
Using ZBDDs in Points-to Analysis

Ondřej Lhoták1, Stephen Curial2, and José Nelson Amaral2

1 D. R. Cheriton School of Computer Science, University of Waterloo
2 Department of Computing Science, University of Alberta

Abstract. Binary Decision Diagrams (BDDs) have recently become
widely accepted as a space-efficient method of representing relations in
points-to analyses. When BDDs are used to represent relations, each
element of a domain is assigned a bit pattern to represent it, but not
every bit pattern represents an element. The circuit design, model check-
ing, and verification communities have achieved significant reductions in
BDD sizes using Zero-Suppressed BDDs (ZBDDs) to avoid the overhead
of these don’t-care bit patterns. We adapt BDD-based program analyses
to use ZBDDs instead of BDDs. Our experimental evaluation studies the
space requirements of ZBDDs for both context-insensitive and context-
sensitive program analyses and shows that ZBDDs can greatly reduce
the space requirements for expensive context-sensitive points-to analy-
sis. Using ZBDDs to reduce the size of the relations allows a compiler
or other software analysis tools to analyze larger programs with greater
precision. We also provide a metric that can be used to estimate whether
ZBDDs will be more compact than BDDs for a given analysis.

1 Introduction

This paper describes improvements to Binary-Decision-Diagram-based imple-
mentations of pointer analysis used in ahead-of-time compilation and program
analysis frameworks. The main benefit of BDDs [3] in program analysis is a re-
duction in the memory requirements of otherwise infeasible analyses: BDDs yield
scalable highly context-sensitive may-point-to and call-graph-construction anal-
yses [2, 12, 27, 30, 29]. The improvements presented in this paper further reduce
the storage requirements, thus enabling more precise variations of the analysis
to be computed for larger programs.

When various context-sensitive pointer analyses, such as that of Whaley and
Lam [27] and object-sensitive analysis [16–18], were applied to object-oriented
programs such as javac, soot, and the DaCapo benchmarks, the more precise
variations (especially 3-object-sensitive, 1H-call-site sensitive, and Whaley/Lam)
failed to complete due to memory limitations [13]. Although the running time
of the most expensive analyses in [13] was several hours, none of the infeasible
analyses failed to complete due to lack of time; they all failed due to excessive
space requirements. A more compact BDD representation lowers the memory
requirements of these analyses and allows them to scale to larger programs.

A BDD is a data structure representing a function that maps a vector of
bits (the BDD variables) to a boolean value. When BDDs are used for program

analysis, each element of the analysis is represented using some bit pattern. In
general, however, not every bit pattern corresponds to an element, and these
don’t-care bit patterns unnecessarily increase BDD size.

A variation of BDDs, known as Zero-Suppressed BDDs (ZBDDs), are a
promising alternative to eliminate the overhead of don’t-care bit patterns [19,
23]. ZBDDs have been very effective at reducing BDD size in applications such
as circuit design, model checking, and verification. Like these applications, pro-
gram analyses use BDDs to represent and manipulate sets of elements chosen
from a domain. Therefore, it is reasonable to expect these techniques to also
reduce BDD size in program analysis. However, up to now there has been no
description or evaluation of the use of ZBDDs in program analysis.

The main contributions of this paper are:

– A ZBDD representation of relations, and an algorithm, based on ZBDD
multiplication, to compute the relational product on this representation. The
combination of this representation and this algorithm makes it possible to
use ZBDDs in relation-based program analysis.

– A ZBDD variation of the BDD-based points-to analysis of Berndl et al. [2].
– An empirical study of the space requirements of the ZBDD encodings of the

relations in Berndl et al.’s analysis, Whaley and Lam’s joeq/bddbddb [27],
and Lhoták and Hendren’s Paddle framework [10, 13].

– A relation-density metric that predicts whether a relation will be represented
more compactly by a BDD or by a ZBDD.

The number of ZBDD variables used to represent a relation is the sum of
the sizes of the domains of the relation. In analyses expressed using relational
operations, the domains are sets of syntactic entities (such as statements, vari-
ables, etc.) of the program being analyzed, so this sum is linear in the size of the
input. However, the context-sensitive call-graph specialization algorithm used in
joeq/bddbddb [27] uses a special BDD operation with no relational equivalent
to construct a single domain whose size is exponential in the size of the input. It
is unlikely that an analogous operation can be practical for ZBDDs because it
would have to construct a ZBDD over an exponential number of variables. Thus,
we do not propose a ZBDD analogue of the joeq/bddbddb algorithm. However,
other algorithms that use only relational operations and represent contexts as re-
lations of syntactic entities can be implemented with our ZBDD representation.
This includes the context-sensitive analyses in Paddle.

