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Abstract. This paper presents a profiling-based analysis to determine
the traversal orientation of link-based tree data structures. Given the
very-high memory-hierarchy latencies in modern computers, once the
compiler has identified that a pointer-based data structure represents
a tree, it would be useful to determine the predominant orientation of
traversal for the tree. Optimizing compilers can implement the static
shape analysis proposed by Ghiya and Hendren to determine if a linked
data structure is a tree [10]. However no techniques have been reported
to enable an optimizing compiler to determine the predominant traversal
orientation of a tree. This paper describes an analysis that collects data
during an instrumented run to determine if the traversal is predominantly
breadth-first or depth-first. The analysis determined, with high accuracy,
the predominant orientation of traversal of trees in programs written by
us as well as in the Olden benchmark suite. This profile-based analysis is
storage efficient — it uses only 7% additional memory in comparison with
the non-instrumented version of the code. Determining the predominant
orientation of traversal of a tree data structure will enable several client
optimizations such as improved software-based prefetching, data-storage
remapping and better memory allocators.

1 Introduction

Data locality is critical for performance in modern computers. A fast proces-
sor’s time is wasted when programs with poor data locality spend a significant
amount of time waiting for data to be fetched from memory [1, 12]. Although
optimal cache-conscious data placement is NP-hard and difficult to approximate
well [17], researchers have developed many techniques that reduce memory stalls
in pointer-chasing programs [2, 6–9, 14]. Some improvements to data locality re-
quire changes to the source code [7, 11, 18, 16]. An alternative is for an optimizing
compiler to automatically perform data transformations that improve locality [2,
9, 14, 20].

Most published pointer-chasing optimizations do not specifically address the
problem of improving data locality when the pointer-based data structure repre-
sents a tree. This paper presents a profile-based tree-traversal orientation anal-
ysis that determines the primary orientation of traversal for each pointer-based



tree in a program. The results of this analysis can be used by several client op-
timizations to improve locality beyond what is possible with current techniques.
This analysis neither requires changes to the source code nor requires significant
alterations to existing compilers.

Often, dynamically allocated structures are not allocated in the same order in
which they are referenced. For instance the allocation order may be determined
by the organization of a data file while the traversal order is determined by
the algorithm that uses the data. Data structures may exhibit poor locality
due to the structure’s design or due to an initial implementation that does not
consider locality [11, 16]. As a result, the nodes of a linked data structure may be
scattered throughout the heap. For example, assume an application containing
a binary tree with 15 nodes, allocated into consecutive memory locations with a
breadth-first orientation as shown in Figure 1.

Fig. 1. A binary tree with 15 nodes. The node number indicates the order in which
the node was allocated.

If the application accesses these nodes in a depth-first orientation1 it will ex-
hibit relatively poor spatial locality and likely result in degraded performance.
On the other hand, if the data had been allocated in a depth-first fashion, then
the traversal would have been a series of accesses to adjacent locations in mem-
ory. A regular access pattern would enable latency-hiding techniques, such as
prefetching, to greatly reduce the number of memory stalls.

Optimizing compilers are better able to transform programs to improve data
locality when enough information about the data access pattern is available.
For instance, if a compiler could determine the traversal order of the tree in the
example above, it could automatically replace a standard memory allocator with
a custom memory allocator that would place tree nodes with strong reference
affinity close to each other in memory.

1 Two possible depth-first access sequences are 〈1, 2, 4, 8, 9, 5, 10, 11, 3, 6 ,12, 13, 7,
14, 15〉 and 〈1, 3, 7, 15, 14, 6, 13, 12, 2, 5, 11, 10, 4, 9, 8〉



There are many ways of traversing and accessing data stored in trees. Most
of these fall into two general categories: breadth-first and depth-first traversals.
If the predominant traversal orientation of a tree-based data structure is known,
the compiler can reduce memory stalls caused by poor data locality. Sections 2
and 3 of this paper present a method to determine the types of traversals taking
place in a program, while minimizing the amount of memory used to make this
determination. This profile-based analysis compiles an instrumented version of
an application, and executes the profiled code. After the program execution is
finished, a value in the range [−1, 1] is returned for each tree-based structure,
which indicates the primary orientation of the tree traversal in the profiled code.

