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Abstract

Matlab is a matrix-processing language that offers very
efficient built-in operations for data organized in arrays.
However Matlab operation is slow when the program ac-
cesses data through interpreted loops. Often during the
development of a Matlab application writing loop-based
code is more intuitive than crafting the data organization
into arrays. Furthermore, many Matlab users do not com-
mand the linear algebra expertise necessary to write ef-
ficient code. Thus loop-based Matlab coding is a fairly
common practice. This paper presents a tool that auto-
matically converts loop-based Matlab code into equivalent
array-based form and built-in Matlab constructs. Array-
based code is produced by checking the input and output
dimensions of equations within loops, and by transposing
terms when necessary to generate correct code. This paper
also describes an extensible loop pattern database that al-
lows user-defined patterns to be discovered and replaced by
more efficient Matlab routines that perform the same com-
putation. The safe conversion of loop-based into more effi-
cient array-based code is made possible by the introduction
of a new abstract representation for dimensions.

1. Introduction

MatlabTM is an algebraic solution environment opti-
mized for matrix operations that is broadly used for scien-
tific and engineering computations. Because Matlab is an
interpreted high-level language, computations expressed as
nested loops are quite slow. On the other hand, it is often
simpler to write programs that operate on single pieces of
data rather than on matrices. Thus, Matlab programs are of-
ten written as nested loops by programmers that either lack
the training on array-based programming or are unaware of
the performance differences involved. An automatic vec-
torization tool could deliver the performance of vectorized
code to such programmers.

Matlab is a widely-used high-level mathematical model-

ing tool that is often employed by engineers that are experts
on the application field rather than on computer program-
ming. The premise of this work is that, whenever possible,
automatic tools should detect computations for which in-
trinsic Matlab functions are available and replace them by
their more efficient counterparts. This paper first describes
the conversion of loop-based code to array-based code, then
it introduces an extensible loop pattern database that iden-
tifies pre-defined patterns in the program and replaces them
by more efficient Matlab intrinsic functions. An extensive
loop pattern database has the potential of significantly in-
creasing engineering productivity without requiring the re-
training of Matlab programmers. Because the less efficient
code written by a novice programmer is likely to be less
terse and more easily understood by other programmers,
such tools would also facilitate the maintenance of the code.
Although we focus our attention on vectorization of Matlab
loops, our framework extends to any language having ef-
ficient intrinsics that are equivalent to less efficient code.
The framework is useful wherever parts of an abstract syn-
tax tree may be replaced with more efficiently implemented
versions. For instance, contemporary processors could ben-
efit from the replacement of code portions by SIMD instruc-
tions.

The software tool presented in this paper performs
source-to-source transformations of Matlab programs. The
loop vectorizer examines each loop in the original code to
determine if it can be vectorized. Some loops cannot be vec-
torized due to loop-carried dependencies. The loops that
can be vectorized are replaced by their equivalent array-
based form, which speeds up execution most of the time.
The contribution of this paper is a new method to automat-
ically generate code that is optimized for Matlab from gen-
eral code. The method is based upon low-level components,
such as dimensions and operators, extracted from a parsing
tree representation of the program.

The main contributions of this paper are:

• An extension of Allen & Kennedy’s [1]codegenalgo-
rithm, giving it the power to correctly vectorize accu-
mulator variables as well as cases where a row vector



is added to a column vector element-wise.

• A new abstract representation for the dimensions of
Matlab variables that leads to an elegant framework
for the automatic vectorization of loop-based Matlab
code.

• A new extensible loop pattern database that allows the
replacement of general pre-defined patterns by Matlab
intrinsic functions.

Section 2 presents the abstract representation of dimen-
sions and the framework for detecting vectorization oppor-
tunities. Section 3 describes the framework for the exten-
sible loop pattern database. The integration of both tech-
niques in Allen & Kennedy’s codegen algorithm is de-
scribed in Section 3.2. Section 4 discusses the implementa-
tion of a prototype that demonstrate the viability of the ideas
presented in this paper. Section 6 discusses related work.

2. Dimensionality Abstraction

This paper introduces a new automatic vectorization tool
that is based on thecodegenalgorithm presented by Allen &
Kennedy [1]. Their algorithm partitions a data dependence
graph (DDG) into strongly connected components (SCC).
The edges of the original DDG connect the SCCs. The al-
gorithm then visits these SCCs in topological order accord-
ing to these edges. An SCC can be a single node with no
recurrences on itself. Single-node SCCs can be vectorized
immediately. For multi-node SCCs or for single-node SCCs
that have a recurrence, the outermost loop is run sequen-
tially, and then the edges within the SCC that are carried
by the outermost loop are removed. The code generation
procedure is then called on this simpler graph, but now the
vectorization can only occur on the remaining inner loop
nest.

When vectorizing a statement, the originalcodegenalgo-
rithm replaces the loop index variable by the corresponding
loop range (e.g., occurrences ofi are replaced with1:n
for a loop that runs fromi=1 to i=n ). While this sim-
ple replacement is correct for pointwisevectoroperations,
it may introduce errors in the vectorization of Matlab loops.
In Matlab a vector has an associated type that specifies its
orientation: row vector or column vector. Thus the vector-
izer must model the dimensions of all the variables involved
in all the statements in the loop to generate correct code.

Dimension information is also required to determine the
semantics of a particular statement. For instance, consider
the statementx(i)=y(i,h)*z(h,i) in a loop with in-
dex variablei (see Appendix A for a concise overview
of the Matlab notations used in this paper). This state-
ment has two different semantic meanings depending on
whetherh is a scalar or a vector. Ifh is a scalar then

the statement is performing a product of scalars, and upon
vectorization should remain as a pointwise operation —
x(1:n)=y(1:n,h).*(z(h,1:n)’) . On the other
hand, if h is a vector then the statement is performing a
dot product between a row vector and a column vector,
which means that each element ofx(i) will be the re-
sult of a dot product of vectors instead of a product of
scalars and should be vectorized as matrix multiplication
— x(1:n)=y(1:n,h)*z(h,1:n) .

