheless,
there is a class of performance-sensitive users who are will-
ing to pay the overhead of a PDF compilation process in the
hope of improving program performance.

On the other hand, research in PDF and other learning-
compiler lines of investigation are vibrant, and will continue
regardless of whether these techniques can be used to report
peak scores [17, 13, 11]. These projects will most likely

1

continue to use the SPEC CPU benchmarks for performance
evaluation.

Therefore, there is both industrial and academic demand
for benchmarks with effective methodologies for the evalu-
ation of PDF and related technologies. Robustness (or per-
formance stability) is one of the key evaluation criteria for
PDF. A benchmark suitable for PDF should asses perfor-
mance along three dimensions:

1. the range of application domains

2. the typical program inputs

3. the input(s) selected for training

The current structure of the SPEC CPU suite is al-
ready designed to address the first dimension, since it is
a classic concern independent of PDF. However, even in
previous versions of the suite where PDF was allowed
(e.g., CPU2000), the second and third dimensions were ne-
glected. In the absence of PDF, these two dimensions are
not large concerns. However, when PDF is used, the pro-
gram is specialized according to the training input, and in-
put sensitivity issues should be considered. Unfortunately,
the academic community has generally suffered from the
same deficiencies as SPEC CPU.

Section 2 presents some background information perti-
nent to evaluation methodologies of PDF, including some
basic information commonly taken for granted in the re-
lated field of machine learning (ML). Section 3 details our
proposed evaluation methodology for PDF, while Section 4
discusses the practicality of the proposal. Section 5 offers
some concluding remarks.

2. Background

Data inputs are a key component of benchmarks. Eval-
uation inputs must be carefully selected to represent typi-
cal program usage while meeting benchmark requirements
such as dynamic memory footprint size, CPU load, and run-
ning time. The use of PDF for benchmark programs en-
hances both the importance and selection difficulty of in-
puts. In particular, two intuitively similar inputs may not in-
duce similar code transformations in a compiler, or may not
present similar performance responses to compiler transfor-
mations [4, 5].

Training input selection presents several additional chal-
lenges beyond those presented by the selection of evaluation
inputs. Training inputs must represent typical program use,
without requiring long running times. Furthermore, in large
applications, a single training-sized input cannot cover all
the important use cases. Therefore, it can be difficult to
provide a single representative training input.

Furthermore, there is disagreement in the benchmarking
community over what is meant by a “representative training

input.” Some benchmark authors advocate that an effec-
tive way to ensure that the training input is representative of
the evaluation input is to include a portion of the evaluation
input in the training input. Thus, part of what the com-
piler sees during training is a perfect predictor of at least
some portion of the evaluation input. However, others in
the benchmarking community argue that this technique for
training input creation makes the training and evaluation in-
puts too similar [18]. When training inputs are repeated in
the evaluation set, over-fitting (see Section 2.1) is rewarded,
which is counter the goals of an effective evaluation. Is
the purpose of PDF to maximize program performance on a
particular input, or to enhance program performance on the
range of inputs likely to be seen in practice? If PDF is meant
to improve performance in practice rather than to maximize
benchmark scores, then training and evaluation workloads
should not overlap. Nonetheless, this practice has been used
for SPEC CPU benchmarks, such as gap from CPU2000
and hmmer from CPU2006. Previously, there have been
no precise guidelines or rules for input selection for SPEC
CPU benchmarks, which has left individual benchmark au-
thors to decide for themselves how these inputs should be
devised.

2.1 Lessons from Machine Learning

A training run to generate a program profile for a com-
piler is very similar to a training run in machine learning.
The profile essentially provides a sample data point (of pro-
gram execution) to which the compiler attempts to fit the
program in order to maximize expected program perfor-
mance. The field of machine learning has developed ex-
cellent techniques to robustly evaluate the performance of
such offline learning systems. It is time for the compiler and
benchmarking communities move from our current evalua-
tion methodologies to the well-established methodologies
accepted by the ML community.

The artificial intelligence community has had a strong
interest in learning techniques for several decades. One
of the earliest goals of mechanical computing was to cre-
ate a machine with human capabilities. This goal has been
most apparent in the field of computerized game playing.
The strongest computer players of many well-researched
games use machine learning techniques. Furthermore, ma-
chine learning techniques have important industrial appli-
cations [12, 15]. These advances in machine learning are
supported and facilitated by well-developed and well tested
evaluation methodologies spanning from theoretical algo-
rithm analysis to practical experimental evaluation.

