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ABSTRACT
Most contemporary processors offer some version of Single
Instruction Multiple Data (SIMD) machinery — vector reg-
isters and instructions to manipulate data stored in such
registers. The central idea of this paper is to use these
SIMD resources to improve the performance of the tail of
recursive sorting algorithms. When the number of elements
to be sorted reaches a set threshold, data is loaded into
the vector registers, manipulated in-register, and the result
stored back to memory. Three implementations of sorting
with two different SIMD machineries — x86-64’s SSE2 and
G5’s AltiVec — demonstrate that this idea delivers signifi-
cant speed improvements. The improvements provided are
orthogonal to the gains obtained through empirical search
for a suitable sorting algorithm [11]. When integrated with
the Dynamically Tuned Sorting Library (DTSL) this new
code generation strategy reduces the time spent by DTSL
up to 22% for moderately-sized arrays, with greater rela-
tive reductions for small arrays. Wall-clock performance of
d-heaps is improved by up to 39% using a similar technique.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Single-instruction-stream,
multiple-data-stream processors (SIMD)

General Terms
Algorithms, Performance

Keywords
Quicksort, Sorting, Sorting Networks, SIMD, Instruction-
Level Parallelism, Vectorization.

1. INTRODUCTION
This paper addresses the automatic generation of efficient

code to sort short sequences of values. The idea is that
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an ahead-of-time optimizer searches for fast code for sev-
eral sequence lengths and machine configurations. Then
the compiler can simply instantiate such code when gen-
erating an optimized library. While algorithm-specific op-
timizations and empirical search have long been used both
for scientific computation and for large parallel machines [4,
5, 19, 21], only recently these techniques were applied to
integer-intensive, symbolic, computation. Li et al. devel-
oped the Dynamically Tuned Sorting Library that adapts to
the characteristics of the input to be sorted [11]. The main
contribution of this paper is the insight that the resources
implemented in contemporary processors to enable SIMD
computations can be put to good use to improve the perfor-
mance of sorting short sequences. As demonstrated in this
work the effective use of these SIMD resources improves per-
formance through the reduction of memory references and
increase in instruction level parallelism.

The initial inspiration for this work was the need for fast
sorting of short sequences in the implementation of graphics
rendering in interactive video-game applications. In such
applications it is often necessary to decide, for each pixel
of the image, what is the order of the elements that should
be displayed [2]. Even though Z-buffer pixel-ordering com-
putations are typically handled by a specialized Graphics
Processing Unit (GPU), there are plenty of similar ordering
computations that are done by the Central Processing Unit
(CPU) in computer games. For instance, sorting is used to
characterize the intensity of the various light sources that il-
luminate a character. Moreover, contemporary video-game
application have at their disposal a rich supply of SIMD reg-
isters and instructions. For example, the PowerPC-based
XBox 360 hardware features 128 AltiVec registers on each
of its three cores along with an expanded set of AltiVec
instructions. In addition to interactive video-game applica-
tions, sorting of short sequences is also present in particule-
physics simulation applications.

Thus, using SIMD registers and instructions to sort small
sequences is natural. Once a solution was created, apply-
ing it to the sequences that must be sorted at the tail-end
of standard recursive sorting algorithms was the next log-
ical step. The experimental evaluation of the new vector-
register-based sorting algorithms presented in this paper use
commodity processors (x86-64 and G5) and extensions to
the DTSL library because these machines and algorithms
are more readily available and exploitable than proprietary
video-game hardware and software. The algorithms pre-
sented are effective for sorting short sequences of floating-
point or integer values (keys), and pairs comprised of a key



and a memory address, i.e. key-pointer pairs, as well as
computing the index of a minimum (maximum) element.

Three new SIMD-based algorithms use the concept of
sorting networks that are effective to sort small sets of num-
bers. Section 2 describes: (1) the operation of standard
sorting networks; (2) how the SIMD vectors can be used to
implement sorting networks; and (3) how a code generator
can instantiate optimized vector code for sorting networks
operating in sequences of any length. The main contribu-
tions in this paper are:

• three algorithms that use the SIMD machinery of con-
temporary processors for efficient in-register sorting of
short sequences and their integration into an optimized
general-purpose sorting library;

• a method to use iterative-deepening search to find fast
instruction sequences to move data within the SIMD
registers;

• a method to compute the minimum element in an ar-
ray, with applications to d-heaps;

• and an extensive experimental study in three different
processors that demonstrate up to 22% improvement
in the performance of DTSL for moderately-sized ar-
ray, and up to 39% in d-heaps. This study also indi-
cates that the elimination of loads, stores, branches,
and branch mispredictions correlates well with the im-
proved performance.

Section 3 describes two algorithms that combine a first-
pass sorting in the SIMD registers with a second-pass sort-
ing in memory. Section 4 describes an algorithm that sorts
shorter sequences completely within the SIMD registers, thus
eliminating branch instructions altogether. Section 5 de-
scribes how to extend these key-sorting algorithms to sort
key-pointer pairs, and Section 6 uses similar techniques to
speed up heapify-down operations in d-heaps. The experi-
mental evaluation is presented in Section 7.