The rest of the paper is organized as follows. Section 2 gives background on
pointer analysis, BDDs, and ZBDDs. Section 3 describes how ZBDDs can be
used for program analysis. Section 4 compares the sizes of BDDs and ZBDDs
used in pointer analysis. Section 5 reviews related work, and Section 6 concludes.

2 Background

A pointer analysis computes a static abstraction of the run-time relationships
between pointers and their targets [6, 8]. For each static abstraction of a pointer

variable, a points-to analysis computes a points-to set of the abstract target
locations to which the variable points at run time. This work focuses on may-
point-to information and on subset-based analysis. The result of a may-point-to
analysis over-approximates the run-time relationships. In a subset-based analy-
sis, also called Andersen-style analysis, points-to sets are computed by solving a
collection of subset constraints [1]. Subset constraints are often solved by prop-
agation. For example, the constraint A ⊆ B can be satisfied by propagating the
contents of A into B. Such propagation is done repeatedly for all the constraints
in the system until a fixed-point solution satisfying all the constraints is reached.

A key difficulty is that the points-to sets can become very large, especially
when precise abstractions of the run-time behavior are used. Recent research
focus on efficient data structures and propagation algorithms. A BDD [3] is one
such data structure [2, 29].

2.1 BDDs

A BDD represents a function that maps vectors of bits (the BDD variables) to
boolean values. This function can be viewed as the set of bit vectors that the
function maps to true. A BDD is a directed acyclic graph where a terminal node
represents true and another terminal node represents false. Each non-terminal
node, which specifies a BDD variable, has two outgoing edges to other nodes, a
one edge and a zero edge. The value of the function for a given valuation of the
BDD variables is determined by a traversal starting at the root node. At each
node, the traversal follows either the one edge or the zero edge, depending on
the value of the BDD variable associated with that node. The function has the
value of the terminal node reached by the traversal.

f(x1 x2 x3) =

000 0

001 1

010 1

011 0

100 1

101 0

110 0

111 0

x1

1 0

x3

x2x2

x3x3x3

x1

1 0

x3

x2x2

x3

(a) (b) (c)

Fig. 1. The function f(x1 x2 x3) (a), and the OBDD (b) and ROBDD (c) representing
it. Solid edges represent 1-edges and dotted edges represent 0-edges.

An Ordered BDD (OBDD) is a BDD with a fixed variable ordering. Every
path through an OBDD evaluates the variables in the given order. An OBDD
can be reduced to remove redundant nodes, by following two reduction rules:

1. When two BDD nodes p and q are identical, edges leading to q are changed
to lead to p, and q is eliminated from the BDD.

2. A BDD node p whose one-edge and zero-edge both lead to the same node q

is eliminated from the BDD and the edges leading to p are redirected to q.

For any given function, the resulting Reduced Ordered BDD (ROBDD) is
unique. Figure 1 shows an example function, an OBDD, and the ROBDD rep-
resenting it. In practice, BDDs are always maintained in reduced ordered form.
The remainder of this paper uses the abbreviation BDD to mean ROBDD.

In the BDD representation of a set, each element of each domain is encoded
as a binary string. This encoding ideally uses the minimum number of bits
required to assign each element to a unique binary string. A relation is formed
by two or more attributes. Each attribute belongs to a domain and thus has a
binary string representation. A relation can be represented as a set of binary
strings by concatenating the binary encoding of each attribute. For example,
assume a domain D with elements {a, b, c} encoded as {00, 01, 10}, respectively,
and a relation R that has 2 attributes R1 ∈ D and R2 ∈ D. If R contains
the tuples 〈a, a〉, 〈a, b〉 and 〈c, b〉, then R can be represented by the set S =
{0000, 0001, 1001}. The BDD encoding of S evaluates to true for the strings in
S and false for the strings not in S.

2.2 Solving Subset Constraints Using BDDs

Berndl et al. [2] and Zhu [29] show how to solve points-to subset constraints using
BDDs. They encode both the points-to sets and subset constraints as relations
represented with BDDs. Propagation is performed using the relational-product
BDD operation. For example, consider a program with pointers p and q and
abstract objects X and Y , with initial points-to sets pt(p) = {X} and pt(q) =
{Y }, and a subset constraint pt(p) ⊆ pt(q). The relationships between pointers
and abstract objects in this program are represented as a points-to relation
{〈X, p〉, 〈Y, q〉} and a constraint relation {〈p, q〉}. The result of propagating the
original points-to sets along the constraint (which adds X to pt(q)) is computed
by finding the relational product of the two relations (which evaluates to the
relation {〈X, q〉}).