Having motivated the need for dimensionality analysis,
the remainder of this section describes this analysis and then
describes how it can also be used to vectorize non-pointwise
operations.

2.1. Abstraction of Dimensions

The goal of the dimensionality analysis is to discover
whether dimensions of expressions will be legal if vector-
ization occurs. For this analysis we introduce an abstrac-
tion of the dimensions of variables, where the size of a vari-
able in a given dimension is represented by one of two sym-
bols: a 1 representing that the size of the variable is 1 in
that dimension; or *, meaning that the size of the variable is
greater than 1 in the given dimension. The dimensionality
of a variablev is represented in an ordered list of symbols,
dim(v) = (a1, a2, . . . , an) wherean ∈ {1, ∗}. Theith el-
ement corresponds to the abstract size of the variable in the
ith dimension. The following examples illustrate the use of
abstract representation for dimensions:

• the dimensions of a scalar (e.g., a1× 1 matrix) is rep-
resented as(1, 1) or simply(1)

• the dimensions of a1× n row vector is represented as
(1, ∗)

• the dimensions of am×1 column vector is represented
as(∗, 1)

• the dimension of ak× l matrix is represented as(∗, ∗)

Our analysis requires this knowledge of shape for any
variables in the code being vectorized. The dimensionality
analysis is intuitive: if the dimensions of operands in ex-
pressions agree after a simple index-variable replacement,
then the vectorization is correct and should be allowed. To
give a precise definition, the simple abstract representation
of dimensionality must be extended. First, we introduce the
concept ofvectorized dimensionality, which is an abstract
representation of the dimension of an expressionafter vec-
torization of one or more loop index variables has occurred.
The vectorized dimensionality of an expressione with re-
spect to index variablei is denoteddimi(e). The elements
of the vectordimi(e) may be one of{1, ∗, ri}, whereri is
a special symbol relating the size of a dimension to the loop



range for index variablei. Like the “∗” symbol, anri sym-
bol also represents some number greater than 1. The rules
for computing the vectorized dimensionality of a simple in-
dex expression are extracted from the Matlab programming
language itself (see Table 1 for an outline of these rules).
The notationdimi,j(e) refers to the vectorized dimension-
ality of expressione after replacing the index variables by
the vector ranges (i.e., dimi,j(e) = dimi(dimj(e))). Fur-
thermore, unless specified otherwise,dimi is a shorthand
notation denoting the vectorized dimensionality after ex-
panding all loop index variables.

For example, if a loop iterates oni = 1 : n, then after
the expansion of the index variablei, the expressioni will
be a row vector of length1 × n, hencedimi(i) = (1, ri).
Similarity, if dim(A) = (∗, 1) thendim(A(i)) = (1, 1),
but the dimensionality after replacingi with the loop range
will be dimi(A(i)) = (ri, 1) becauseA(1 : n) is a column
vector with sizen× 1.

The concept of vectorized dimensionality is similar to
that of atype in type inference. In contrast, the vectorized
dimensionality is an abstract representation of the shape of
an expression if a loop containing the expression was vec-
torized. Similar to type inference, the dimensionality anal-
ysis consists of propagating these vectorized dimensional-
ities up the parse tree, but the goal is different from type
inference: this abstraction is used to determine when an op-
timization can be performed as opposed to attempting to
determine thetypeof a variable.

With this formal definition of the vectorized dimen-
sionality of simple expressions (e.g., constants, identifiers,
and subscripted expressions), we can define the compati-
bility rules for expressions that may prevent vectorization,
such expressions are pointwise arithmetic expressions and
assignment expressions. Two vectorized dimensionalities
dimi(e1) anddimi(e2) are equal,dimi(e1) ≡ dimi(e2), if
and only if all their elements are identical. Two vectorized
dimensionalities are compatible,dimi(e1) ' dimi(e2),
when their reduced vectorized dimensionalities are equal,
freduce(dimi(e1)) ≡ freduce(dimi(e2)). The reduction
function freduce removes any trailing 1 dimensions from
its vectorized dimensionality input (for example, a 5x5 ma-
trix is effectively the same as a 5x5x1 matrix). It should
be noted that althoughri is similar to* , the two symbols
are not compatible. Furthermore,ri is always incompatible
with rj for i 6= j, even in the case thati andj have the same
loop bounds.

An assignment expression of the formelhs = erhs is
compatible when either of the following hold:

1. dimi(elhs) ' dimi(erhs);

2. erhs is a scalar.

For the pointwise arithmetic operators,e = elhs � erhs,
� ∈ {+,−, .∗, ./, .ˆ}, we must also definedimi(e). The

pointwise operator is compatible when one of the conditions
below holds. The dimension of the expression in the left-
hand side of the statement is set as indicated.

1. dimi(elhs) ' dimi(erhs). Setdimi(elhs � erhs) =
dimi(elhs);

2. elhs is a scalar. Setdimi(elhs � erhs) = dimi(erhs);

3. erhs is a scalar. Setdimi(elhs � erhs) = dimi(elhs).

These rules allow for a scalar to be assigned to a ma-
trix/vector and also allow for the scalar to be an operand
of a pointwise binary operator where the other operand is
a matrix/vector, which is perfectly legal in Matlab. If the
above rules do not hold for any pointwise operator or as-
signment in a statement, then the statement must not be
vectorized. The use of the notion of compatibility protects
the code semantics by disallowing transformations whose
bounds match but which are not equivalent to the original
source code.