2. SORTING NETWORKS
The inputs to an in-place comparator, COMP (a, b), are

two storage units — memory locations, registers, or vector-
register elements — a and b, each containing a numerical
input. After the comparator executes, the lower numerical
value is stored in a and the higher numerical value is stored
in b. Knuth describes a comparator network as a device
that applies a fixed sequence of comparator operators to an
input vector of a given size [8]. When a comparator network
produces a sorted output for any possible input sequence, it
is called a sorting network. The size of a sorting network is
the total number of comparators in the network. The depth
of a sorting network is the length of the critical path in its
dependence graph. Therefore the depth provides a bound
for the parallel execution of the sorting network, while the
size provides a bound for a sequential execution.

An example of a sorting network with size 5 and depth 3 is
shown in Fig. 1. The network is depicted as a set of value-
carrying vertical rails and comparators. Values flow from
top to bottom. A heavy dot at a line crossing indicates that
the value at the vertical rail is an input to the comparator
represented by the horizontal line. A comparator moves the
larger value to the left, and the smaller value to the right.

COMP(b, c)

a b c d

COMP(a, c)
COMP(b, d)
COMP(a, b)
COMP(c, d)

Figure 1: A 4-element sorting network.

For instance, if the inputs are a = 7, b = 2, c = 5, d = 9,
then the sorted output at the bottom of the sorting network
is a = 9, b = 7, c = 5, and d = 2. The value 9 moves from
rail d to rail b at COMP (b, d), and then moves from rail b
to rail a at COMP (a, b).

Although several algorithms are available to generate code
for sorting networks, Batcher’s “odd-even mergesort” algo-
rithm is often chosen for its efficiency [1]. Batcher’s al-
gorithm uses O(n log2 n) comparators and has a depth of
O(log2 n). Sorting networks can be efficiently implemented
in processors that provide a min and a max instruction.
Sorting networks implemented with these instructions avoid
the performance penalties of branch miss-predictions incurred
by traditional branch-based sorting implementations. The
experimental results in Section 7 indicate that eliminating
branches in the code of sorting networks is a significant win
in contemporary processors.

2.1 Supporting Hardware
Consider a machine that has the following min and max

instructions:

min(a, b) =

(

a : a ≤ b

b : otherwise
, max(a, b) =

(

a : a ≥ b

b : otherwise

The comparator required by a sorting network is eas-
ily constructed using these two operations, a copy instruc-
tion, and a temporary variable. For instance, such instruc-
tions are available in the x86-64 architectures supporting
the SSE2 min and max operations that return the mini-
mum (maximum) packed single-precision floating-point val-
ues [6].1

The extension of sorting networks to operate on vector
instructions requires the definition of vectorized min and
max instructions.2 For input vectors A and B, |A| = |B| =
n, let C = min(A, B) be the element-wise minimum vector,
such that Ci = min(Ai, Bi), 1 ≤ i ≤ n. The vectorized max
instruction is defined similarly. The w idth of a (vectorized)
sorting network refers to the number of vectors being sorted.
Given an ordered list of vectors X1, X2, . . . , Xn, a stream of
data is formed by selecting the ith element from each vector
in order, thus the ith stream is X1

i , X2

i , . . . , Xn

i .
For instance, the x86-64 architecture has 16 XMM vector

registers, and each register can hold 4 floating-point values.
Therefore, sorting the values in n XMM registers using a
sorting network produces 4 sorted streams of data of length
n. Up to 15 XMM registers can be used, i.e. 1 ≤ n < 16,
because one register must be reserved as temporary storage
for the swap of values in the comparator.

This compare-and-swap machinery offers several advan-
tages to sort a small set of values that fits within the SIMD

1SSE stands for Streaming SIMD Extensions. SSE2 im-
proves upon the original SSE.
2These vector instructions are called a SIMD extension.



registers: (1) its operation is unconditional and data in-
dependent; (2) it is inherently branch-free, and thus free
of branch-prediction performance penalties; (3) it increases
the bandwidth of sorting by enabling the SIMD instruction-
level parallelism; and (4) each compare-and-swap requires
the execution of only 3 instructions.

A code generator must be able to generate code to sort
sequences of any length in a machine with n+1 SIMD regis-
ters. The solution is to define size-optimal sorting networks
that use 1, 2, . . . , n registers. The optimal code for the imple-
mentation of each of these sorting networks is pre-generated
and stored in a small codebase available to the code gener-
ator for deployment. Once data has been loaded into the
SIMD registers the code generator instantiates the code to
perform the comparator operations specified by the sorting
network, and integrates the resulting streams.

3. STREAM-BASED TWO-PASS SORTING
The first two SIMD-based sorting algorithms discussed

in this paper operate in two phases. In the first phase
the SIMD registers and instructions are used to generate
a partially-sorted output. In the second phase a standard
sorting algorithm — insertion sort and mergesort are inves-
tigated in this paper — finishes the sorting. The choice of
algorithm for the second phase dictates the best data orga-
nization for the first one.