2.3 ZBDDs

Zero-suppressed binary decision diagrams (ZBDDs) are like BDDs (see Sec-
tion 2.1), but the second reduction rule is changed to:

2. A BDD node p whose one-edge leads to the zero terminal node and whose
zero-edge leads to a node q is removed from the BDD and the edges leading
to p are redirected to q.

x1

1 0

x2

x3

Fig. 2. ZBDD representa-
tion of the function from
Figure 1.

Because of the difference in the reduction rules,
the interpretation of a ZBDD is slightly differ-
ent than a BDD. To determine the value of the
function for a given valuation of the ZBDD vari-
ables, the ZBDD is traversed like a BDD, follow-
ing either the one or zero edge of each node de-
pending on the value of the variable tested by the
corresponding node. However, the final value is
true only if the traversal ends at the true termi-
nal node and every variable whose value is 1 has
been tested during the traversal. Otherwise, the fi-
nal value is false. For example, the function that
was presented in Figure 1(a) is represented by the
ZBDD in Figure 2. For instance, according to the
ZBDD interpretation, the bit pattern 011 maps to
false because the true terminal is reached with-
out testing variable x3. Because of the difference in reduction rules, ZBDDs can
represent some functions more compactly than BDDs, and vice versa.

3 Encoding relations in ZBDDs

In a one-of-N encoding, the number of bits used is equal to the size of the domain.
Each element is associated with one bit in the vector. Each element is represented
by a bit vector with 1 for the corresponding element and 0 elsewhere. ZBDDs
are particularly suited to manipulate sets encoded using a one-of-N encoding.
According to Meinel and Theobald [15, p. 224], ZBDDs compactly encode sets
of bit vectors that are sparse in the sense that: (i) the set contains only a small
number of bit vectors relative to the number of all possible combinations of n

bits; and (ii) each bit vector in the set contains few one bits.
The first condition holds in many practical problems involving sets. The

second condition is a consequence of the one-of-N encoding. ZBDDs are more
efficient than BDDs in many set-based applications, such as combinatorial prob-
lems [20], problems in graph theory [4], and traversal of Petri nets [28]. Since
points-to analysis also requires manipulation of (points-to) sets, ZBDDs should
also work well for points-to analysis.

Although one-of-N encodings implemented using ZBDDs have been used suc-
cessfully in problems involving sets, relatively little attention has been paid to
encoding relations. A relation is a subset of a cross product of its attributes.
The size of this universal set is the product of the sizes of the attribute domains,
which can be very large. Encoding a relation in a ZBDD as a subset of this
universal set is not practical because the number of bits required is equal to the
size of the universal set. Yoneda et al. come close to manipulating relations in
ZBDDs [28]. Although they do not represent relations explicitly, they define new
ZBDD operations that have the effect of applying a transition relation to a set
of Petri-net states encoded in a ZBDD.

We propose a new technique to represent a relation in a ZBDD: allocate
one bit for each element of every attribute domain. Thus, the number of bits
required is the sum, rather than the product, of the sizes of the attribute domains.
A tuple containing one element from each attribute is represented as a set of
those elements. For example, suppose a domain D with elements {a, b, c}, and a
relation R with two attributes R1 and R2 with domain D. Encode this relation
as a ZBDD on six bits, namely a1, b1, c1, a2, b2, c2, where the bits with subscript
1 represent elements in attribute 1, and the bits with subscript 2 represent
elements in attribute 2. Then the tuples 〈a, a〉, 〈a, b〉 and 〈c, b〉 are represented
by the sets {a1, a2}, {a1, b2}, and {c1, b2}, and encoded with the binary strings
100100, 100010, and 001010, respectively.

This representation encodes each tuple as a bit vector. Therefore the stan-
dard ZBDD set operations defined on sets of bit vectors (union, intersection,
difference) implement the corresponding operations on the relations. The replace
operation can be implemented on ZBDDs in the same way as on BDDs.

The relational product operation is central to relation-based points-to analy-
sis. To our knowledge, there is no practical algorithm to compute the relational
product in ZBDDs. In BDDs a relational product is a conjunction followed by an
existential quantification — implementations combine them into a single, more
efficient, operation. In ZBDDs, the analogue of the conjunction is a multipli-
cation followed by removal of tuples containing more than one element of the
attribute being compared.

For instance, the example from Section 2.2. has points-to relation {〈p, X〉,
〈q, Y 〉} and subset constraints relation {〈p, q〉}. These relations can be repre-
sented using ZBDDs with bits X, Y, p, q, p′, q′, where the primed bits represent
elements in the second attribute of the relation. The points-to relation is repre-
sented by a ZBDD for the set of subsets {Xp, Y q}, and the subset constraints
relation is represented by {pq′}. The product of these ZBDDs is {Xpq′, Y qpq′}.
The second tuple is removed because it contains two elements (p and q) from the
attribute being compared. Finally, the equivalent of an existential quantification
removes the p from Xpq′, yielding the correct final result {Xq′}.