Machine learning teaches that there are two key ideas
when evaluating a learning system. Overfitting the train-
ing data must be avoided, and the statistical significance of
results must be determined [8].

Underfitting is the problem where the learning system
does not learn as much as possible from the training data,
and consequently fails to achieve maximum performance on
the evaluation data. Underfitting is not a significant prob-
lem, but rather indicates that opportunities for improvement
exist.

Conversely, overfitting is the case where the learning
system matches the training data too closely. Consequently,
small variations from the training data in the evaluation data
cause large errors by the system. Overfitting can be detected
by comparing the performance of the system when evalu-
ated using the training data versus distinct evaluation data.
Excellent performance on the training data, but poor perfor-
mance on the evaluation data suggests that overfitting has
occurred. Overfitting is a significant problem that must be
avoided. The upshot of the overfitting-underfitting spectrum
is that an evaluation must be careful to ensure that the set of
training inputs is fully distinct from the set of evaluation in-
puts. This way, if overfitting does happen, it is detectable
and does not inflate the evaluation results. Otherwise, eval-
uation could report significant performance gains that are
not achievable in practice.

Overfitting is particularly problematic when the num-
ber of training inputs is low. With few training examples,
it is difficult to separate the peculiarities that make inputs
non-identical from the commonalities between inputs that
should be exploited. If a single training input is used, this
distinction is impossible. Since discovering and exploiting
the commonalities between inputs is a fundamental task of
many learning systems, including PDF compilers, it is im-
perative that multiple inputs are used during the training
process.

The statistical significance of results is very important
when evaluating complex systems. System performance is
not independent of the data used, and will vary according
to the inputs used for training and evaluation. Changing
the data may change the maximum possible level of perfor-
mance. For example, the entropy in data used for a com-
pression algorithm will change how much the data can be
compressed, and consequently how significantly the perfor-
mance of the compression routines impact whole-program.
According to the central limit theorem, random samples
from a population with finite variance are approximately
normally distributed. Performance measures should have
finite variance, and are thus approximately normally dis-
tributed around their mean. Consequently, the sample stan-
dard deviation or confidence intervals can be calculated
from the measurements to express the expected spread of
performance measures from the mean.

If the standard deviation is small compared to the mea-
sured gain, then the measured gain is meaningful, and will
very likely be observed in any additional sample points (i.e.,
other data inputs) that were not tested during evaluation. On

the other hand, if the standard deviation (or confidence in-
terval) is large compared to the mean, then the true mean
may be significantly different than the measured mean, and
the measured mean may not accurately represents the gain
expected on other inputs. In other words, the gain observed
during evaulation may simply be noise. For example, con-
sider an evaluation that yields a mean speedup of 1.05 over
a baseline. Two times the standard deviations is approx-
imately a 95% confidence interval. Thus, if the standard
deviation is 0.005, it can be stated with high confidence
that the evaluated technique provided a 5% improvement,
± 1%. Alternatively, if the same evaluation produced a
standard deviation of 0.05, then the technique provides a
5% improvement ± 10%. In this second case, the 5% im-
provement is not statistically significant, and it is uncertain
that the technique improves performance. Thus, calculating
standard deviations or confidence intervals provides a good
measure of the robustness of the measured performance
across the untested inputs that could be encountered in the
field, provided that the sample of inputs used for evaluation
is representative of the inputs encountered in the field.

2.2 Cross Validation

An appropriate evaluation methodology must account
for the problem of overfitting the training data and the need
for statistical confidence for performance measurements. A
common evaluation techniques used in ML that addresses
these concerns is cross-validation [8]. In its simplest form,
cross-validation takes a set of data (inputs in the PDF case),
splits them into two groups, and uses one group for train-
ing and the other for evaluation. More sophisticated cross-
validation divides the data in various ways to produce more
permutations of training and evaluation data sets. Nonethe-
less, an essential property of cross-validation is that train-
ing and evaluation are repeated several times, using differ-
ent non-overlapping input sets for training and evaluation.
The fact that in every case, the training and evaluation sets
are non-overlapping eliminates the problem of overfitting
inflating performance results. Performing multiple training
and evaluation runs reduces the impact of particularly poor
or favorable training or evaluation sets. Finally, the exis-
tence of multiple evaluation measurements allows statistical
confidence to be calculated.