For the first phase, consider the use of the SIMD sorting
machinery described in Section 2 for the task of sorting a
sequence of k∗n values using n SIMD registers, each register
capable of storing k values. Each group of k values is loaded
from memory into a separate SIMD register. For a moment,
assume that the start of the sequence is aligned for such
a load operation. The sorting machinery is then applied to
produce k sorted streams of length n, and the sorted streams
are written back in-place to memory in an interleaved form.
The organization of the data in memory for k = 4 is shown
in Fig. 2. After sorting, A1 ≤ A2 ≤ . . . ≤ An, B1 ≤ B2 ≤
. . . ≤ Bn, etc.

After this initial sorting the ordering relationship between
elements from separate streams, Ai, Bi, Ci, and Di, is still
unknown. Now the output from the vectorized sorting net-
work must undergo an additional sorting pass. Let us exam-
ine the use of insertion sort and mergesort to finish sorting
this partially sorted output.

If the start of the sequence is not aligned, the technique
used in this paper will be to sort the aligned vector blocks
that overlap the target region. The extra fringe elements will
be saved to a temporary array, replaced by positive/negative
infinity as appropriate, and resorted upon completion.

A1 B1 C1 D1 A2 B2 C2 D2 An Bn Cn Dn

Figure 2: Interleaved sorted streams from n 4-
element SIMD registers. The first register contains
elements A1, B1, C1, and D1. A1 ≤ A2 ≤ · · · ≤ An, etc.

3.1 Second Pass with Insertion Sort
A standard insertion-sort algorithm may be used to sort

the output of the SIMD-based sorting network. Insertion
sort delivers the best performance when its input is mostly
sorted because the algorithm does not have to move elements

very far. Thus a potential issue with using insertion sort as a
second pass is how the data should be loaded into the SIMD
vectors in the first phase to produce the most favorable input
for insertion sort.

Consider an input sequence of S values, and a machine
with n + 1 SIMD vectors. Each vector can store up to k
values. Let m = ⌈S/k⌉. If m ≤ n the entire array can be
loaded into the SIMD registers, sorted, and written back in-
place. Then a call to insertion sort will finish sorting the
entire sequence.

If m > n, an in-place algorithm divides the array into
subsets small enough to fit in the vector registers, sorts them
with a sorting network, and writes each sorted subset back
to the same locations.

A naive approach would simply divide the array into ⌈m/n⌉
almost equal-sized blocks. However, if the data is uniformly
distributed this partition results in ⌈m/n⌉ similar blocks,
one after the other. The problem is that small elements
from the last block would have similar values to the small
elements from the first block, and would require insertion
sort to move many elements to far positions to combine these
blocks.

A better approach is to load the blocks into the SIMD
registers in a strided fashion. Consider for example n = 4
and m = 12 which requires three sorting network calls. In-
stead of the first call acting on elements A1, A2, A3, and A4,
it acts on A1, A4, A7, and A10. The second call acts on el-
ements A2, A5, A8, and A11, and the third on A3, A6, A9,
and A12. In this way the small values in the array are likely
to end up in A1, A2, and A3. A stride width greater than
one improves insertion sort performance in cases of uniform
or mostly-sorted distributions. In this paper, this strided
version of the vectorized sorting network followed by an in-
sertion sort pass is called ISort.

3.2 Second Pass with Mergesort
The mergesort algorithm, called MSort, uses a fixed-sized

block of temporary storage T that is large enough to hold the
entire array A. Because the SIMD-based sorting is applied
to small sequences this array will not be large in practice.
MSort proceeds as follows.

Compute the number of blocks of data to be sorted, ⌈m/n⌉,
and allocate temporary space T . Call the sorting network
on each block from A and store the sorted streams to T .

The Q-MERGE algorithm described by Wickremesinghe
et al. [20] based on work by [14] is now used to store the
sorted data into A: (1) Build a heap containing the first
element in each stream, and associate with each element a
pointer to the next element in its stream; (2) Repeatedly
extract the minimum element from the heap. During the
extraction, replace the removed element with the next ele-
ment in its stream, and rebuild the heap.

With a small number of streams, sufficient registers may
be available to contain the entire heap. Heapify operations
are then efficient and the only flow of data to/from mem-
ory is to fetch the next item from a stream or to store the
next value to A. For heaps that are too large to fit within
the available registers, in-memory heap code may be used.
Maintenance operations on small heaps may be written us-
ing the known register locations of elements, avoiding po-
tentially costly memory accesses and pointer indirections.

MSort uses one merge heap, with the number of inputs
being a multiple of v. That is, each heap completely han-



dles the output from one or more vectorized sorting network
calls. Further, only heaps which may be contained within
the available registers are considered.

Additional optimizations include placing a sentinel value
of infinity at the end of each stream to avoid checking if
streams are empty [20]. Once the sentinel is loaded into
the head it will sink to the bottom. When any sentinel is
extracted from the heap the sorting is complete.

Each sorting network call places elements from the same
stream a constant distance away from each other. Thus the
next element on a stream can be found by adding a constant
offset to the address of the current element, which makes
the maintenance of the “next element” pointer in the heap
straightforward.

4. ONE-PASS VECTOR SORTING
The third SIMD-based sorting algorithm accomplishes the

sorting in a single pass. Intuitively this is possible by loading
all of the n elements to be sorted into the vector registers,
applying the comparators for an n-element (scalar) sorting
network, and writing the elements back to memory in-place.