Although an algorithm for ZBDD multiplication is given by Minato [21,
p. 75], there are two other operations for which algorithms have not been de-
signed: (1) removal of tuples with multiple elements from the same attribute;
and (2) existential quantification. We present a modification of the ZBDD mul-
tiplication algorithm (see Figure 3) that performs all three operations in a single
pass through the ZBDD. ZRelProd takes an additional parameter pd, the set
of ZBDD variables representing the relation attributes being compared. Let x be
the variable tested by the top node of the operand ZBDDs. When x is not in pd,
line 14 performs the standard multiplication.3 However, when x is in pd, line 12
returns the union of two relational products: the product of the 0-cofactors with
respect to x and the product of the 1-cofactors with respect to x. This result

3 Compared to Minato’s ZBDD multiplication algorithm, line 14 lacks the terms p1∗q1
and p0 ∗ q1. This is a relational-product behaviour-preserving optimization: when x

is not in pd but it is tested by p, it cannot also be tested by q, so q0 = q and q1 = 0.

ZBDD ZRelProd(ZBDD p, ZBDD q, Set〈Variable〉 pd)
1 if p.top < q.top

2 then return ZRelProd(q, p, pd)
3 if q = 0
4 then return 0
5 if q = 1
6 then return Subset0(p, pd)
7 x← p.top

8 (p0, p1)← factors of p by x

9 if x ∈ pd

10 then

11 (q0, q1)← factors of q by x

12 return ZRelProd(p1, q1, pd) + ZRelProd(p0, q0, pd)
13 else

14 return x · ZRelProd(p1, q, pd) + ZRelProd(p0, q, pd)

Fig. 3. The Relational Product Algorithm for ZBDDs.

contains exactly those tuples in which the value of x is equal in both operands.
Tuples in which the value of x is zero appear in the 0-cofactors, and those in
which x is one appear in the 1-cofactors. ZRelProd combines into a single
step the ZBDD multiplication, the removal of tuples with multiple elements
from the same attribute, and the computation of the existential quantification.
The following theorem shows its correctness.

Theorem 1. Let V = {v1 . . . vn} be a set of ZBDD variables, ordered such
that if a ZBDD node testing vi is a child of a ZBDD node testing vj , then
i < j (i.e. v1 is closest to the terminal nodes). Partition V into three disjoint
subsets V1, V2, V3 representing the domains unique to the left-hand-side relation,
the domains common to both relations, and the domains unique to the right-
hand-side relation. Let P ⊆ P(V1 ∪ V2) and Q ⊆ P(V2 ∪ V3) be arbitrary sets of
subsets of V1 ∪ V2 and V2 ∪ V3 represented as ZBDDs. Define

P × Q = {s1 ∪ s3 : ∃s2 ⊆ V2.s1 ∪ s2 ∈ P ∧ s2 ∪ s3 ∈ Q ∧ (s1 ∪ s3) ∩ V2 = ∅}

Then ZRelProd(P, Q, V2) = P × Q. That is, ZRelProd correctly computes
the relational product of the relations represented by P and Q.

Proof. Define k(P) = max{i : vi ∈ S ∧ S ∈ P}, with k(P) = 0 when P is the
empty set or contains only the empty set. Then the top (root) node of the ZBDD
representing P tests variable vk(P), since a node that tests vk(P) must appear
in the ZBDD in order for vk(P) to appear in a set in P , and the maximality
of k(P) ensures that this node is at the top of the ZBDD. Define operations
s0(P, vi) = {S : S ∈ P ∧ vi 6∈ S} and s1(P, vi) = {S \ {vi} : S ∈ P ∧ vi ∈ S},
which partition P into those sets that do not contain vi and those that do, and
remove vi from each set in the latter partition. The cofactor ZBDD operation
computes s0 and s1.

The proof is by induction on K = max{k(P), k(Q)}. In the base case, k(P) =
k(Q) = 0, so Q is either the empty set or contains only the empty set. When
Q = ∅, P ×Q = ∅, and line 4 correctly returns the ZBDD representing the empty
set. When Q is the set containing the empty set, P × Q is the set of sets from
P not containing any elements of V2. The Subset0 ZBDD operation computes
this set in Line 6.

In the inductive case, if k(P) < k(Q), the algorithm switches P and Q; since
× is symmetric, we need only consider the case when k(P) ≥ k(Q), so K = k(P).
When k(Q) = 0, the same argument as for the base case applies. Thus, consider
the case when k(Q) > 0, so line 7 of the algorithm is reached. There are two
cases to consider: either vk(P) ∈ V1 or vk(P) ∈ V2.