3. Proposed Benchmark Methodology

PDF is a different compilation technique than traditional
non-PDF compilation, with different performance issues
and consequently different requirements for a performance-
evaluation methodology. Therefore, instead of allowing
PDF in reported peak scores, we propose that an optional
separate PDF score be reported, along with base and peak.

The proposed PDF evaluation methodology is based on
cross-validation, and incorporates the requirements of this
technique with the constraints and concerns of performance
evaluation for high-performance systems.

3.1 PDF Workload

Cross-validation requires a workload of inputs. We call
this set of inputs the PDF workload, W . The intuitive guide-
line for the PDF workload is that the inputs in the workload
should be as varied as possible and should attempt to cover
or sample the space of program inputs, biased toward typ-
ical program inputs but not selecting these types of inputs
exclusively. Rather than attempting to find one input that is
representative of program use, the workload as a whole will
be representative of program usage. For example, one input
could correspond to a particular use-case of the program,
and another input could correspond to a different use-case.
These two inputs can be completely unrelated, and nei-
ther need try to represent all common uses of the program.
Program behaviors that are common independent of input
characteristics will be universally represented, while input-
dependent program behaviors will be represented in propor-
tion to their occurrence in the workload. Consequently, the
more important a particular program behavior is to overall
program performance, the more frequently it will be repre-
sented in the workload.

The inputs selected for the PDF workload should be in-
dependent. Input independence is difficult to define pre-
cisely, but the data in two inputs should not overlap or have
a common origin. For example, a particular chess posi-
tion should not occur in two input files, images should not
be subsections from a common source, or a matrix of data
should not be sampled from another matrix used in a differ-
ent input. Randomly generated data should be avoided be-
cause it is both unrepresentative of real data, and multiple
data randomly generated in the same way will likely have
very similar characteristics. If the program accepts multi-
ple data formats, W should contain examples from as many
of these formats as practical. If the data has implicit or ex-
plicit dimensionality, different elements of W should avoid
repeating the same dimensionality.

Each input in W may potentially be used for both train-
ing and evaluation (but only in different evaluation con-
texts). Therefore, these inputs must run long enough to pro-
vide meaningful performance measures, but also be small
enough that training runs (possibly an order of magnitude
slower than an soptimized non-training run) complete in
an acceptable time. Furthermore, these constraints should
continue to be met as machine performance continues to in-
crease during the lifetime of the benchmark. Therefore, we
suggest that inputs in W should have a (non-training) run-
ning time of approximately 2 min.

3.2 Training and Evaluation

The PDF workload will be randomly split into three non-
overlapping partitions, each containing an equal number of
inputs. Let A, B, and C be the names of the three partitions.
These partitions may be specified as part of the benchmark
design. A rule of thumb suggests that at least 5 indepen-
dent measurements are required to make statistical signif-
icance tests worthwhile. More than 30 evaluations would
typically be considered a large sample size, which enhances
the reliability of statistical measures. However, benchmark
running time constraints and benchmark author resources
place practical limitations on how many inputs can be col-
lected and used. In order to facilitate the cross-validation
methodology presented here, the number of inputs should
be a multiple of 3. To enable meaningful statistical mea-
sures of confidence, a minimum of 9 independent inputs are
required, since 2

3
× 9 provides 6 independent performance

measures.
One partition (say A) is selected as the training parti-

tion. The compiler will perform a training run using one
or more of the inputs in A. If the compiler cannot use pro-
file information from all inputs in A (e.g., can only train on
a single input), then the subset of inputs that the compiler
uses for training are selected from A in order, according to
an input list supplied with the benchmark. Let the program
created by training on A be denoted by PA. Note that the
compilation of PA may use all the settings and flags used to
compile for peak. PA is run on the inputs in B ∪ C. This
training/evaluation cycle is repeated, running PB on A∪C,
and again running PC on A ∪ B.

3.3 Reporting PDF Performance

PDF performance will be reported as a mean speedup
compared to the program used to report peak performance.