Table 1: SSE2 instructions used in the example of
Fig. 4

Instruction Description
movaps Ra, Rb copy the contents of Ra to Rb

shufps Ra, Rb, i copy 2 elements of Ra to the 2 low-
order words of Ra, and 2 elements
of Rb to the 2 high-order words of
Ra. The elements to be copied are
specified by i.

movhlps Ra, Rb copy the 2 high-order words from
Rb to the 2 low-order words of Ra.

movlhps Ra, Rb copy the 2 low-order words from Rb

to the 2 high-order words of Ra.

The difficulty with this approach lies in repositioning ele-
ments within the vector registers such that the vector com-
parator operations do not corrupt the values of elements
not involved in the comparison. Moreover, simply aligning
comparator inputs may be challenging, depending on the
fragmentation of free locations within the vector registers.

Since the cost of applying a vector comparator remains
the same regardless of the number of “care” values in each
input vector, a natural optimization is to execute more than
one (scalar) sorting-network comparator at a time. How-
ever, the cost of additional data-movement instructions to
properly position multiple comparator inputs in each vector
register may outweigh the benefit of parallelization. In prac-
tice, for the sorting networks considered, it did not appear
to be the case that aligning as many elements as possible3

was ever detrimental to the resulting sequence of operations.
However the algorithm we present does provide the ability
to balance such alignment costs for the target architecture.

4.1 Searching to Aligning Vector Elements
We will first describe the algorithm used for finding a

sequence of alignment instructions, and then show how this
applies to a small 4-element sorting network.
3With the optimization that the sorting networks corre-
sponding to Batcher’s Merge Exchange are explicitly sep-
arated into layers.

Figure 3: An 8-element sorting network produced
by Batcher’s Merge Exchange, with breaks indicated
between layers.

4.1.1 Algorithm Input
The input to our algorithm is a sequence of comparators

corresponding to a sorting network. In our case the sort-
ing networks were produced by Batcher’s Merge Exchange –
not to be confused with Batcher’s Bitonic Sort. Merge Ex-
change has the property of producing an initial sequence of
comparators connecting elements that are separated by pow-
ers of 2. This allows for executing a large number of parallel
comparators at the start without any need for alignment
instructions.

The data dependencies in the sorting network define a
partial ordering for the execution of the comparisons. The
comparators can thus be partitioned into sets in such a way
that all the comparators in each set can be executed in par-
allel. This partition corresponds to the computation of the
maximal anti-chains in a data-dependency graph [18].

One natural optimization, considering multiple legal or-
derings of the comparator sequence, was not implemented
due to the combinatorial increase in the search space. While
we present no formal approximation bounds, we feel that
the resulting suboptimality of the instruction sequences pro-
duced is not significant.

One important optimization which reduces both the num-
ber of assembly instructions and the time needed to search
for a sequence is to insert explicit breaks between levels of
the Merge Exchange sorting network. That is, to disallow
executing scalar comparators from different levels within one
parallel comparator. For this purpose we consider levels to
be the results of the innermost loop in Batcher’s Merge Ex-
change algorithm as described in [8]. An 8-element Merge
Exchange network is shown in Fig. 3 with such layer breaks
indicated.

The sequence of alignment instructions within a layer is
often repeated for subsequent blocks of scalar comparators.
Forcing breaks between levels may be thought of as help-
ing to maintain this repeating pattern of element positions
within vectors. This repetition is not exploited directly, but
it does seem to introduce less “noise” which may propagate
when rearranging elements.

4.1.2 Initial State
For convenience we will assume that we have an unbounded

number of vector registers. The resulting sequence of assem-
bly instructions may be restricted to a small number of phys-
ical vector registers as a post-processing step by “spilling”
and loading values to and from memory as appropriate.



We will also assume that the elements are located in a
continuous region of memory, are appropriately aligned, and
that the number of elements is a multiple of the size of a
vector. These restrictions are for simplification only and
may be lifted by making small changes to the algorithm.

Note that the process of searching for a sequence of align-
ment instructions is only concerned with keeping track of
the labels of the elements contained within the vector reg-
isters – we will refer to manipulations of elements only for
convenience.

The first step is to load all of the elements from memory
into the vector registers. It is natural and convenient to
assume a sequential labeling, such that the first memory lo-
cation is labeled 0 and the last location n−1. Given realistic
constraints on the capabilities of the vector manipulation in-
structions, a number of empty vector registers are required
as swap space for rearranging elements. In our experiments
having 5 empty vector registers in addition to those registers
holding the initial values was seen to be sufficient.

4.1.3 Aligning a Set of Comparators
While all of the comparators in the sorting network have

not yet been executed, select the next k comparators that
do not cross a layer and such that k is no larger than the
number of elements in a vector register. The task is then to
rearrange elements such that all the “low” elements from the
k comparators are in one vector, and all the “high” elements
in another4, and aligned element-wise with their partner.

Such an alignment is only valid if applying a vector com-
parator will not erase the last copy of any element. An
erasure must necessarily occur when comparing an element
with either an empty (garbage) value or another element
with an unknown ordering relation. Note that applying a
vector comparator will also invalidate copies of compared
elements that are located in other registers.