Case 1: vk(P) ∈ V1: Partition P × Q into R1 = {s ∈ P × Q : vk(P) ∈ s} and
R0 = {s ∈ P×Q : vk(P) 6∈ s}. Define vk(P) ·X = {S∪{vk(P)} : S ∈ X}. From the
definition of ×, s0(P, vk(P))×Q = R0, and vk(P) · (s1(P, vk(P))×Q) = R1. Since
vk(P) 6∈ V2, the condition in line 9 fails and line 14 is executed. By the definition
of the cofactor operation, neither p0 nor p1 contains any sets containing vk(P),
so k(p0) < k(P) = K and k(p1) < k(P) = K. Since no set in Q contains an
element of V1, k(Q) < k(P) = K. Thus, the inductive hypothesis can be applied
to the relational products in line 14 to show that they compute s1(P, vk(P))×Q

and s0(P, vk(P))×Q, respectively. Adding vk(P) (i.e. x) to each set in the former
and taking their union, as done in line 14, gives R1 ∪ R0 = P × Q as required.

Case 2: vk(P) ∈ V2: In the definition of ×, for each element of P × Q, there
must exist some s2. Partition P ×Q into R1 containing those elements for which
vk(P) ∈ s2, and R0 containing those elements for which vk(P) 6∈ s2. From the
definition of ×, s1(P, vk(P))×s1(Q, vk(P)) = R1 and s0(P, vk(P))×s0(Q, vk(P)) =
R0. Since vk(P) ∈ V2, the condition in line 9 succeeds and lines 11 and 12 are
executed. Again, by the definition of the cofactor operation, k(p0), k(p1), k(q0),
and k(q1) are all strictly less than k(P) = K, so the inductive hypothesis can
be applied to show that the relational products in line 12 correctly compute
s1(P, vk(P))× s1(Q, vk(P)) and s0(P, vk(P))× s0(Q, vk(P)). Line 12 returns their
union, which is R1 ∪ R0 = P × Q as required. ut

One other issue with ZBDDs is that the set-complement operation cannot
be performed efficiently because the complement of a sparse set is no longer
sparse. The BDD-based points-to analyses of Berndl et al. [2] and of Whaley
and Lam [27] do not use set complement. The Paddle framework [10] uses set
complement for convenience (in cases where it is more natural to write R1 ∩ R2

instead of R1 \ R2) but not in essential ways. Paddle could be restructured to
avoid using set complement.

4 Experimental Evaluation

The program analysis community started using BDDs to represent relations
without investigating whether a variant representation could be more compact.
The experiments presented in this section test whether ZBDDs are a better
choice of data structure for program analyses.

The results indicate that ZBDDs are consistently more space efficient than
BDDs for relations in context-sensitive points-to analyses, but yield little im-
provement for the dense relations found in context-insensitive points-to analyses.

4.1 Experimental Setup

This experimental study evaluates ZBDDs in the context of three program-
analysis frameworks.

– The first framework is the context-insensitive points-to analysis developed
by Berndl et al. [2]. In this implementation, Soot [26] and its Spark points-to
analysis framework [9, 11] are used to generate a system of subset constraints
to be solved. The constraints are then read in and solved by a solver written
in C using the BuDDy BDD library [14].

– The second framework is the joeq/bddbddb system of Whaley and Lam [27].
In this implementation, the joeq compiler pre-processes the code to be an-
alyzed, generates a system of subset constraints to be solved, and outputs
the initial relations as BDDs. The algorithm to solve the constraints is spec-
ified as a Datalog program. The bddbddb tool reads the Datalog program
and the initial relations, and solves the system of constraints. We evalu-
ated ZBDDs within the context-insensitive points-to analysis implemented
in joeq/bddbddb. As explained in the introduction, we did not apply ZB-
DDs to the context-sensitive analysis in joeq/bddbddb because it uses a “new
primitive” BDD operation to construct domains of exponential size [27].

– The third framework is Lhoták and Hendren’s Paddle framework [10, 13].
Unlike the other two systems, Paddle integrates the BDD-based analysis into
the compiler (Soot). Paddle is implemented in the Jedd language [12], an
extension of Java for expressing program analyses in terms of relations, which
the Jedd runtime represents and manipulates using BDDs. All modifications
are confined to Jedd. Of the variations of context sensitivity supported by
Paddle, we evaluated the 1-object-sensitive analysis, which was identified
in earlier work as being precise at a modest cost, relative to other context
sensitivity variations [13].

This study uses a representative subset of the benchmarks from Lhoták
and Hendren’s study [13] of context-sensitive points-to analysis. Three (antlr,
bloat, chart) are from the Dacapo suite, version beta050224 [5], four (jack,
javac, jess, raytrace) are object-oriented programs from the SPEC JVM 98
suite [25], and three (polyglot, sablecc, soot) are other object-oriented Java
programs. These benchmarks have been used in many previous points-to analy-
sis studies. All of the benchmarks are analyzed with the standard class library
from the Sun JDK 1.3.1.