In order to determine the effectiveness of this analysis, we wrote several pro-
grams containing tree-based data structures with known traversal orientations.
We also ran the analysis for several of the programs that comprise the Olden
benchmark suite. The results of these tests are presented in Section 4. For all
the tests performed, the analysis successfully identified the predominant orien-
tation of traversal of the tree-based data structured. In addition, the amount of
memory used by the profiled code, and the runtime of the code, were evaluated.
In general, the instrumentation required only 7% more memory on top of the
program’s normal memory requirements. The instrumented application require
approximately six times longer to execute than the non-instrumented version of
the program. Given that training runs are typically executed once and offline,
the longer execution time is acceptable in most domains.

A large number of client optimizations, in existing compilers or proposed
in recent literature, could make use of the information provided by our analy-
sis. In addition to the custom-memory allocator mentioned above, this analysis
would be useful with many prefetching and structure-field reordering techniques.
Section 5 surveys techniques that are possible clients to our analysis.

2 Overview of the Tree-Traversal Orientation Analysis

The tree-traversal orientation analysis uses an optimizing compiler to automat-
ically instrument a program at each dereference of a tree node. For modularity,
this instrumentation is a single function call to a library, linked with the com-
piled code. Each memory access is classified and used to create a orientation

score for the tree.
In the context of this work, a tree is any linked data structure where there is

at most one path between any two nodes. A traversal is any method for visiting
all the nodes of a tree.

In a breadth-first traversal, all of the nodes on one level of a tree are visited
before the traversal moves to the next level. Any memory access deemed to be
part of a breadth-first traversal is referred to as a breadth-first access. Breadth-
first traversals are often implemented using queues that contain the nodes that
still need to be visited. As a node is processed, its children are added to the
queue of nodes to be processed, ensuring that one level of the tree is traversed
in its entirety before any nodes on the next level are visited. Conversely, in a



depth-first traversal once a node is visited, one of its children is selected and the
traversal continues from that child. Only when the subtree rooted by that child
is fully processed is another child of the original node processed. Any memory
access deemed to be part of a depth-first traversal is referred to as a depth-first

access.
The instrumentation function updates an orientation score of the correspond-

ing tree at each access. If the access is characterized as a breadth-first access, −1
is added to the orientation score. When a depth-first access occurs, +1 is added to
the orientation score. Linked list traversals can be considered both depth- and
breadth-first. To ensure that list traversals are identified, we classify accesses
from a 1-ary node to its only child as depth-first 2. A breadth-first traversal
over a tree containing nodes with only one child will still appear breadth-first,
as the traversal will still move among the nodes on every level of the tree, and
not directly to the child of a 1-ary node. Finally, an access which cannot be clas-
sified as either breadth- or depth-first will force the score closer to 0 by either
adding or subtracting 1 from the score. After all accesses have been analyzed,
the orientation score is divided by the number of accesses, and returns a traver-

sal orientation score in the range [−1, 1] for each tree. A tree with orientation
score of −1 is always traversed in breadth-first order. A score of +1 indicates
pure depth-first traversal, and a score of 0 indicates that there is no predominant
order of traversal.

3 Implementation of the Tree-Traversal Orientation

Analysis

The implementation of this analysis has two primary objectives: (1) require no
additional effort on the part of the programmer; (2) require minimal alterations
to the compiler using the analysis. We modified the Open Research Compiler
(ORC) [5] to instrument programs with calls to our Tree Analysis Library (TAL).
The TAL performs all of the analysis, using the memory access information
passed to it by the instrumented program. All of the computation required for
the analysis is done within the instrumented code.

The TAL only analyzes trees that are represented by recursive data structures
which are referenced by pointers and where pointers to children are in separate
fields. For instance, TAL does not handle (1) trees where the children of a node
are stored in a dynamically allocated array of pointers; and (2) trees in which
the pointers to children are in fields that are unions or of type void.