Finding a sequence of assembly instructions to accom-
plish this alignment is performed using a standard iterative-
deepening search. The legal actions in a state are all vector
assembly instructions which do not completely eliminate an
element from the set of vector registers.

Due to feasibility concerns, each iterative-deepening search
is divided into two phases: moving the low half of each com-
parator into one vector, and then moving the high half into
alignment. If the maximum search depth in any one phase
reaches 3, then that task is further subdivided into moving
the first 2 elements into a vector, the next 2 elements into
another, and finally combining them.

Even with these incremental stages, due to the massive
branching factor a naive implementation of this search would
take a significant amount of time for even moderately large
networks. Our implementation makes use of several admis-
sible heuristics to prune portions of the search space.

To address the tradeoff between the cost of executing a
vector comparator and the cost of alignment instructions,
the above search is repeated for smaller values of k, and the
final cost becomes a combination of the number of align-
ment instructions and a penalty for including fewer scalar
comparators than is possible.

Intuitively this attempts to select the sequence with the
best ratio of number of alignments produced versus instruc-

4The partitioning of low and high elements may be dropped
if relabelling is performed when applying the vector com-
parator, based on whether the scalar comparator is inverted.

tions required, with an additional bias towards producing
more alignments since more alignments will reduce the total
number of comparison steps.

When all appropriate values of k have been searched, the
choice of how many comparators to include is made greedily
and is not revisited. The vector comparator is then applied
and the search continues using the remaining comparators.

4.1.4 Writing Values Back to Memory
After the final comparator has been applied the elements

are sorted but are not located within the vector registers in
an order in which they can be written back to memory. A
similar iterative-deepening search now finds an instruction
sequence to obtain the correct alignment.

4.2 Example Search
The sorting network shown in Fig. 1 will be used to il-

lustrate the sequence of events in the alignment algorithm
for single-pass in-register sorting. This network has four ele-
ments are requires the execution of five comparison instruc-
tions. An in-register sorting instance of this network using
the x86-64 SSE(2) SIMD machinery is shown in Fig. 4. The
instructions used in this instance are described in Table 1.5

The sorting network of Fig. 1 produces the following par-
titions: P1 = {COMP (a, c), COMP (b, d)}; P2 =
{COMP (a, b), COMP (c, d)}; and P3 = {COMP (b, c)}.

First the elements of XMM0 are assigned the four elements
to be sorted (a, b, c, and d). Then a low-cost sequence of
vector instructions is searched for to align a with c and b with
d. Here this may be done with a single movlhps instruction
in step 1. This allows for executing the COMP (a, c) and
COMP (b, d) comparators in parallel (step 2)6. After this
comparison the value stored in element b is smaller than the
value stored in element d, and the value stored in element a
is smaller than the value stored in element c.

In Fig. 4 a blank square represents a vector element that
contains an unknown value that is not relevant to the sorting
process. For instance, after the comparison in step 2 the
values that were in elements b and a in the low-order words
of XMM0 may have moved. As they are not part of the sorting
process they are now represented by blank squares. If the
inputs to the sorting network are a = 7, b = 2, c = 5, and
d = 9, this comparison would leave the highest-order words
of XMM0 and XMM1 intact and would swap the contents of the
second highest-order words. It may also swap the values in
the two low-order words of these registers, but the contents
of those words are irrelevant.

Now the two comparators in partition P2 are candidates
for the next vector alignment. The initial state for this
search is the position of the elements in the vectors at the
end of step 2. In the example in Fig. 4 a sequence of two
instructions, movhlps and shufps, is selected to align ele-
ments d with c and b with a. Thus both comparators of P2

can be executed in parallel in step 5.
A penultimate search is performed to execute the last

comparator, resulting in steps 6 and 7, at which point the

5Other SSE2 instructions frequently used for data move-
ment but not included in this example are: pshufd,
unpckhps, and unpcklps.
6For SSE2, a comparator between the contents of two reg-
isters Ra and Rb requires a temporary register T and the
execution of three instructions: movaps T, Ra; minps Ra,
Rb; and maxps Rb, T.



Step 2:

XMM1

XMM2

XMM3

XMM0

movhlps xmm1, xmm0 COMP(0,1)

COMP(0, 1)

movhlps xmm2, xmm1

XMM0

XMM1

XMM2

XMM3

c

XMM0

XMM1

XMM2

XMM3

movhlps xmm0, xmm1

shufps xmm0, xmm2, 0x13

XMM0

XMM1

XMM2

XMM3

shufps xmm1, xmm0, 0x2d

main memory

Step 12:
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c b
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d
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Step 3:
shufps xmm1, xmm0, 0x88
Step 4: Step 5:

Step 6:
movaps xmm3, xmm0
Step 7:

COMP(2, 3)
Step 8:

Step 9: Step 10:
movlhps xmm1, xmm3

Step 11:

movaps [rsi+(0)], xmm1

Step 1:

Figure 4: Instruction sequence to apply an in-register 4-element sorting network in an x86-64 architecture.
The associated sorting network is shown in Fig. 1.

element values are sorted. Finally, the elements must be
properly positioned within one register (in this case XMM1)
before the sorted sequence can be written back to memory
with a movaps instruction.