2.2. Recognizing Transposes

The compatibility rules described in Section 2.1 are
quite restrictive and will not allow for vectorization of
the simple statementz(i)=x(i)+y(i) when x is a
column vector andy is a row vector. A straightfor-
ward extension to the compatibility rules identifies when
a transpose can make the operands of an expression com-
patible. If an assignment is found to be incompati-
ble and dimi(elhs) ' freverse(dimi(erhs)), then the
assignment ofelhs = e′

rhs is compatible and vector-
ization is permitted. The rules are similar for point-
wise expressions:dimi(elhs) ' freverse(dimi(erhs)) or
freverse(dimi(elhs)) ' dimi(erhs) will produce a com-
patible expression.

An example that illustrates the rules for assignment and
a pointwise operator is given below.

for i=1:m
for j=1:n

A(i,j)=B(j,i)+C(i,j);
end

end

In this example, dimi,j(B(j, i)) = (rj , ri) and
dimi,j(C(i, j)) = (ri, rj) are not compatible. The ex-
tended analysis verifies that ifC(i,j) is transposed,
then the statementB(j,i)+C(i,j)’ is compatible.
This transposition results indimi,j(B(j, i) + C(i, j)′) =
dimi,j(B(j, i)) = (rj , ri). After the transposition
dimi,j(A(i, j)) = (ri, rj), implying that the entire right
hand side of the assignment must also be transposed, result-
ing in the following vector statement:



Expression Type dimi(e)
Scalar (1)
Identifier (1, ri) if identifier name is “i”

dim(e) otherwise
Colon Expression (e.g.,1 : 3 : n) (1, ∗)
Subscripted Expression dimi(e1) if k==1 and (isMatrix(M) or isMatrix(e1))
(e.g.,M(e1, e2, . . . , ek)) (fmax(dimi(e1)), . . . , fmax(dimi(ek))) otherwise
Signed Expression (e.g.,+ê,−ê) dimi(ê)
Transposed Expression (e.g.,ê′) freverse(dimi(ê))

Table 1. The rules for computing vectorized dimensions of simple expressions. The predicate is-
Matrix(M) is true if and only if M is a multi-dimensional matrix. The function fmax returns the
largest dimension of a vector argument (e.g., fmax(1, ∗) = fmax(∗, 1) = ∗, fmax(1, 1) = 1, fmax(1, ri) =
fmax(ri, 1) = ri). The function freverse returns the dimension vector that is the reverse of its argument.

A(1:m,1:n)=(B(1:n,1:m)+C(1:m,1:n)’)’

A later optimization, not investigated in this paper, would
identify that the transpose can be distributed to generate a
simpler equivalent form:

A(1:m,1:n)=B(1:n,1:m)’+C(1:m,1:n)

This example also demonstrates why the special index
variable symbolsri and rj must be treated as different.
Consider the case wherem = n, i.e. the loops iterate
through the same range. If the analysis were to treatri

and rj as the same symbol for the computation of the
equivalence of vectorized dimensionality it would obtain
dimi,j(B(j, i)) ≡ dimi,j(C(i, j)), which would result in
the transposenot being inserted and would produce an in-
correct vectorization.

3. An Extensible Loop Pattern Database

Certain built-in Matlab functions can provide extremely
efficient computation involving multiple data, but the vec-
torization algorithm cannot make use of them without
knowledge of their functionality and use. The techniques
described in Section 2 deal exclusively with the correct vec-
torization of pointwise operations, but will fail to vector-
ize any statement that has an incompatible vectorized di-
mensionality (e.g., loop-based matrix multiplication). To
improve vectorization in such cases we encode knowledge
of possible transforms in a pattern database which is ca-
pable of resolving the obstructing dimensionality disagree-
ments. These transformations can make use of native in-
trinsic functions, such as therepmat function, to enhance
vectorization potential. This extensible database framework
permits plugin-style addition of routines vectorizing an op-
erator matching a specified definition.

For binary arithmetic operations, a number of transfor-
mations are stored in an extensible database. Each trans-

formation is indexed by a unique pattern identified by the
dimensionality of its operands —dimi(elhs), dimi(erhs)
— and by the type of operator. Each transformation also
has a corresponding output dimension,dimi(eout). When
the compatibility checking discussed in Section 2.1 fails,
the vectorizer checks to see if any transformation in the
database has a pattern that matches both the current oper-
ator and the current dimensionality of the left and right-
hand side operands. If a match is found, the expression
is associated with the transformation, anddimi(eout) of
the matched transformation is returned as the resulting vec-
torized dimensionality of the expression. If the statement
containing this expression is found to be compatible, then
upon vectorization any transformations associated with the
expression in the statement are applied.

This database is extensible. Users may add their own
patterns and methods for handling them as necessity de-
mands. A sample database with three pattern-based trans-
formations, already implemented, is displayed in Table 2.
The user defines a new vectorization opportunity by speci-
fying the operator, the dimensions of all terms in the equa-
tion, and the desired replacement code.