Operations on BDDs and ZBDDs have the same asymptotic complexity.
Packages such as BuDDy contain tuned implementations of BDD operations.
We did not perform a comparison of running time because we do not have access
to a carefully-tuned ZBDD implementation. Unlike running time, the number of
nodes is not affected by the fine tunning of the decision diagram implementation.

4.2 ZBDDs

This study compares ZBDDs to BDDs in two ways. First, we wrote a varia-
tion of the BDD-based points-to analysis implementation of Berndl et al. [2]
that represents the same relations in ZBDDs instead of BDDs. This variation
uses ZBDD operations, including the relational-product operation presented in
Section 3, instead of BDD operations to manipulate relations. Second, we instru-
mented Paddle [10, 13] and joeq/bddbddb [27] to dump the relations computed
during the analysis. Then we developed a tool to read these relations into both a
BDD and a ZBDD. This infrastructure allows for the comparison of the number
of nodes in each BDD with the number of nodes in the corresponding ZBDD
representing the same relation.

A fair comparison must use an appropriate ordering of the variables in the
BDD and ZBDD because the size of these representations can vary significantly
depending on the choice of ordering. Berndl et al. found that requiring that all
the bits representing a given attribute be grouped together consecutively in the
ordering is a suitable restriction for BDD-based program analyses [2]. Thus, for
each relation, we searched exhaustively for the BDD ordering that obeys this
restriction and produces the smallest BDD: for a relation with n attributes, we
evaluated the n! possible orderings of the attributes. The ordering found by this
exhaustive search on a representative benchmark (antlr) was applied to the
corresponding relations in the analysis of all the benchmarks.

Since the BDD and ZBDD representations of a relation are defined in terms
of different sets of bits, an appropriate ZBDD variable ordering that corresponds
to a given BDD variable ordering must be selected. To be consistent with BDD
orderings and to limit the search space of possible orderings, the restriction
that the bits representing a given attribute be grouped together consecutively
is also maintained for ZBDD orderings. Given this restriction, the only choice
remaining is the relative ordering of different attributes. It turns out that for
most of the relations examined, the best BDD variable ordering is also the best
ZBDD ordering. For all but one relation, using the best BDD ordering for the
ZBDD results in a ZBDD no more than 5% larger than the ZBDD with the best
ZBDD ordering.

The resolvedSpecials relation in Paddle is an interesting outlier. Using the
best BDD ordering results in a ZBDD 76% larger than the ZBDD with the best
ZBDD ordering. However, when the best ZBDD ordering is applied to BDDs
it yields only 7% more nodes than the best BDD ordering. We will continue to
study such outliers for more insights on BDD and ZBDD orderings. However, for
the most part, good BDD orderings tend to also be good ZBDD orderings. The
experiments reported in the remainder of this paper use the best BDD ordering
for both BDDs and ZBDDs. Therefore, the results are slightly biased in favour
of BDDs.

The graphs in Figure 4 show the relative size of the BDD and ZBDD for each
relation of each benchmark. Points below the diagonal line represent relations
for which the ZBDD is smaller than the BDD. Points above the line represent
relations for which the BDD is smaller. Larger decision diagrams, which affect

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06

ZB
DD

 n
od

es

BDD nodes

2 attributes
3 attributes

 1000

 10000

 100000

 1000 10000 100000

ZB
DD

 n
od

es

BDD nodes

2 attributes
3 attributes

(a) Berndl et al. (b) joeq/bddbddb

 10000

 100000

 1e+06

 10000 100000 1e+06

ZB
DD

 n
od

es

BDD nodes

4 attributes
5 attributes
6 attributes
7 attributes

(c) Paddle

Fig. 4. BDD size compared to ZBDD size

analysis cost more significantly, appear to the right and top of each graph. Note
that the three graphs in Figure 4 have different scales.

In the Berndl et al. analysis, although most relations are represented more ef-
ficiently by ZBDDs than BDDs, the reverse is true for a significant number of re-
lations, some of them large. Closer examination reveals that in every benchmark,
the relations represented more efficiently by BDDs than ZBDDs are always the
pointsTo and typeFilter relation, both of which are manipulated frequently
by the analysis. Thus, the data indicates that there is no clear advantage in
using ZBDDs over BDDs, or vice versa, for the Berndl et al. analysis.

Results for the joeq/bddbddb analysis are similar to those of the Berndl et
al. analysis. The relations for which BDDs are smaller than ZBDDs are mainly
vPfilter (the joeq/bddbddb equivalent of typeFilter), and in several bench-
marks vP (equivalent of pointsTo).