In order to analyze the traversal orientation of trees, the compiler has to be
able to identify the structures that represent trees in the first place. Fortunately,
Ghiya and Hendren [10] have devised a static shape analysis that can determine
if a pointer points to a tree data structure. Ghiya and Hendren’s analysis would
also allow the compiler to identify disjoint data structures using the interfer-
ence matrix created by their algorithm.Ghiya and Hendren’s analysis may prove

2 Double-linked lists are considered 1-ary nodes because one of the pointers will be
identified as a parent pointer.



conservative and not identify all possible tree-like data structures. Thus, the pro-
grammer can supplement Ghiya and Hendren’s analysis with annotations. Either
the interference matrix in Ghiya and Hendren’s analysis or Lattner and Adve’s
Data Structure Analysis can be used to identify disjoint data structures [13].
Once Ghiya and Hendren’s algorithm has been run, the symbol table can be
annotated with the correct information as to whether or not a pointer points to
a tree-like data structure. In the interest of time, for the experimental evaluation
presented in this paper instead of implementing Ghiya and Hendren’s analysis,
we annotated the source code of the benchmarks with a special label to identify
the data structures that represent trees.

Our modified version of the ORC adds instrumentation for each dereference
to a tree structure, t, that calls the analysis function in the TAL with (1) the
address of t, (2) all of the recursive fields of t linking node t to nodes c1 . . . cn

and (3) a unique number to identify disjoint data structures. The TAL keeps a
stack of choice-points for each tree. These choice-points are used to determine if
a memory access can be considered part of a depth-first traversal. A choice-point
structure contains the memory address of a node in the tree, t, and the memory
addresses of all n children, c1 . . . cn.

Let cptop be the address of the choice-point on top of the choice-point stack;
cplow be the address of a choice point below cptop in the choice-point stack; and
t be athe current memory access to a tree node. t is considered depth-first if and
only if:

1. cptop is equal to t; OR
2. a child ci of cptop is equal to t; OR
3. there exists a lower choice point in the stack, cplow, such that cplow or a child

of cplow is equal t AND all of the choice-points on the stack above cplow have
been visited.

If case (2) identifies a depth-first access then a new choice-point, representing
node t having all of the children c1 . . . cn of t, is pushed onto the stack. If a new
choice-point is to be added to the stack, special care must be taken when copying
the addresses of child pointers into the new choice-point. Tree structures often
contain pointers to parent nodes. The addresses in these pointers must not be
added to the new choice-point as children of the tree node t. To identify parent
pointers the TAL compares the addresses of each possible child ci in t, with the
addresses stored in the choice points on the stack. If case (3) identifies a depth
first access then all of the choice-points up to cplow are popped off the stack and
we leave the number of accesses and score unchanged.

To identify breadth-first searches the TAL maintains an open list and a next

list. Both lists are implemented as double-ended bit vectors. When a memory
access m occurs, if m is in the open list, then m is a breadth-first access. The
children of m are added to the next list, and m is removed from the open list.
When the open list is exhausted, the next list becomes the open list and the
next list is emptied. The initial entry in the list is set at bit 0. Each bit in the
bit vector represents a byte in the address space. Each new entry is added to the



vector based upon its distance from the initial entry. If the points-to analysis
can identify that all of the objects pointed to by the pointer are of the same
type, Lattner and Adve refer to this as being type-homogeneous, then size of
the bit representation of the open list may be further reduced by using a bit to
represent each structure instead of each byte.

A program may have more than one traversal of the same tree occurring
simultaneously, or the orientation of traversal of a tree may change during ex-
ecution. To deal with this situation, the TAL maintains a list of active data
structures. This list contains multiple choice-point stacks and pairs of open and
next lists. For instance, if a memory access m is not considered depth-first for
any active choice-point stack, a new choice-point stack is created representing
a depth-first traversal rooted at m. New choice-point stacks are created even if
the access was classified as being breadth-first.

The data structures in the active list are either choice-point stacks or pairs
of open/next lists. An access matches a choice-point stack if it is deemed to be
a depth-first access by that choice-point stack. Conversely, the access matches a
pair of open/next lists if it is deemed to be breadth first by those lists.