The first pattern in Table 2 is a matrix product. The pat-
tern matches the loop code becausedimi(X(i, :)) = (ri, ∗)
anddimi(Y(:, i)) = (∗, ri) and the operator is *. When
checking that the assignment has compatible dimensions,
the pattern is recognized and the right-hand side of the as-
signment expression has a dimensionality ofdimi(eout) =
(1, ri), which agrees withdimi(a(i)) = (1, ri) and makes
the assignment compatible. When vectorization occurs,
the transformation is applied toX(i,:)*Y(:,i) giving
sum(X(1:n,:)’.*Y(:,1:n)) . The transformed code
takes the pointwise product of the transpose of the first ma-
trix and of the second matrix and then computes the sum
along the rows. This computation places the dot product of
the i -th row of X andi -th column ofY in the i -th column
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1 (1, r1) (r1, ∗) * (∗, r1)
for i=1:n,

a(i)=X(i,:)*Y(:,i);
end

a(1:n)=sum(X(1:n,:)’
.*Y(:,1:n))

2 (r1, r2) (r1, r2) � (r1, 1)

for i=1:m
for j=1:n

A(i,j)=B(i,j)+C(i);
end

end

A(1:m,1:n)=B(1:m,1:n)+
repmat(C(1:m),

1,size(1:n,2))

3 (1, r1) (r1, r1) (·) –
for i=1:n

a(i)=A(i,i)*b(i);
end

a(1:n)=A((1:n)+
size(A,1)*
((1:n)-1))

.*b(1:n)

Table 2. Examples of Patterns in the Pattern Database.

of the output as was done by the original statement.

Patterns may contain more than one loop index variable.
An example of such a pattern on any pointwise operator is
the second pattern in Table 2. For this pattern, the analy-
sis presented in Section 2.1 would vectorize thej loop but
not thei loop. On the other hand, when the transformation
corresponding to this pattern is applied it produces the sin-
gle vector statement shown in the vector-code column. This
single statement duplicates the column vectorC n-times us-
ing repmat , producing a matrix with the same dimensions
of B.

These pattern-based transformations are also useful in
the vectorization of patterns resulting from subscripted ma-
trix expressions. In particular, if patterns can be matched
after the creation of the vectorized dimension for a matrix
subscript then the analysis can detect patterns such as ac-
cesses to the diagonal of a matrix. Consider the simple
loop in the third pattern in Table 2. This loop is vector-
izable if the access toA(i,i) can be reduced to a vec-
tor statement. The vectorized dimensionality ofA(i,i)
is (r1, r1) but A(i,i) is accessing a one-dimensional re-
gion ofA. To handle these cases, the pattern database allows
for a class of transformations that match patterns on ma-
trix accesses (e.g., in the database the operator is(·)). This
class of transformations is used to transform a matrix ac-
cess with vectorized dimensionalitydimi(e) into an equiv-
alent mathematical expression with a vectorized dimension-
ality dimi(eout) containing no duplicateri1 , ri2 , · · · , rik

symbols. The diagonal example transforms the vectorized

dimensionality of(r1, r1) to (1, r1). The transformation
that needs to be applied simply replaces the double sub-
script by a single subscript and accesses the matrix as a
vector using the fact that matrices in Matlab are stored in
column-major format. For example, assume that the ma-
trix is accessed using a single index variable in both dimen-
sions, which may take the formA( c1*i+ c2, c3*i+ c4) ,
whereci are scalars. The corresponding vector access is
A( c1*i+ c2+size(A,1)*( c3*i+ c4-1)) . This is the
transformation that is applied to the parse tree when the
(r1, r1) matrix-access pattern is matched and the corre-
sponding statement is vectorized.

3.1. Additive Reductions

The techniques discussed this far are suited tonatural
statementswhere the vectorized dimensionality of the state-
ment contains an entry for each index variable. Although
the class of such natural statements are useful for a Mat-
lab vectorizer, there exist other vectorizable statements that
cannot be coerced into the form of a natural statement. One
important set of statements areadditive-reductionstate-
ments, which are statements that use a loop variable to
perform an accumulation. An additive-reduction statement
within a loop nest with index variablesI = {i1, i2, . . . , ik}
takes the following form:

A(J) = A(J) + E; (1)

whereA(J) is theaccumulator variableindexed byJ ⊂ I
andE is any allowable expression. The index variables in



the non-empty setI− J are said to be thereductionvari-
ables because they are the index variables used to perform
the accumulation.

This class of statements can be properly vectorized with
a simple extension of the techniques discussed above. For
each expression the vectorizer maintains and propagates the
vectorized dimensionalitythrough a traversal of the expres-
sion’s parse tree. In addition to the vectorized dimensional-
ity, the vectorizer also maintains the set of index variables
that have already been reduced for an expression during the
traversal, denoted byρ(E).

Upon vectorization of an additive-reduction statement,
a reduction operator is required to perform the accumula-
tion because the statement is no longer within the loop. For
any expressione with vectorized dimensionalitydimi(e) =
{S1, S2, . . . , Sn}, the vectorizer can perform a reduction
along index variableri, denotedΓ(E, ri). Informally, this
operator is an abstract representation of the effects of accu-
mulating expressione by iterating on index variablei. The
reduction operatorΓ is defined as follows. If a singleSj

is ri then the reduction replacesSj with 1, replacese by
e′ = sum(e, j), and replacesρ(e) with ρ(e)

⋃
ri. If there

is noSj = ri thene is replaced withtripcount(ri) ∗ e and
ρ(e) becomesρ(e)

⋃
ri. Throughout the dimensionality-

checking process the reduction operator is selectively ap-
plied to ensure that the dimensionality and reduced vari-
ables of expressions are consistent. For example, for any
statement of the form of equation 1 the vectorizer must en-
sure thatdimi1,i2,...,ik

(A(J)) ' dimi1,i2,...,ik
(E) and that

ρ(E) = I − J . If the second criterion fails then the vector-
izer must use theΓ operator to reduce any variables inI−J
that are not inρ(E).