Let T N
i be the mean running time of an odd number

(at least 3) of executions of PN on input i ∈ W , N ∈
{A, B, C}. Likewise, let T P

i be the same measure using the
program compiled for peak. For each input i, exactly two
of {T A

i , T B
i , T C

i } exist (T N
i does not exist if i ∈ N , since

the same input is never used for both training and evalua-
tion). Denote the set of all such performance measurements
by M = {T N

i |∀N ∈ {A, B, C}, ∀i ∈ W, i /∈ N}.
The PDFPeak score is the average speedup compared

to peak observed in all PDF-optimized evaluation runs:

PDFPeak =
1

|M |

∑

ji∈M

T P
i

ji

where i is an input, such that T P
i and ji correspond to eval-

uations using the input i.
In addition to reporting PDFPeak , the standard devia-

tion of the speedups must also be reported, using the stan-
dard bias-adjusted sample standard deviation equation:

σPDFPeak =

√

1

|M | − 1

∑

ji∈M

(ji − PDFPeak)2

Clearly, compiler designers will strive for a high
PDFPeak score. In order to achieve this goal, PDF must
improve the performance of the program over a large num-
ber of unseen inputs. Furthermore, the training phase does
not guarantee that selecting a single input from the train-
ing set will provide a particularly representative training
run. However, using more than one input during training
(in particular, all of the training set) likely provides a more
representative sample of program execution than any single
training input could. Therefore, in order for a PDF compiler
to achieve a high PDFPeak score, it must be both robust in
the face of the possibility of a poorly chosen training in-
put, as well as in the face of potentially varying behavior in
evaluation inputs. Of course, a good way to avoid problems
with an unfortunate training input is to use multiple train-
ing inputs. The capability to use multiple training inputs is
already present in several commercial compilers, including
the IBM XL compiler [10] and the Intel C++ Compiler [9].

Additionally, the standard deviation is a critical metric,
because it provides confidence for the PDFPeak speedup
value. If (PDFPeak − 2 × σPDFPeak) > 1 there is more
than a 95% probability that PDF does in fact improve per-
formance compared to peak. Even if PDFPeak is much
larger than peak, we cannot be confident that PDF improves
performance for the program if σPDFPeak is large compared
to that difference. In essence, the standard deviation gives
a measure of the robustness of PDF in improving perfor-
mance, which is a key factor that must be considered when
PDF is evaluated.

3.4 Relationship Between PDF and Ref

Traditionally, SPEC CPU benchmarks have included a
ref input or workload of inputs used for performance eval-
uation. In cases where ref is a workload, it is likely ap-
propriate to let ref and W be the same set of inputs. This
unification of ref and W not only reduces the input selection
burden on benchmark authors, but also reduces the compu-
tational overhead required to get the running time measure-
ments required to compute PDFPeak . Furthermore, even
in the case where PDF is not used, evaluation on a work-
load of inputs provides statistical confidence measures that
evaluation on a single, large, input cannot.

However, in other cases it may be most appropriate for
ref to be a small number of, or a single, large input(s) that
is/are not suitable for inclusion in W . In these cases, two
options are available. The simplest option is to leave the

measures of base/peak and PDFPeak completely indepen-
dent. However, a potentially more informative approach
is to let the ref input(s) be a new partition of inputs in W
that is never used for training, but only for evaluation. In
this way, the performance of PDF on these large (and pre-
sumably more important) inputs is taken into account. If
this method is used, it may be beneficial to reformulate the
equation for PDFPeak to use a weighted mean instead of
an unweighted mean, to give more significant to the ref in-
put(s).

4. Practicallity Considerations

A cross-validation approach to PDF evaluation provides
performance measurements that are more reliable than tra-
ditional approaches. However, this improved evaluation
does incur a cost, and it is important that the cost is not
prohibitive for any stakeholders.

4.1 Compiler Users

Ultimately, the performance results produced using
benchmarks are intended to help end-users of computer sys-
tems estimate the performance of various systems for their
application workloads. If multiple training inputs are re-
quired to reliably obtain the level of performance indicated
by the proposed evaluation methodology, end users should
also adopt a multi-input training methodology. Despite
the immediate impression that such a training methodology
would increase the burden on PDF users, training on mul-
tiple inputs should not be a significant issue for the class
of performance-sensitive users who are interested in PDF.
Such users typically maintain sets of inputs to use for re-
gression testing, both for program correctness and program
performance. These input sets will include the important
use cases of the program. Instead of requiring the user to
develop a specific training input that attempts to cover all
those use cases (in order to be representative), the user is
freed to simply train on all the use cases they have already
identified. Therefore, while the training time may be ex-
tended, the effort required to facilitate a representative train-
ing regiment is significantly reduced.