Whenever a memory access to a tree node occurs, this access is checked
against all the data structures in the active list. A reference counter is associated
with each data structure. If the access does not match a data structure, the
reference counter of that structure is incremented. When the access matches
a data structure, the data structure reference counter is reset to zero. If the
reference counter of an structure reaches a threshold (16 in our implementation)
the structure is removed from the active list and its space is reclaimed.

3.1 Time and Space Complexity

In the interest of readability, the analysis for the identification of depth-first and
breadth-first accesses will be considered separately. In this analysis, we consider
a tree containing V nodes.

First we consider the space and time complexity of identifying a depth-first
memory access, assuming tree nodes have a minimum degree of b. The num-
ber of entries in a choice-point stack is bounded by O(logb V ). The bound on
the number of nodes in the choice-point stack stems from the fact that before a
choice-point representing node t is pushed onto the stack, the choice-point repre-
senting the parent of t is on the top of the stack. To consider the time complexity
of determining if a memory access is a depth-first access we let cptop be the node
on the top of the choice-point stack. In the worst case, a memory access is not
to cptop, not to any children of cptop, nor is it to an ancestor of cptop and thus
all entries in the stack have to be checked. It takes O(b) operations to check the
children of cptop, and O(logb V ) operations to check all ancestors of cptop on the
stack. In addition, for an access, a new choice-point may be added, or several
may be removed from the stack, which also is O(b) or O(logb V ) depending on
which of those values is larger. Thus, the worst case total time complexity is
O(b + logb V ) per memory access.



In the breadth-first analysis, the size of a double-ended vector used is largely
determined by the arrangement of the nodes in memory. We assume that nodes
are located relatively close together in memory, and thus the size of the vector is
not significant. This assumption was confirmed in the experimental results per-
formed on the system. If the memory allocator packs the structures contiguously
then the breadth-first traversal uses O(V ) memory because both the open list
and the next list may grow proportionally to the number of nodes in the largest
level of the tree data structure being profiled. A lookup in the double-ended vec-
tor takes O(1) time. Insertions into the vector may require growing the vector,
which will take time proportional to the new size of the vector.

Several active lists and stacks may be maintained during the analysis. The
maximum value that the reference counters for the choice point stacks and open
and next lists are allowed to grow to will limit the number of active structures in
the system at any point in time. Thus, the maximum number of active structures
can be considered constant, and is independent of the size of the tree. As a result,
the fact that multiple lists and stacks are maintained does not affect the order
complexity of the analysis.

4 Experimentation

To evaluate the accuracy of the analysis we ran a series of experiments on pro-
grams we designed to test the tree-orientation analysis as well as on the Olden
benchmark suite. Our analysis was able to correctly identify the expected traver-
sal orientation in all the benchmarks and required only 7% additional memory
on average.

4.1 Experimental Setup

In order to determine both the accuracy of the tree-orientation analysis, and its
use of both memory and time, tests were run on fifteen tree-based programs. We
created a collection of programs to determine if the analysis correctly identifies
standard tree traversals. In addition, we applied the tree-traversal orientation
analysis to several of the Olden benchmarks.

For each program tested, the code was compiled both with and without
the profiling code inserted. The maximum amount of memory used, and the
execution times of both the instrumented and non-instrumented programs were
calculated. The value(s) returned by the analysis inside the profiled code were
also recorded. Using these values, it is possible to demonstrate the effectiveness
of the analysis in properly determining tree traversals while demonstrating that
the profiled code does not use significantly more memory than the original code.

All of the experiments were performed using the Open Research Compiler
version 2.1. Instrumentation was added to the code by making minor modifica-
tions to the ORC to add function calls to the program wherever a tree pointer
was dereferenced. The analysis library described in Section 3 was then linked
with the instrumented code. The machine used for the experiments had a 1.3
GHz Itanium2 processor with 1 GB of RAM.



4.2 Programs with Known Traversal Orientation

Seven programs were written to test the effectiveness of the analysis. Each of
these programs has specific properties that allowed the accuracy of the orienta-
tion analysis to be evaluated. In the context of this work, a search in a tree is a
traversal that ends before exhausting all the nodes in the tree.