In fact, the dimensionality checking proceeds in much
the same manner as it had in Section 3. Although with re-
duction statements it is possible to take advantage of the
semantics of native matrix multiplication to implicitly per-
form reductions without the use of theΓ operator. This
transformation is applicable for a binary expressione =
elhs∗erhs. If dimi(elhs) = (ri, rk), dimi(erhs) = (rk, rj),
andrk is a reducing index variable, then using the seman-
tics of matrix multiplication the vectorizer can compute
dimi(e) = (ri, rj) andρ(e) = ρ(e)

⋃
{rk}.1

For any other binary expression, because it is possible
for the left- and right-hand sides to have non-empty re-
duced variable sets, the vectorizer must ensure that these
variable sets agree. If the binary expression is of the form
e = elhs ± erhs then the vectorizer must ensure that
ρ(elhs) = ρ(erhs) before vectorization. This is easily ac-
complished by applyingΓ(elhs, rrhs) (resp.Γ(erhs, rlhs))
for rrhs (resp. rlhs) such thatrrhs ∈ ρ(erhs) ∧ rrhs /∈
ρ(elhs) (resp. rlhs ∈ ρ(elhs) ∧ rlhs /∈ ρ(erhs)). For

1The pointwise operators are given priority over reduction by matrix
multiplication.

any other operator the reduced variable check is success-
ful if and only if S ∈ ρ(elhs) ⇒ S /∈ dimi(erhs) and
S ∈ ρ(erhs) ⇒ S /∈ dimi(elhs). This constraint states that
any index variable that is reduced in one operand cannot ap-
pear in the vectorized dimensionality of the other operand.

The associative structure of groups of multiplications in
the parse tree may impede reductions through native matrix
multiplication. This problem can be overcome by rearrang-
ing the structure of the parse tree into an equivalent form
by utilizing the associativity of scalar and matrix multipli-
cation2.

3.2. Integration with the codegenAlgorithm

Algorithm 1 : CodeBlock codegendim(Graph DDG, int
level, int maxlevel, LoopHeader * loopHeaders)

CodeBlock block;1

{{Π1, Π2, . . . , Πn}, ESCC}=2

getStronglyConnectedComponents(DDG);3

foreach Πi (in topological order according toESCC ) do4

if Πi is acyclicthen5

CodeBlock * block ptr=&block;6

for l=level; l < maxlevel; l++ do7

if vectDimsOkay(Πi,loopHeaders,l,maxlevel)then8

/* Apply t-formations */
Πi=performTransformations(Πi);9

CodeBlock * vcode=10

genVectorCode(Πi,loopHeaders,l,maxlevel));11

block ptr→append(vcode);12

break;13

else14

/* Run loop l sequentially, add new
code to its body */

ForLoop * lp=new ForLoop(loopHeaders[l]);15

block ptr→append(lp);16

/* subsequent code goes in ’lp’ */
block ptr=&(lp→body);17

end18

end19

/* No vectorization possible: */
if l==maxlevel then block ptr→append(Πi);20

else21

Graph DDGΠ=22

removeDependenciesCarriedByLevel(Πi,level);23

CodeBlock * nestedBody=24

codegen(DDGΠ,level+1,maxlevel,loopHeaders);25

block.append(ForLoop(loopHeaders[level],nestedBody));26

end27

return block28

end29

2Although a more sophisticated approach may be possible, in our proto-
type we enumerate all possible associative groupings of the multiplications
in an expression until the dimension checking is successful.



The extended dimensional analysis, including the
pattern-based transformations, are easily integrated into
Allen & Kennedy’scodegenalgorithm [1]. The modifica-
tion to the original algorithm occurs prior to the generation
of vectorized code for the acyclic blocks (see Algorithm 1).
The rest of the algorithm — lines 1-5 and 21-27 — are the
same as the original algorithm. The algorithm takes the fol-
lowing as input :DDG, the data dependence graph of the
loop to be vectorized;level, an index into the outermost loop
nest to consider for vectorization;maxlevel, the number of
loops in the nest; andloopHeaders, an array of data struc-
tures (of lengthmaxlevel) containing information about the
loop index variable and the bounds of each loop in the next.
Each node in theDDG corresponds to a statement in the
original loop nest, and each node retains the parse tree for
its statement.

Before generating vector code (line 7), thevectDim-
sOkayfunction traverses the parse tree for the single state-
ment of the acyclic block. This function computes and prop-
agates the vectorized dimensionalities using the rules dis-
cussed in Sections 2.1 and 2.2. During this traversal, any ex-
pressions matching the patterns in the database are marked
for subsequent transformation and the output dimensional-
ity of the pattern is propagated as the vectorized dimension-
ality of the matching expression. This function will fail
if the statement contains a binary operator or assignment
whose operands have incompatible dimensions. When this
dimension checking succeeds, the marked code transforma-
tions are then applied to the statement (line 8) and the in-
dex variables are substituted to get the correct vectorized
code (line 11). At this point the processing on this block is
complete (line 12) and control returns to the outermost loop
where the next SCC is processed.

The dimension checking in line 7 fails when the
statement contains a binary operator with incompatible
operands. In such cases, the outermost loop must be run
sequentially (lines 14-16). The dimension checking must
then be performed again, but this time only the remaining
loops are considered for vectorization and only their index
variables are used in the dimension checking. This process
is iterated until the dimension checking succeeds. If the di-
mension checking is never successful, each loop in the loop
nest will be run as a sequential loop.

The integration of these techniques in this manner en-
sures that statements will be pulled out of as many loops as
possible when being vectorized, which is a property of the
original algorithm. Similarly, it also ensures that statements
that cannot be vectorized will remain in the loop nest.