4.2 Benchmark Users

When properly incorporated into a benchmark suite,
cross-validation should be nearly invisible to a benchmark
user. The multiple training runs, evaluations, and perfor-
mance measure calculations should all be performed auto-
matically by the benchmark framework. The only task for
the user should be to specify the correct arguments to the
compiler to enable the creation and use of program profiles,
and possibly to specify the maximum number of inputs to

use for training, if this is a limitation in the PDF imple-
mented by the compiler.

The proposed training and evaluation methodology is not
significantly more expensive in terms of computation time
than the traditional methodology. Assuming that the PDF
workload is unified with the ref workload, the baseline mea-
surements for speedup comparison are taken care of by a
standard non-PDF run of the benchmark. Training requires
instrumented runs on at most |W | training-sized inputs, but
only three additional program compilations. Evaluation re-
quires twice the number of runs used to compute the peak
score.

4.3 Benchmark Authors

Benchmark authors face the largest burden from the pro-
posed methodology. Each benchmark author must select
the inputs used with the program. Authors have two op-
tions when selecting the training set. They may use their
expert knowledge to carefully consider a number of inputs
and select those that expose different program behaviors or
present distinct program use cases. Alternatively, they may
select a large collection of inputs, and then use one or more
of the existing input similarity clustering techniques from
the literature to determine redundancy in the original col-
lection [7, 14].

The ease with which many inputs can be gathered or
generated is an important consideration when proposing the
collection of a workload of inputs. Based on the documen-
tation of SPEC CPU 2006 benchmark programs [16], there
should be little difficulty obtaining inputs for integer-style
benchmark programs:

400.perlbench, 433.gcc, 483.xalancbmk There are large
repositories on the web of C, C++, and Perl programs.
XML documents should be easily obtainable. The ref-
erence workloads for these programs already consist
of several inputs.

401.bzip2 Any file can serve as a valid input for a compres-
sion program. The bzip2 reference workload consists
of several input.

429.mcf, 471.omnetpp, 473.astar The algorithms imple-
mented by these programs work on the provided topol-
ogy. Commodity flow graph, network topologies and
path-finding maps may not be plentifully available in
the particular formats required by these programs, but
the use of format conversion scripts or other input gen-
erators should allow for the collection of many inputs
with moderate effort from the authors.

445.gobmk, 458.sjeng Both go and chess board positions
are easily generated. Furthermore, given that pro-
grams for both games compete at events such as the

Computer Olympiad [1] and the World Chess Champi-
onship [2], collections of well-known board positions
in standard formats should be available.

456.hmmer Many online, publicly accessible databases
for protein sequences and related information exist,
such as the Swiss-Prot [3] database.

462.libquantum Number factoring requires only an inte-
ger as input, and an optional base for modular expo-
nentiation.

464.h264ref Video streams are plentiful on the Internet.
Furthermore, various video characteristics impact en-
coders, such as the amount of action in a scene, gray-
scale (“black and white” movies) or color, and ani-
mated or live-action.

A scan of the SPEC 2006 floating-point programs
presents modeling and simulation tools, equation solvers,
a rendering engine and a speech-recognition program.
Changing system parameters, data sizes, material proper-
ties, and/or the scenario presented by the input files should
lead to the creation of collections of inputs, in the absence
of real-world input sets. However, profile-guided optimiza-
tions are typically most beneficial to integer programs, and
have far less impact on scientific codes.

In short, the burden of collecting a set of inputs for cross-
validation does not appear to be significant in most cases, as
represented by SPEC CPU 2006.

5. Conclusion

PDF and learning compiler techniques are a vibrant field
of research that offer significant performance gains over un-
informed compilation. However, these techniques require a
more robust evaluation methodology than traditionally used
for the performance evaluation of computer systems. For-
tunately, the field of machine learning has already studied
both the issues and complications of evaluating a learn-
ing system, and developed methodologies to evaluate these
systems despite these complications. We propose a cross-
validation approach to PDF evaluation that avoids the prob-
lem of overfitting the training data while providing statisti-
cal confidence measures for the performance results.