The vectorization of a sorting network only needs to be
done once for each sorting network and for each architec-
ture’s set of vector instructions. Thus all the searches de-
scribed above should be performed once and offline. The
resulting schedule can then be used whenever a sequence of
the corresponding size needs to be sorted.

5. SORTING KEY-POINTER PAIRS
So far this paper addresses the problem of sorting an ar-

ray of floating-point values. A more general problem is
that of sorting an array of data structures. Consider the
case where each structure has a well-defined floating-point
key value. Efficient algorithms sort an array of key-pointer
pairs to avoid moving large data structures. This section
describes an extension of the vectorized sorting networks to
handle key-pointer pairs with floating-point keys and a byte
sequence representing the pointer.

The solution to the key-pointer sorting problem consists
of storing the keys and the pointers into separate SIMD
vectors. If keys and pointers appear interleaved in memory
then they must be “swizzled” when loaded into the SIMD
vectors and this swizzling must be reversed when storing
the sorted result to memory. With the keys and pointers
in separate vectors, the standard sorting network solution is

implemented for the keys, while the pointers move in syn-
chrony with the key movements.

This is accomplished by using a bitmask to apply the
“swap” operations only to selected elements in the pointer
vector. Specifically, those elements which correspond to
changes in the key vector after applying the key comparator.
The construction of this bitmask is supported in architec-
tures that support SIMD operations. For instance, this may
be done in a straightforward manner using the AltiVec vsel

instruction, while x86-64 architectures must make use of a
sequence of boolean operations to mask and combine regis-
ters as shown in Fig. 5.

asm("pshufd xmm15, xmm1, 0xE4"); // xmm15 := copy of key_a
asm("minps xmm1, xmm2"); // key_a’ := min(key_a, key_b)
asm("maxps xmm2, xmm15"); // key_b’ := max(key_b, key_a)

asm("cmpps xmm15, xmm1, 4"); // xmm15 := key_a’ != key_a
asm("pshufd xmm14, xmm3, 0xE4"); // xmm14 := copy of ptr_a
asm("xorps xmm14, xmm4"); // q := ptr_a XOR ptr_b
asm("andps xmm15, xmm14") // q := q AND bitmask
asm("xorps xmm3, xmm15"); // ptr_a := ptr_a XOR q
asm("xorps xmm4, xmm15"); // ptr_b := ptr_b XOR q

Figure 5: Key-pointer comparator using SSE2 as-
sembly instructions. Vector registers xmm1 and
xmm2 hold keys, registers xmm3 and xmm4 hold the
respective pointers. Registers xmm14 and xmm15
are used as temporary storage.



6. VECTORIZING D-HEAPS
d-heaps are a straightforward generalization of binary heaps

where each internal node has d children instead of 2. Increas-
ing the value of d results in a shallower tree at the expense of
requiring delete-min operations to perform more work when
searching for the child node with minimum key value. For
concreteness assume min-heaps.

Assume an implicit heap layout, with all elements stored
in a contiguous array. The root node is located at index 0,
and the nth child of a node at index i is located at index
i ∗ d + n, with 1 ≤ n ≤ d. The parent of any node may
be similarly computed by dividing its index-1 by d. In [9,
10] LaMarca and Ladner investigate the performance of tra-
ditional implicit heaps and how they are affected by data
caches. They suggest increasing the branching factor d as
well as the data alignment techniques described here and
used in our implementation.

We present here a method for increasing d-heap perfor-
mance by using SIMD vector instructions to quickly com-
pute the index of the child with minimum key value. This
computation is used within heapify-down operations.

This method is similar to the one used for sorting key-
pointer pairs in that it relies on the synchronous movement
of values within a second set of registers. In this situation
the values moving in synchrony are the indices of each child
node (specifically the offset from the first child, such that
the values range from 0 to d − 1).

For simplicity, assume that d is a multiple of k, the num-
ber of elements in a SIMD vector. This assumption also
aligns a node’s children on both cache-line and SIMD vector
boundaries. This alignment requires that the root node be
located at the end of a cache-line such that its first child is
at the beginning of the next cache-line.

If the nodes in the heap are key-pointer pairs, rather than
just keys, loading into a SIMD vector may require additional
swizzle instructions to interleave the keys from 2 separate
vector loads. Only the key values are required; the associ-
ated pointer data may be discarded.

When a block of keys is loaded into a SIMD vector, the in-
dex offsets for those keys are loaded into another vector from
a constant and static array containing values 0, 1, . . . , d− 1.
The synchronous movement of the index offsets is imple-
mented in the same manner as the movement of the pointer
values in Section 5. The loading and movement of these
offsets is omitted from the algorithm description for brevity.

The algorithm proceeds as follows: (1) load the first k keys
into one SIMD vector, call this register A; (2) while unread
keys remain, read the next k keys into a SIMD vector B
and set A := min(A, B); (3) finally, repeatedly compare
one half of the values in A against the other half until only
one element remains; (4) return the index of this element. If
the node being examined does not have d children (this may
only occur at last internal heap node) then the vectorized
search is replaced by a straightforward linear scan.