4. A Prototype Implementation

A prototype implementation of the vectorizer and loop
pattern database demonstrates that these ideas work in prac-

tice. In this prototype, the input to the vectorizer is a parse-
tree representation of the Matlab source code provided by
the open-source Octave [7]. Each loop nest is analyzed in-
dependently. Only for-loops are considered since they run
through a specified number of iterations. Loops contain-
ing conditional statements or writing to their own index
within the loop are not candidates for vectorization. Be-
fore the vectorization analysis, index variables are normal-
ized and the data dependence analysis described by Allen &
Kennedy is performed to generate a data-dependence graph.
This graph is the input to the data-dependence-based vector-
izer (Section 2), which produces a modified parse tree that
is passed to a code generator. This sequence of processes is
illustrated in Figure 1.

The dimensionality analysis requires an abstract repre-
sentation of the dimension of variables in the source pro-
gram. Other researchers have proposed methods for the
automatic extraction of this information from the source
code [5, 18]. For this prototype we assume that the output of
these methods is available as annotations in comments that
start with%!. To inform the vectorizer thati is a scalar,a
is a row vector,b is a column vector, and thatA is a matrix,
the source code would contain the following annotation:
%! i(1) a(1,*) b(*,1) A(*,*) .

The pattern-based transformations discussed in Section 3
are implemented in a modular manner. Each pattern-based
transformation is stored in its own dynamically loadable li-
brary (DLL), which defines the type of transformation, the
pattern to be detected, and the definition of a function that
applies the transformation as shown in the example in Fig-
ure 2. This modular design allows user-defined transforma-
tions, that extend the functionality of the vectorizer, to be
dynamically loaded at runtime.

5. Experimental Results

The evaluation of this source-to-source transformation
suffers from the usual lack of extensible benchmark pro-
grams for new techniques. Most users of Matlab do not
publish their source code. Thus to evaluate the prototype
described in Section 4, we resorted to applying it to several
examples that we found around the department. The dimen-
sional analysis approach was capable of vectorizing all the
inputs for which it was applicable. We then vectorize the
program examples provided by Menon & Pingali [17]. The
resulting speedup from vectorization is impressive. The ex-
perimental results were all obtained by averaging 100 runs
on Matlab 7.2.0.283 with the resulting source code on a 3.0
GHz Pentium D Processor. Underlying matrix operations,
implemented in Matlab, may leverage common SIMD in-
structions but even in this case the results show speedups
on the same target (Matlab).

First we demonstrate the vectorization of a typical im-
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%!im(*,*) im2(*,*) heq(1,*) h(1,*)
h=hist (im(:),[0:255]); %histogram
heq=255* cumsum(h(:))/ sum(h(:));
for i=1: size (im,1),

for j=1: size (im,2),
im2(i,j)=heq(im(i,j)+1);

end
end

h=hist (im(:),[(0:255)]);
heq=255* cumsum(h(:))/ sum(h(:));
im2(1: size (im,1),1: size (im,2))=...

heq(im(1: size (im,1),...
1: size (im,2))+1);

Figure 3. The histogram equalization code (left) and the vectorization (right).

/* The load function declares the type of
pattern as one that operates on matrix
multiplication taking the given
dimensionalities. When the transformation
needs to be applied, ‘‘tform_func’’
will be called. */

PatternTransform load()
{

Dimensionality lhs_dims[]={ Ri,’*’},
rhs_dims[]={’*’, Ri},
out_dims[]={ 1, Ri};

return PatternTransform(OP_MATRIX_MULT,
lhs_dims,rhs_dims,
out_dims,tform_func);

}
/* The t-form replaces the parse tree node

A*B with sum(A’.*B,1) */
Expression tform_func(BinaryExpression & be,

Identifier loopids[])
{

be.setLHS(UnaryExpression(be.getLHS(),"’");
be.setOperator(BinaryOperator(".*"));
Expression args[]={be,Constant(1)};
return FunctionCall(Identifier("sum"),args);

}

Figure 2. Example of C++ style pseudocode
for the functions that are defined in a DLL for
Pattern ID=1.

age processing operation, namelyhistogram equalization
(Fig. 3). Histogram equalization seeks to transform image
intensities so that the histogram of the intensities becomes
almost uniformly distributed. For an 8-bit image, a1× 256
lookup tableheq is created and used to transform input im-
age intensities to output intensities. The loop-based imple-
mentation iterates through the input image,im , mapping
each pixel intensity through the lookup table and writing
into the output image,im2 (offsetting intensities by 1 to
ensure indexing starts at 1 instead of 0). The more efficient
way of performing this operation is to index the lookup ta-
ble with the entire image at once, resulting in an output ma-
trix with the same dimensions as the original image. As our
dimensionality checking preserves the rules of Matlab, the
double nested loop is replaced with a single statement. An
800x600 monochrome image (im has typeuint8 ) takes
0.178 seconds for the loop version and roughly 0.114 sec-
onds for the vectorized code, giving a speedup of roughly
1.56. Focusing on the loop portion of the code only, the
original double nested loop takes 0.0814s and the vector-
ized statement takes 0.0176s giving a speedup of 4.6.

To demonstrate the potential of dimensionality analysis
in a vectorizer, we present an illustrative example of the
higher-level transformations that it may carry out. The orig-
inal source code and the vectorized code are displayed in
Figure 4. The example uses several non-pointwise transfor-
mations, including several of the transformations discussed
in Section 3 and other transforms related to matrix multi-
plication. Notice that these transformations result in vector-



Settings input time (s) vect. time (s) speedup
i=500 p=5000 0.536s 0.030s ∼ 17

N=1000 0.174s 0.012s ∼ 14
n=40 0.622s 0.0001s ∼ 5000

Table 3. Timing results using stated settings
for vectorization results on the Menon & Pin-
gali examples given in Fig. 5

ized code that utilizes several Matlab built-in function calls,
such asrepmat , size , andsum. The vectorized code
completes in approximately 0.5 seconds, whereas the orig-
inal code took roughly 25 seconds (a speedup of roughly
50).