– RandomDepth: A binary tree is traversed using a depth-first oriented traver-
sal. At each node, the order in which the children are visited is chosen at
random.

– BreadthFirst: A breadth-first traversal is made over a binary tree.
– DepthBreadth: A depth-first traversal is performed over a binary tree, fol-

lowed by a breadth-first traversal over the same tree.
– NonStandard: A non-standard traversal of a binary tree is performed. This

traversal progresses in the following order: (1) data in the current node n and
the right child of n are processed (2) the traversal is recursively performed
on the left child of n; (3) the traversal is recursively performed on the right
child of the right child of n; and (4) the traversal is recursively performed
on the left child of the right child of n. This traversal would produce the
following node access sequence for the tree of Figure 1: 〈1, 3, 2, 5, 4, 9, 8,
11, 10, 7, 15, 14, 6, 13, 12〉. This traversal is neither depth- nor breadth-first,
and should be recognized as such.

– MultiDepth: Several depth-first traversals of a binary tree are performed by
this program, varying the point at which the data in each node is accessed.
i.e. The data field(s) in the tree node are accessed either before the recursive
calls to the traversal function, in between the recursive calls (if the structure
has more then 1 child), or after the recursive calls to the children have been
completed.

– BreadthSearch: A tree with a random branching factor for each node (with
2 to 6 children per node) is searched, breadth-first, several times.

– BinarySearch: Several tree searches are performed on a binary search tree.

4.3 Results of the Tree-Traversal Orientation Analysis

The tree-traversal orientation analysis was able to correctly identify the expected
traversal orientation for all of the programs that we created as well as for all of
the Olden benchmarks.

Table 1 gives the value computed by the tree-traversal orientation analysis
for each of the programs created to test the analysis, along with the expected
value. Each program has a single tree, thus Table 1 reports the score for the
program.

The original Olden benchmarks were designed for multi-processor machines [4].
We used a version of the Olden benchmarks specifically converted for use with
uniprocessor machines [15]. We used the following Olden benchmarks in our eval-
uation: BH, Bisort, Health, MST, Perimeter, Power, Treeadd and TSP 3. Four of

3 Benchmarks em3d and Voronoi are omitted from this study because they could not
be correctly converted to use 64 bit pointers.



Synthetic Analysis Result Olden Analysis Result
Benchmark Expected Experimental Benchmark Expected Experimental

RandomDepth 1.0 1.000000 BH 0.0 0.010266
BreadthFirst -1.0 -0.999992 Bisort 0.0 -0.001014
DepthBreadth 0.0 0.000000 Health 1.0 0.807330
NonStandard Close to 0.0 0.136381 MST low positive 0.335852
MultiDepth 1.0 0.999974 Perimeter low positive 0.195177
BreadthSearch -1.0 -0.995669 Power 1.0 0.991617
BinarySearch 1.0 0.941225 Treeadd 1.0 1.000000

TSP low positive 0.173267
Table 1. Analysis results on the synthetic and Olden benchmarks.

the Olden benchmark programs, Bisort, Perimeter, Power, and Treeadd, use
a single binary tree. MST does not use a proper tree; rather it uses linked lists
to deal with collisions inside a hash table. BH, Health, and TSP use a mixture of
trees and linked lists connected as a single structure. In these benchmarks, linked
lists hang off the nodes of trees, and traversals frequently start with depth-first
access to the tree nodes and continue with accesses to the linked lists.

We will examine each of the Olden benchmark programs in turn:

– BH contains tree nodes which contain both pointers to the children of a node,
as well as pointers to nodes which are not considered children. As a result,
even though the program performs several depth-first traversals of the tree,
it cannot be classified as depth-first because many of the children of nodes
are not traversed. A score of 0 is expected, as the traversal is not truly
depth-first, and is definitely not breadth-first.

– Bisort performs two operations. A depth-first traversal of the tree is per-
formed to manipulate the values stored in the tree. A merge operation rou-
tinely manipulates both children of a single node at once, which is a breadth-
first way of accessing nodes. Other merge operations are neither breadth- nor
depth-first. As we have competing breadth- and depth-first accesses, as well
as many non-standard accesses, a score close to 0 is expected.