7. EXPERIMENTAL EVALUATION

7.1 Sorting Algorithms
The three versions of vectorized sorting described in this

paper were evaluated by integrating them as the low-level
algorithms for DTSL’s quicksort. The main findings of this
experimental evaluation are:

• Significant reductions in execution time are possible
for sorting on the Pentium 4, with lesser reductions on
the G5 and Core 2 Duo, depending on array size.

• The integration of SIMD-based sorting algorithms to
sort sequences smaller than a fixed threshold improves
the performance of DTSL when sorting 51200-element
arrays of floating-point key-pointer pairs by up to 22%.

• This performance improvement is due not only to a
reduction in the number of loads, stores, and branch
instructions, but also to a significant decrease in the
number of branch mispredictions.

7.1.1 Integrating Algorithms into DTSL

Table 2: Algorithms studied
Algorithm Description
MSortX - Y MSort algorithm with X streams ap-

plied at Y threshold.
ISortX - Y ISort algorithm with X streams applied

at Y threshold.
RSort - Y One-pass register sort applied at Y

threshold.
DTSL - Y Original DTSL quicksort with SN ap-

plied at Y threshold.
Ins - Y Standard insertion sort applied at Y

threshold.
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Figure 6: Reduction of branch mispredictions on a
64-bit 3.40 GHz Pentium 4.

The SIMD-based algorithms presented in this paper were
integrated in the quicksort implementation of DTSL. The
DTSL’s quicksort is not recursive. Instead it maintains an
in-function stack of current partitions. When the number
of elements to be sorted drops below a threshold, DTSL
switches to a low-level sorting algorithm. The version of
quicksort that produces the best, or close the best, perfor-
mance when sorting elements in DTSL uses a scalar sort-
ing network SN as the low-level algorithm [11]. The single-
element comparators in this sorting network are written in
the C language and use branch instructions to condition-
ally perform element interchanges. The default threshold to
switch to this low-level algorithm is sixteen elements. This
version of DTSL’s quicksort is the baseline for the compara-
tive performance study in this paper. Table 2 lists the algo-
rithms used in this performance evaluation. The standard
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Figure 7: Quicksort cycle counts relative to DTSL
on a 64-bit 3.40 GHz Pentium 4.
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Figure 8: Quicksort wall-clock times relative to
DTSL on a 2.7 GHz Power Mac G5.

insertion-sort algorithm, Ins - Y , is included to provide a
familiar comparison point.

7.1.2 Wall-Clock Execution Time
Experiments were performed on a 64-bit 3.4 GHz Pen-

tium 4, an IBM 2.7 GHz PowerPC G5, and a 3.2 GHz Core 2
Duo E6400. Figs. 7, 8, 9 show the relative wall-clock exe-
cution times for the sorting of a vector of key-pointer pairs
in relation to the DTSL baseline. Each bar represents the
average runtime over 5000 trials on uniformly distributed
keys relative to the DTSL baseline. The large thresholds
for MSort, ISort, and RSort, extending beyond what can
concurrently fit within the physical vector registers, are the
result of the register spilling mentioned in Sec. 4.

Time reductions for the Pentium 4 are quite strong for a
range of array sizes, with the greatest reduction of 58% for
200 elements, where all are immediately sorted by MSort4 -

253. RSort - 96 becomes the better alternative for larger
arrays, with a time reduction of 22% for 51200 elements.

Large time reductions on the Core 2 Duo and the G5 are
limited to small array sizes. For 200 elements MSort8 - 509

has a respective time reduction of 43% and 33%. For the
largest array RSort - 32 achieves only a 7% and 4% relative
improvement on these architectures.

As seen in Fig. 6 the number of branch mispredictions for
each algorithm tends to decrease as the threshold becomes
larger, reflecting the reduced number (or lack) of branch in-
structions involved. However larger RSort thresholds require
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Figure 9: Quicksort cycle counts relative to DTSL
on a 3.2 GHz Core 2 Duo E6400.

additional functions, much more so than for the two-pass al-
gorithms. These functions grow proportional to the size of
their respective sorting networks and include alignment op-
erations. The size of some of the generated object files spans
to several megabytes. The first-pass sorting instructions for
MSort and ISort do not require nearly as much space.

7.1.3 Low-Level Algorithm Timing
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Figure 10: Low-level algorithm cycle counts on a
64-bit 3.40 GHz Pentium 4.

Fig. 10 shows the number of clock cycles, obtained through
the PAPI library, required by each algorithm as the num-
ber of elements to be sorted varies to the maximum (as
implemented) for each algorithm. Each point in the graph
is the average over 10000 trials with uniformly distributed
keys. This graph shows that RSort is significantly superior
to both the SN branch-intensive algorithm and standard in-
sertion sort, and confirms that MSort is also an excellent
choice for the sorting of short sequences.

The performance of RSort on the G5 and Core 2 is roughly
the same as that of the Pentium 4 results shown in Fig. 10
for sequences smaller than 32 elements.

A detailed study of other performance counters showed
a correlation between reduction in the number of branches,
loads, and stores executed and the relative performance of
the algorithms.



7.2 D-Heaps
The performance of d-heaps was investigated by compar-

ing highly optimized versions with different branching fac-
tors against SIMD variants where vector instructions were
used during heapify-down operations. The main findings are
a significant reduction in cycle count for larger heaps, when
comparing the best SIMD d-heap against the best non-SIMD
d-heap.
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Figure 12: Ratio of the best SIMD heap times rela-
tive to best non-SIMD heap times from Fig. 11.