However, one large problem remains open. How should
the sets of inputs used for performance evaluation be se-
lected? In many cases, expert knowledge can be lever-
aged to select representative workloads of inputs. How-
ever, in other cases, such as long-running database applica-
tions, program usage patterns can change over time in un-
predictable ways. While the proposed evaluation method-
ology does consider a range of inputs, those inputs must be

selected a priori, and the methodology may not predict pro-
gram performance if program usage drifts in ways unantic-
ipated during benchmark construction. Ideally, benchmark
performance should predict performance in the field. After
all, users only care about the performance they observe in
their program.

PDF is useful when program behavior changes very
slowly. At the other extreme, JIT technologies impose a
run-time overhead but dynamically respond to program be-
havior at run time. In between is a spectrum of behavior
change rates that require approaches that are more dynamic
than PDF, but less dynamic than JIT. Some work with lim-
ited scope has been done in this intermediate space, such as
dynamic prefetching [6]. Future research must continue to
explore points in the dynamic optimization spectrum. Con-
sequently, the need for input selection methodologies and
evaluation techniques that consider both input sensitivity
and performance stability will expand.

Acknowledgments

This research is supported by fellowships and grants
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), the Informatics Circle of Research
Excellence (iCORE), the Canadian Foundation for innova-
tion (CFI), and Alberta Ingenuity. Thanks to Dan Lizotte
for discussions and advice related to machine learning.

References

[1] 11th computer olympiad.
http://www.cs.unimaas.nl/Olympiad2006/, June 2006.

[2] 14th world computer-chess championship.
http://www.cs.unimaas.nl/wccc2006/, June 2006.

[3] Swiss-prot protein knowledgebase.
http://www.expasy.org/sprot/, November 2006.

[4] P. Berube. Aestimo: A feedback-directed optimization eval-
uation tool. Master’s thesis, University of Alberta, October
2005.

[5] P. Berube and J. N. Amaral. Aestimo: a feedback-directed
optimization evaluation tool. In 2006 IEEE International
Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 251 – 260, Austin, Texas, March
2006.

[6] A. Das, J. Lu, H. Chen, J. Kim, P.-C. Yew, W.-C. Hsu, and
D.-Y. Chen. Performance of runtime optimization on blast.
In Proceedings of the international symposium on Code gen-
eration and optimization, pages 86–96, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere.
Quantifying the impact of input data sets on program behav-
ior and its applications. Journal of Instruction-Level Paral-
lelism, 5:1–33, 2 2003.

[8] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning, chapter 7, pages 214–221. Springer
Series in Statistics. Springer, 2003.

[9] Intel Corporation. Intel C++ compiler options.
ftp://download.intel.com/support/performancetools/c/linux/
v9/copts cls.pdf, 2006.

[10] International Business Machines. Detailed de-
scriptions of the XL fortran compiler options.
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/
index.jsp?topic=/com.ibm.xlf101a.doc/xlfcr/opts-
details.htm.

[11] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase
sequences. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 165–
198, 2004.

[12] T. M. Mitchell. Does machine learning really work? In AI
Magazine, volume 3, pages 11–20. The American Associa-
tion of Artificial Intelligence, Fall 1997.

[13] Z. Pan and R. Eigenmann. Rating compiler optimizations for
automatic performance tuning. In ACM/IEEE Conference
on High Performance Networking and Computing (SC04),
pages 14–23, November 2004.

[14] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Mea-
suring program similarity: Experiments with SPEC CPU
benchmark suites. In IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), 2005.

[15] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach, chapter 1. Prentice Hall, 2 edition, 2003.

[16] Standard Performance Evaluation Corporation. SPEC
CPU2006. http://www.spec.org/cpu2006/, August 2006.

[17] M. Stephenson and S. P. Amarasinghe. Predicting unroll
factors using supervised classification. In International
Syumposium on Code Generation and Optimization, pages
123–134, 2005.

[18] R. Weicker and K. Dixit. (osgcpu-10955) re: Your question
to SPEC about input data selection for benchmarks. Personal
email correspondences, July 2004.