– Health consists of a relatively small 4-ary tree, where each node in that tree
contains several linked lists. During simulations, a depth-first traversal of the
tree is performed, however, at each node, the linked lists are traversed. As
both linked-list and depth-first traversals are scored the same, a score close
to one is expected.

– MST is based around hash tables. The tree data structure used is a linked
list for chaining collisions in the hash table. Since MST performs many short
linked-list traversals, a small positive value is expected.

– Perimeter uses a quad tree with a parent pointer to compute the perimeter
of a region in an image. The program recursively traverses the tree, but,
during the depth-first traversal, uses parent pointers to find adjacent nodes in
the tree. This access pattern exhibits a mostly depth-first traversal strategy
but the deviations from this pattern lead us to expect a score close to 0.



Synthetic Memory Usage (kbytes) Olden Memory Usage (kbytes)
Benchmark Original Instrumented Benchmark Original Instrumented

RandomDepth 854 976 855 040 BH 3 520 3 520
BreadthFirst 424 928 441 328 Bisort 3 008 3 040
DepthBreadth 220 112 252 896 Health 8 448 8 624
NonStandard 420 800 420 912 MST 4 752 6 272
MultiDepth 529 344 652 288 Perimeter 6 064 6 528
BreadthSearch 30 192 47 408 Power 3 648 3 712
BinarySearch 224 192 224 320 Treeadd 3 008 3 008

TSP 3 024 3 040
Table 2. The maximum amount of memory used in kilobytes.

– Power repeatedly traverses a binary tree that consists of a two different types
of structures. The tree traversal is depth-first and implemented via recursion.
We therefore expect the TAL to calculate a score close to 1 for this program.

– Treeadd performs a single depth-first traversal of a tree, while the program
recursively computes the sum of the nodes. As this traversal is purely depth-
first we expect a score close to 1.

– TSP combines a linked list and a tree into a single data structure. Each
node has two pointers that indicate its position in a double-linked list, and
two pointers pointing to children in a binary tree. Both list traversals and
depth-first tree traversals are performed on this structure, however neither
traversal visits all the children of a node (as all the children would comprise
the two real children of the node, and the next and previous nodes in the
list). The expected result is a very low positive score for the traversal.

4.4 Memory Usage

Despite the fact that the TAL creates and manipulates many data structures,
it only increase memory usage by a modest amount. Code profiled with TAL
requires, on average, 7% more memory than the original version of the program.

Table 2 compares the amount of memory used by the profiled and non-profiled
versions of the code. In every case, the maximum amount of memory used by
the program during its execution is given. The worst memory performance of
the Olden benchmark comes from MST, where memory use increased by 32%
during profiling. In contrast, several of the programs - BH, Power, Treeadd and
TSP - only required about 1% more memory than the non-instrumented code.

4.5 Timing Results

Our instrumentation increases the runtime of the profiled code by an average
of 5.9 times over the non-profiled code. Given that the instrumented version is
typically executed once and offline, the additional runtime is acceptable.



Synthetic Execution Time (seconds) Olden Execution Time (seconds)
Benchmark Original Instrumented Benchmark Original Instrumented

RandomDepth 0.90 10.72 BH 0.45 6.88
BreadthFirst 1.09 1.81 Bisort 0.03 1.01
DepthBreadth 1.33 7.84 Health 0.05 12.06
NonStandard 0.36 2.68 MST 5.71 11.42
MultiDepth 0.47 3.94 Perimeter 0.02 1.55
BreadthSearch 0.36 1.83 Power 1.35 1.60
BinarySearch 0.20 2.75 Treeadd 0.13 6.35

TSP 0.01 1.40
Table 3. Execution time in seconds.

Table 3 shows the runtime overhead introduced by the offline tree-orientation
analysis. For the test programs, the profiled code runs 6.7 times slower than the
non-profiled code on average. Execution time of the Olden benchmarks increased
by an average of 5.5 times during profiled runs.