In both the Berndl et al. and joeq/bddbddb analyses, the relative size of
BDDs and ZBDDs favours ZBDDs more strongly in relations with three at-

tributes than those with two attributes. Therefore, for context-sensitive analy-
ses, which use additional attributes to represent contexts, we expected ZBDDs
to be significantly smaller than BDDs. Indeed, Figure 4(c) shows that in the
Paddle context-sensitive analysis every relation in every benchmark is smaller
when represented by a ZBDD than by a BDD. The differences ranged up to a
factor of eight! However, the link with the number of attributes is less clear in the
Paddle results: (1) the BDD and ZBDD sizes for 6-attribute relations are very
close to those for 4-attribute relations; and (2) the ZBDD vs. BDD advantage is
smaller for 7-attribute relations than for a large set of 6-attribute relations.

These results indicate that for context-insensitive points-to analyses, ZBDDs
are generally smaller than BDDs, but the advantage is too small and inconsistent
to allow a general recommendation that ZBDDs be used instead of BDDs. How-
ever, for analyses using relations with more attributes, and for context-sensitive
points-to analysis in particular, we expect ZBDDs to be significantly and con-
sistently smaller than BDDs representing the same relations.

 0.1

 1

 10

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

ZB
DD

 n
od

es
/B

DD
 n

od
es

density

2 attributes
3 attributes

 0.1

 1

 10

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

ZB
DD

 n
od

es
/B

DD
 n

od
es

density

2 attributes
3 attributes

(a) Berndl et al. (b) joeq/bddbddb

 0.1

 1

 10

 1e-16 1e-15 1e-14 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08 1e-07

ZB
DD

 n
od

es
/B

DD
 n

od
es

density

4 attributes
5 attributes
6 attributes
7 attributes

(c) Paddle

Fig. 5. BDD vs. ZBDD size in terms of density

When should we use ZBDDs? Given the mixed results for points-to analyses
in the question of the size of ZBDDs vs. BDDs for the same relations, a metric

that indicates whether ZBDDs or BDDs are expected to be more compact would
be useful for the program analysis community. Such a metric could be used when
a designer is considering the use of a BDD representation for a relation-based
analysis that has not yet been implemented using BDDs.

The metric that we propose is density and it is equal to the number of tuples
in the relation divided by the size of the full domain of possible tuples. This met-
ric is inspired by Meinel and Theobald’s recommendation that ZBDDs be used
for boolean functions whose on-set (those input vectors that the function maps
to one) is small, and whose bit vectors in the on-set contain few one-bits [15].
The density metric covers both parts of this qualitative recommendation, since
the number of tuples in a relation is equal to the total number of one-bits in all
the bit vectors in the on-set of a one-of-N encoding of the relation, multiplied by
the number of attributes. The density metric measures the density of a relation.
Thus it applies to relations independently of the ZBDD representation.

Figure 5 plots the ratio of ZBDD vs. BDD size as a function of the den-
sity metric. Points below the horizontal line represent relations whose ZBDD is
smaller than the BDD. In all three graphs, as density increases, the advantage
of ZBDDs over BDDs decreases. At a density of around 3 × 10−3, BDDs and
ZBDDs are approximately equal in size. This threshold is indicated in the graphs
by a vertical dotted line. Of all the relations that we observed, two had a den-
sity lower than this threshold but were represented more compactly by a BDD
than a ZBDD; they appear slightly to the left of and above the crossing lines
in Figure 5(b). The context-sensitive relations extracted from Paddle, which are
represented more compactly by ZBDDs than BDDs, have low densities. Because
the size of BDDs and ZBDDs strongly depends on the contents of the relation
being represented, density can only serve as a rough guide. However, we hope
it will be a useful metric for analysis designers considering ZBDDs or BDDs for
other program analyses.

5 Related Work

ZBDDs were introduced by Minato, and found to scale better than BDDs when
representing large combinatorial circuits [19]. Minato showed that ZBDDs are
likely a better choice than BDDs if there are many input variables, variables
default to 0, or very few elements in a set are asserted.

Okuno applied ZBDDs to the N -Queens problem. He reports that for this
problem, the ZBDD representation is about a factor of N smaller than the
corresponding BDD version [24, summarized in [21]].

Yoneda et al. applied ZBDDs to Petri-net state-space exploration, and com-
pared their performance to BDDs [28]. They found the ZBDD representation to
be one half to one third the size of the BDD representation. They also report
that the ZBDD implementation was several times faster for some benchmarks.

Coudert used ZBDDs to efficiently solve graph optimization and routing
problems [4].

Since then, ZBDDs have been used to efficiently solve several combinatorial
problems as well as fault simulation, logic synthesis, processing of petri nets and
manipulation of polynomial formulas [22, 23].