The vectorizer is also capable of proper vectorization of
three of the four examples used in the work of Menon &
Pingali [17] (see Fig. 5). Each of these examples contains
an additive reduction statement. The only unsuccessful ex-
ample is an optimization over order of evaluation of high-
level operations and is an example that we see complemen-
tary to the task of vectorization. Timing results for the in-
put source and the resulting vectorization on sample settings
are given in Table 3. The speedup is dependent on the cho-
sen problem size, but these results indicate the significant
speedup possible on large problems or deeply nested loops
(e.g., a speedup of 5000 on the third example for a moderate
n = 40).

6. Related Work

Vectorization has its roots in loop parallelization, which
splits up loops into parts that may be computed indepen-
dently of each other for the purpose of sending them to sep-
arate processors in a multiprocessor architecture. The same
idea can be applied to the vectorization of Matlab code: if
many loop iterations can be done independently, a vector
of the operands can be supplied to a vector operation in-
stead. The foundation for a vectorizing compiler [2] and
techniques to increase the amount of vectorization [19] now
appears in textbooks [1, 22]. In particular, the dependence-
based vectorizer of Allen & Kennedy served as the basis
for our vectorizer. These techniques do not reduce nested
loop statements to high-level matrix operations nor do they
attempt to vectorize statements that are of the same dimen-
sionality (a row vector cannot be added to a column vector).
Van Beusekum acknowledged the potential for this problem
in his vectorizer for Octave [21], but unlike our work noth-
ing was done to ensure that a transpose was added or that
only expressions with compatible dimensions were vector-
ized.

Our abstraction of dimensionality resembles the typed

loop fusion introduced by Kennedy and K. S. McKinley
[13] although the methods operate under different contexts.
In typed fusion, loops are classified into two types — se-
quential and parallel — and only loops of the same type are
fused. In our approach, the vectorized dimensionality can
be seen as the type of an expression. Vectorization only oc-
curs when the “types” of operands to an expression agree or
when the types match some pattern and can be transformed
into some resulting type (i.e., the output dimensionality).

The vectorization described in this paper provides a
strong argument for the automatic discovery of data types
and array shapes — both expensively determined dynam-
ically in Matlab. Olmos & Visser perform a source-to-
source transformation of Octave code, substituting typed
variables in place of untyped ones [18]. Their two-pass
type inferencer first resolves data types and then determines
array shapes. In contrast to this static solution, Chauhan
& Kennedy pick up necessary information at runtime, en-
abling delegation to optimized low-level language subrou-
tines rather than generic libraries [5]. Their transformations
employ slice-hoisting, which finds the ‘slice’ of code deter-
mining the size of an array and ‘hoists’ this above its first
use for runtime knowledge of the array size. Their approach
obtains more accurate array-size information than could be
available at compile time, which can result in significant
gains in large matrix operations. McCosh finds sets of legal
type configurations using propositional logic constructs and
infers the size of the variables by formulating this problem
as a special version of the clique problem which she solves
in polynomial time [15]. Joishaet al. present a framework
to infer array shape and even allow certain static inferences
to be made when complete static knowledge is lacking, by
establishing what useful inferences can be made regard-
ing the shapes of statically indeterminable arrays [11, 10].
These techniques could be integrated with our vectorizer to
deliver an end-to-end solution to the vectorization of Matlab
programs.

The construction of a DDG and the correct ordering
of vector statements to preserve data dependencies are the
backbone of any vectorizer. Although additional improve-
ments can be made in the construction of the DDG, another
area for research is to exploit features of the source lan-
guage. In Matlab, high-level matrix operations, such as ma-
trix multiplication, are more efficient than their loop coun-
terpart. This is primarily due to the large interpretive over-
head of running loops sequentially [16]. The improvement
to the baseline vectorizer results from its ability to detect
complicated patterns and to convert them to their fastest-
running high-level matrix equivalents. To achieve this goal,
Menon & Pingali use an Abstract Matrix Form (AMF) as
a language to express “numerical array objects” (matrices
and loop nests) in a manner conducive to modification of
the structure of these objects [17]. In their work, the Matlab



%!A(*,*) B(*,*) C(*,*) D(*,*) h(*) a(1,*) ind(1,*)
ind=1:750;
for i=2:2:1500,

B(i,1)=D(i,i)*A(i,i)+C(i,:)*D(:,i);
for j=3:2:1501,

A(i,j)=B(i,ind)*C(ind,j)+D(j,i)’-a(2*i-1);
end

end

ind=(1:750);
B(2*(1:750),1)=(D(2*(1:750)+(2*(1:750)-1)* size (D,1)).*A(2*(1:750)+...

(2*(1:750)-1)* size (A,1)))’+...
sum(C(2.*(1:750),:)’.*D(:,(2.*(1:750))))’;

A(2*(1:750),2*(1:750)+1)=(B(2*(1:750),ind)*C(ind,2*(1:750)+1))+ ...
D(2*(1:750)+1,2*(1:750))’ ...
-repmat(a(2.*(2*(1:750))-1)’,1, size (1:750,2));

Figure 4. The original annotated source code (top) and resulting vectorized code (bottom) showing
that several transformations were automatically applied.

source code is converted into constructs resembling first-
order logic called Abstract Matrix Form (AMF), in which
a number of axioms are used to perform transformations.
Following the transformations, the AMF is then converted
back into source code. Their method appears to be able
to vectorize complicated loops into high-level matrix oper-
ations (similar to the examples presented in Sections 3 &
3.1), but unlike our approach it is not clear if their method
can properly deal with irregular matrix accesses, such as
the diagonal accesses discussed on Page 5. Our dimension-
ality checking approach provides a simpler way to perform
a similar optimization, as well as providing a means for an
end-user to modify the pattern set since this means updating
the pattern database instead of modifying the solution core.
They optimize the order of evaluation of high-level matrix
operations, but we see this optimization as a complimentary
to vectorization, one which can be performed as a separate
pass.