Although the instrumented code takes longer to run, the performance degra-
dation caused by profiling is acceptable for three reasons. First, this analysis
can be run infrequently, for final compilations of code, or when major changes
have been made to the data structures or the associated traversals. Second, the
analysis can correctly determine traversal order in a relatively short period of
program execution. The size of the tree considered is unimportant, as long as a
representative traversal is performed on it. A proper selection of a representa-
tive input to profiling could help ensure that the analysis does not take too long.
Finally, the analysis performs all the necessary calculations during the profiled
run of the code. Additional work need not be performed by the compiler in order
to determine the orientation of the tree traversal.

5 Related Work

5.1 Analysis of Pointer-based Structures

Ghiya and Hendren provide a context-sensitive inter-procedural shape analysis
for C that identifies the shape of data structures [10]. Their analysis differentiates
structures where the shape is a cyclic graph, a directed acyclic graph, or a tree.
This work allows a compiler to automatically identify tree-like data structures
and the pointers to those data structures, both of which are necessary for our
profiling framework.

Lattner and Adve develop a framework that partitions distinct instances
of heap-based data structures [13]. The partitioning is performed by allocating
the disjoint structures into independent allocation pools. Their algorithm uses
a context-sensitive unification-based pointer analysis to identify disjoint data
structures for their memory allocator. Compile time incurred at most 3% ad-
ditional overhead. Lattner and Adve’s analysis can be used to identify disjoint
instances of trees but does not provide a shape analysis.



5.2 Potential Clients of the Tree-Orientation Analysis

Prefetching Luk and Mowry propose three software prefetching schemes for
recursive data structures [14]. The first prefetching scheme, known as greedy
prefetching, prefetches all of the children of a structure when that structure is
accessed. Greedy prefetching was implemented in the SUIF research compiler and
obtained up to a 45% improvement in runtime on the Olden benchmarks. The
prefetch distance is not adjustable with this technique and thus it is not able to
hide the considerable memory access latency experienced in modern processors.
To allow the compiler to control the prefetch distance, Luk and Mowry propose
two other prefetching schemes, history-pointer prefetching and data-linearization
prefetching. When the application is running, history-pointer prefetching records
the access pattern via a history-pointer in each structure during the first tree
traversal. Once all of the history pointers have been initialized, the system can
use them to prefetch data. History-pointer prefetching was implemented by hand,
and in spite of the runtime and space overhead, this technique can obtain up to
a 40% speedup compared with greedy prefetching. Data-linearization prefetch-
ing allocates nodes with high access affinity near each other to increase spatial
locality. Data-linearization prefetching is both implicit, through the use of spa-
tial locality, and explicit, through the use of prefetches to incremental memory
locations. Data-linearization prefetching was implemented by hand and resulted
in up to a 18% speedup over greedy prefetching.

Cahoon and McKinley use compile-time data flow analysis to develop a soft-
ware prefetching scheme for linked data structures in Java [2]. Traversals of
linked data structures are identified through the use of a recurrent update to a
pointer that is placed within a loop or recursive call related to the traversal of
the linked data structure. A jump pointer, similar to Luk and Mowry’s history
pointer, is added to each structure that is updated recurrently and jump pointers
are used for prefetching when the application is traversing the data structure.
The prefetching scheme results in performance improvements as large as 48%
but Cahoon and McKinley note that “... consistent improvements are difficult
to obtain.”

Our analysis could be used with Luk and Mowry’s history-pointer prefetching
or Cahoon and McKinley’s jump-pointer prefetching to reduce the overhead of
computing the history pointers and increase the benefit from prefetching. In both
schemes, the first traversal of the tree is used to calculate the history pointer.
Unless the structure is traversed many times this initial overhead may not be
amortized out, and performance degradation could result. If the traversal pattern
of the tree is known, a custom allocator could be used to linearize the subtrees
that are allocated and prefetching could be performed in the same fashion as
Luk and Mowry’s data-linearization prefetching during the first tree traversal
or used to set the jump pointers before they can be initialized by the first tree
traversal. This would also allow hardware prefetchers, which are commonly found
on modern processors, to retrieve the data and eliminate much of the latency
caused by compulsory misses.