BDDs were first applied to points-to analysis by Zhu and Berndl et al. [29,
2]. These context-insensitive analyses were then generalized to context-sensitive
analysis by Zhu and Calman and by Whaley and Lam [30, 27]. Hardekopf and Lin
compared several non-BDD and BDD implementations of a context-insensitive
points-to analysis [7], including a hybrid implementation in which only the
points-to sets are represented by BDDs, and the rest of the analysis uses tra-
ditional data structures. This implementation used less than one-fifth of the
memory of a non-BDD implementation. ZBDDs could be substituted for BDDs
in this implementation, possibly yielding further reductions in memory usage.

6 Conclusion

Although BDDs have been successfully used for points-to analysis, alternative
BDD representations were not evaluated by this community. This paper devel-
ops the techniques that allow the use of ZBDDs for such analyses. The new
relational-product operator described here allows for the immediate use of ZB-
DDs in points-to analysis. The experimental results indicate that non-trivial re-
duction of BDD sizes can be realized when ZBDDs are used for context-sensitive
points-to analysis.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, Univ. of Copenhagen, May 1994. (DIKU report 94/19).

2. M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. In Proceedings of PLDI 2003, pages 103–114, 2003.

3. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv., 24(3):293–318, 1992.

4. O. Coudert. Solving graph optimization problems with ZBDDs. In EDTC ’97:
Proceedings of the 1997 European Conference on Design and Test, page 224, 1997.

5. DaCapo Project. The DaCapo benchmark suite.
http://www-ali.cs.umass.edu/DaCapo/gcbm.html.

6. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of PLDI 1994, pages
242–256, 1994.

7. B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and accurate pointer
analysis for millions of lines of code. In Proceedings of PLDI 2007, 2007.

8. M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings of
PASTE 2001, pages 54–61. ACM Press, 2001.

9. O. Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s thesis,
McGill University, Dec. 2002.

10. O. Lhoták. Program Analysis using Binary Decision Diagrams. PhD thesis, McGill
University, Jan. 2006.

11. O. Lhoták and L. Hendren. Scaling Java points-to analysis using Spark. In Com-
piler Construction, 12th International Conference, pages 153–169. Springer, 2003.

12. O. Lhoták and L. Hendren. Jedd: a BDD-based relational extension of Java. In
Proceedings of PLDI 2004, pages 158–169. ACM Press, 2004.

13. O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it worth it? In
Compiler Construction, 15th Int. Conf., pages 47–64. Springer, 2006.

14. J. Lind-Nielsen. BuDDy, A Binary Decision Diagram Package.
http://www.itu.dk/research/buddy/.

15. C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.
Springer-Verlag New York, Inc., 1998.

16. A. Milanova. Precise and Practical Flow Analysis of Object-Oriented Software.
PhD thesis, Rutgers University, Aug. 2003.

17. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for
points-to and side-effect analyses for Java. In Proceedings of ISSTA 2002, pages
1–11. ACM Press, 2002.

18. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005.

19. S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems.
In DAC ’93: 30th International Conf. on Design Automation, pages 272–277, 1993.

20. S. Minato. Calculation of unate cube set algebra using zero-suppressed BDDs. In
31st ACM/IEEE Design Automation Conference (DAC ’94), pages 420–424, 1994.

21. S. Minato. Binary decision diagrams and applications for VLSI CAD. Kluwer
Academic Publishers, 1996.

22. S. Minato. Zero-suppressed BDDs and their applications. International Journal
on Software Tools for Technology Transfer (STTT), 3(2):156–170, May 2001.

23. A. Mishchenko. An introduction to zero-suppressed binary decision diagrams.
Technical report, Portland State University, June 2001.

24. H. G. Okuno. Reducing combinatorial explosions in solving search-type combina-
torial problems with binary decision diagrams. Trans. of Information Processing
Society of Japan (IPSJ), (in Japanese), 35(5):739–753, May 1994.

25. Standard Performance Evaluation Corporation. SPEC JVM98 benchmarks.
http://www.spec.org/osg/jvm98/.

26. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundare-
san. Optimizing Java bytecode using the Soot framework: Is it feasible? In Compiler
Construction, 9th International Conference (CC 2000), pages 18–34, 2000.

27. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of PLDI 2004, pages 131–144, 2004.

28. T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs vs. zero-suppressed
BDDs : for CTL symbolic model checking of petri nets. In Formal Methods in
Computer-Aided Design, pages 435–449, 1996.

29. J. Zhu. Symbolic pointer analysis. In Proceedings of the 2002 IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 150–157, 2002.

30. J. Zhu and S. Calman. Symbolic pointer analysis revisited. In Proceedings of PLDI
2004, pages 145–157, 2004.