Along with type/shape checking, it is well known that
interpretive overhead is one of the primary efficiency is-
sues in interpreted Matlab code [16]. Techniques for over-
coming these overheads include compilation to other high-
level languages [6], Just-in-time compilation [3], and paral-
lelization [8], all of which are complementary to vectoriza-
tion. The FALCON compiler, which compiles from Mat-
lab to other languages such as Fortran, also detects pat-
terns in Matlab code and allows for user interaction in ap-
plying the corresponding transformation [6]. The trans-
formations do not appear to use patterns for vectorization,
but rather for allowing an optimized library call to be sub-
stituted for a given type/shape of operand and high-level
operation. Just-in-time compilation has recently been in-

troduced into the Matlab interpretive environment and in
some cases it produces dramatic improvements [14]. As
the current JIT only operates on certain data-types, its ef-
fects would be complemented by the vectorization proposed
in this paper. Additionally, any parallelization can be per-
formed on the vector statements, for example by substi-
tuting high-level parallel libraries (e.g.[20]) for sequential
ones. A similar argument holds for compilation. A strat-
egy called telescoping languages, in development at Rice
University, uses domain-specific libraries to allow the user
to create high-performance programs [4]. This strategy tar-
gets Matlab by performing procedure vectorization, where a
procedure called within a loop is replaced by a single call to
an equivalent procedure accepting vector arguments. When
the procedure in question requires values that change during
looping, procedure strength reduction is applied to split the
procedure into the parts which compute loop variant (these
keep running sequentially in the loop) and invariant (these
are taken out of the loop) values.

An idiom-recognition system is presented by Hiroyuki
for the purpose of converting array accessing statements
into loops for more efficient, and usually system-dependent,
implementations [9]. In his work, he considered matrix
multiplication, dot products, replication of a scalar or col-
umn into a matrix, and transposes. His use of transposes
was to permit higher efficiency use of the hardware (which
is possible in Fortran as opposed to Matlab) whereas we
use it to ensure the vector code produced is semantically
equivalent to the original source code. Our pattern match-
ing strategy allows matching of any user-defined patterns,
not simply a few Matlab-defined implementations. We ad-
ditionally handle cases where Matlab variables can possibly



Input Source Vectorized Result

for k=1:p, for j=1:(i-1),
X(i,k)=X(i,k)-L(i,j)*X(j,k);

end end
X(i,1:p)=X(i,1:p)-L(i,1:i-1)*X(1:i-1,1:p);

for i=1:N, for j=1:N
phi(k)=phi(k)+...

a(i,j)*x_se(i)*f(j);
end end

phi(k)=phi(k)+...
sum(a(1:N,1:N)’*...

x_se(1:N).*f(1:N),1);

for i=1:n, for j=1:n, for k=1:n, for l=1:n
y(i)=y(i)+...

x(j)*A(i,k)*...
B(l,k)*C(l,j);

end end end end

y(1:n)=y(1:n)+...
x(1:n)’*...
(A(1:n,1:n)*B(1:n,1:n)’*C(1:n,1:n))’;

Figure 5. Vectorization results of three examples used by Menon & Pingali [17].

be in different forms at runtime (one variable can become
scalar, vector, matrix), since this is not explicitly written in
Matlab code as it would be by Fortran’s SPREAD opera-
tion. His conversions would recognize a pattern in several
ways to allow for system-dependent optimizations, and this
is something not done by our method as it specifically tar-
gets the Matlab language (which has the same constructs on
any platform or hardware). Jouvelot and Dehbonei present
generalized reductions, being the reduction of single loop
operations into special hardware-supported operations [12].
In their work, a code scan produces a symbolic store for
each loop, and this store is used to query a pattern database
containing code replacements. As in our work, this sym-
bolic representation provides pattern recognition, although
ours occurs at a lower level (e.g., our patterns are based
upon dimensionality and operators).

7. Conclusions

This paper presented a dimensionality abstraction that
is useful for a MatlabTM vectorizer. Simple dimensionality
checking ensures that the resulting vectorized code is cor-
rect, while also performing any transposes of vectors/matri-
ces to make dimensionalities agree. Additionally, this work
demonstrated that simple pattern matching detects and vec-
torizes non-pointwise operations, such as matrix multipli-
cations, and generate vector code for special matrix access
patterns (e.g., diagonal accesses).

The extensible loop pattern database framework treats
function calls in the same manner as matrix ac-
cesses. For the pointwise mathematical functions, such
as cos , sin , sqrt , this interpretation is correct.
For example, the statementY(i,j)=cos(X(i,j))

would be correctly vectorized asY(1:100,1:100)
=cos(X(1:100,1:100)) . The investigation of dimen-
sionality analysis for non-pointwise functions is left for fu-
ture work, where correct vectorization may be possible by
defining the input and output dimensionalities of the func-
tion (similar to the transformations in Section 3).
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A. Matlab Quick Reference

A matrix in Matlab may have any number of dimen-
sions. By default both scalars and row vectors are treated
as two dimensional objects, with respective sizes of1×1
andn×1 (1×n for column vectors). For completeness, Ta-
ble 4 presents a brief overview of Matlab notations and op-
erations used in this paper.
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