Modifying Data Layout Calder et al. present a framework that uses profil-
ing to find the temporal relationship between objects and to modify the data
placement of the objects to reduce the number of cache misses [3]. A profiling
phase creates a temporal relationship graph between objects where edges connect
those objects likely to be in the cache together. To reduce the number of conflict
misses, objects with high temporal locality are placed in memory locations that
will not be mapped to the same cache blocks. Field reordering is used to place
objects in memory to maximize locality and reduce capacity misses by reducing
the size of the working set. Finally, Calder et al. reduce compulsory misses by
allowing blocks of data to be efficiently prefetched. These techniques are applied
to both statically- and dynamically-allocated data. For dynamically-allocated
data, the data placement is accomplished using a custom memory allocator that
places allocated objects into a specific allocation bin based on information about
the object traversal pattern. Experimentation showed that the data cache miss
rate could be reduced by 24% on average, with some reductions as high as 74%.

Chilimbi, Hill and Larus describe techniques to improve the locality of linked
data structures while reducing conflict misses, namely cache-conscious allocation
and cache-conscious reorganization [7]. Two semi-automatic tools are created to
allow the programmer to use cache-conscious allocation, ccmalloc, and cache-
conscious reorganization, ccmorph, for their data structures. The main idea be-
hind the tools are clustering, packing data with high affinity into a cache block,
and coloring, using k-coloring to represent a k-way set-associative cache to reduce
cache-conflicts. Their memory allocator, ccmalloc, takes a memory address of
an element that is likely to be accessed at the same time as the newly allocated
object and allocates them near one another in memory. The tree reorganizer,
ccmorph, copies subtrees and lays them out linearly. After tree reorganization,
any references to nodes in the tree must be updated. Chilimbi, Hill and Larus
obtained speedups of 28-138% using their cache-conscious allocation techniques.

The work by Calder et al. and Chilimbi, Hill and Larus both aim to im-
prove cache-hit rates by modifying where data is allocated. The profiling used
by Calder et al. could be combined with our tree-traversal analysis to allow more
information to be given to the compiler. A custom allocator could be created
that can be given hints by the compiler based on information in the profile that
was collected. The allocator could use Calder et al.’s or Chilimbi, Hill and Larus’
techniques to arrange data to avoid cache conflicts while increasing the locality
of tree nodes by allocating the nodes based on the profile information.

Structure Reorganization Truong, Bodin and Seznec use semi-automatic
techniques to improve the locality of dynamically allocated data structures based
on field reorganization and instance interleaving [19]. Field reorganization groups
fields of a data structure that are referenced together into the same cache line,
while instance interleaving groups identical fields of different instances of a struc-
ture into a common area in memory. They present a memory allocator, ialloc,
that allocates structures, or chunks of structures, into arenas to increase locality.



Chilimbi, Davidson and Larus used field reordering and structure splitting
to improve the behavior of structures that are larger then a cache line [6]. Field
reordering groups the fields of a structure that are accessed together into sets
which will fit into a cache line. Chilimbi, Davidson and Larus also group the
fields of structures into hot (frequently accessed) and cold (infrequently accessed)
fields. These techniques can increase the number of hot fields that can fit in the
cache and they improved execution time by 6 - 18% over other co-allocation
schemes by reducing cache miss rates by 10 - 27%.

It would be possible to combine Truong, Bodin and Seznec’s ialloc memory
allocator and the idea of allocation arenas with compiler technology to perform
structure splitting similar to that performed by Zhao et al. [20], to apply this
technique to recursive data-structures instead of arrays.

6 Conclusions

This work presents an analysis that accurately identifies the predominant traver-
sal orientation of trees in a program. The analysis gives a floating point value for
each tree, representing how close to a pure breadth- or depth-first orientation
the traversal of that tree is. This value can be used by many client optimizations
inside a compiler or may be used by programmers to improve the data struc-
ture layout. Most of the work is performed by a static library used to profile
instrumented code which only slightly increases memory use. The tree-traversal
orientation analysis requires no work on the part of the programmer, and requires
only minor modifications to a compiler.
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