All source code was written in C++ and was compiled
using gcc 3.4.6, 4.0.0, and 4.1.1 on the Pentium 4, G5, and
Core 2 Duo respectively, with full optimizations and loop
unrolling. The branching factor d was known at compile
time. The heap itself was aligned in memory such that the
root node’s children began on a cache-line boundary. A
consequence is that all children are aligned for SIMD vec-
tor accesses. The binary heap had further optimized index
computations.

As with the previous experiments, heap elements are key-
pointer pairs. Heap have sizes which are powers of 2, from
24 to 226, and are initialized by inserting n elements, where
n is the maximum size of the heap. Keys for initial elements
are drawn uniformly from 0, . . . , n − 1.

10,000,000 iterations based on the Hold model as described
in [7] were then performed. Each iteration consists of a call
to delete-min followed by insert-element. The key of the new
element is equal to the key of element last removed plus a
value drawn uniformly from 0, . . . , n − 1.

As seen in Fig. 11, when the heap size becomes 218 there
is a crossover between values of d in the performance of
traditional heaps. For small heaps d = 2 performs better,
while d = 8 or d = 16 performs better for larger heaps,
resulting from better locality of each node’s children as well
as decreased heap depth.

All graphs in Fig. 11 show only the best or near-best val-
ues of d for clarity. Fig. 12 shows the ratio of execution
times between the best SIMD heap at each size versus the
best traditional heap. For the Pentium 4, G5, and Core 2
Duo, the SIMD heaps have an average reduction in cycles of
31%, 18%, and 15% respectively, with the largest reductions
occurring at the 218 crossover point for the Pentium 4 and
G5, and at 220 for the Core 2.

8. RELATED WORK
The implementation of sorting in large-scale vector ma-

chines has been extensively studied. Siegel produced one
of the earliest descriptions of how to implement Batcher’s
sorting network, also known as bitonic sorting, in SIMD ma-

chines [17]. Bitton et al. provides an extensive description of
such implementations [3]. The new contribution of this pa-
per is to demonstrate how the well-known sorting networks
can be implemented in the SIMD machinery of contempo-
rary processors and to indicate that code generators can
instance such implementations to improve the performance
of recursive sorting algorithms and heaps.

The idea of making better use of register resources within
the processor to reduce the number of load of stores, in our
case to put the SIMD resources to good use in sorting, is
also explored by Arge et al. [20]. Their idea of forming
cache-load-sized runs with quicksort is similar to our idea of
switching to SIMD-register-based sorting at an appropriate
threshold. The contrast is that we are also benefiting from
the SIMD machinery which allows more parallelism in the
execution and the elimination of branches while they use
the general-purpose registers and the storage available at a
cache line.

Recently compilers have been used more often to improve
the code generation for SIMD machinery in contemporary
processors. Ren et al.’s approach of using an optimization
algorithm to improve the data permutations is more general
than our specific iterative-deepening search [15]. Nuzman et
al. describes a compiler framework to generate vectorized
code for interleaved data [13].

The relationship between the SIMD-register-based sort-
ing algorithms presented in this paper and the development
of DTSL is an orthogonal improvement to a library genera-
tor [11]. Li et al. focused on the dynamic identification of
the best sorting algorithm for a given input sequence [12].
They selected an efficient algorithm for the tail of their re-
cursive method. This paper offers a better solution for the
sorting of sequences that are small enough to benefit from
the use of the SIMD machinery. Similarly, we provide a
faster mechanism for selecting a minimum (maximum) child
in the implicit d-heaps studied by LaMarca and Ladner [9,
10].

Our SIMD-register-based sorting could also improve parti-
tion based sorting methods. For instance, Shen and Ding use
an adaptive partitioning scheme to attempt to evenly parti-
tion data into chunks smaller than cache size and then use
quicksort or insertion sort to finish sorting each bucket [16].
This paper offers a better solution for the sorting of se-
quences that are small enough to benefit from the use of
the SIMD machinery.

9. CONCLUSIONS
This paper proposes the use of the SIMD machinery pro-

vided in modern processors to improve the performance of
recursion tails. The idea is that whenever the number of el-
ements to be processed fits within the SIMD registers avail-
able in the processor, these values should be loaded once
into the SIMD registers and then an efficient SIMD execu-
tion should be used. While the feasibility of this idea was
demonstrated with the integration of a more efficient algo-
rithm for sorting short sequences into DTSL, the idea should
be generally applicable to recursive computation.

Once efficient low-level SIMD algorithms are crafted, they
can be generated into a solution database to be instantiated
by code generators into optimized libraries. Alternatively,
if a suitable identification algorithm is created, the compiler
should be able to integrate these solutions directly into gen-
eral programs.
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Figure 11: Cycle count / wall-clock time for different heap sizes and values of d on a: (a) 64-bit 3.40 GHz
Pentium 4; (b) 2.7 GHz Power Mac G5; (c) 3.20 GHz Core 2 Duo E6400. 107 insertions and deletions.
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