
The MAP3S Static-and-Regular Mesh Simulation
and Wavefront Parallel-Programming Patterns

Robert Niewiadomski, José Nelson Amaral, Duane Szafron
{niewiado, amaral, duane}@cs.ualberta.ca

Department of Computing Science, University of Alberta
Edmonton, AB, Canada

Abstract— This paper presents the Simulation and Wavefront
parallel-programming patterns of the MAP3S pattern-based par-
allel programming system for distributed-memory environments.
Both patterns target iterative computations on static-and-regular
meshes. In addition to providing performance-oriented features,
such as asynchronous communication and distribution of the
computational workload that is tailored to fit the computation,
the patterns also provide usability-oriented features, such as
direct mesh-access, mesh memory-footprint distribution, and a
versatile data-dependency specification scripting-language. Par-
allel programs developed using MAP3S achieve significant perfor-
mance gains and capability enhancements on both low-end and
high-end interconnect-equipped distributed-memory systems.

I. INTRODUCTION

Parallel computing is an important tool in many areas
of scientific research. Perhaps nowhere is this more evident
than in the study of physical phenomena and the design of
complex engineered systems. Examples include aeronautics,
astronomy, biology and meteorology. In general, parallel com-
puting facilitates the simulation of physical phenomena whose
investigation by other means is infeasible or too expensive.

The processing and memory demands of parallel scientific
computations continue to increase. Consequently, scientists
and engineers have turned to distributed-memory systems
for their parallel computations, because such systems offer
large and scalable aggregate-processing and -memory capac-
ities, while being affordable. Unfortunately, the complexity
of distributed-memory systems makes them difficult to pro-
gram. In practice, developing performance-efficient parallel
programs for distributed-memory systems is a daunting task
that requires large amounts of time, effort and expertise.

A pattern-based parallel programming system can reduce
the programming complexity of distributed-memory systems.
A parallel-programming pattern encapsulates the communica-
tion and synchronization of a parallel program. The obser-
vation that several seemingly different scientific applications
share a common computation-communication-synchronization
pattern is the key insight that motivates the development
of pattern-based parallel programming. This programming
model decomposes the complexity of parallel application
development across individuals or groups who play three roles:
engine designer, pattern designer, and application developer.
The amount of required technical expertise in programming
distributed-memory systems decreases across the three roles,
while the amount of problem domain knowledge increases,

as illustrated in Figure1. Application developers leverage the
parallel/distributed expertise of the developers whose role is
earlier in the chain so that they can focus on the application-
domain specific nature of tasks rather than the details of how
to implement the necessary parallel/distributed computations.
Since this process is designed to aid application developers,
they are referred to as “users”.1 A user selects an appropriate
parallel-computation pattern to generate an application pro-
gram and adapts it by writing the actual sequential computa-
tion that takes place on each processing node. The coordination
of activities between processing nodes — communication and
synchronization — is handled by the engine code according
to the specifications recorded by the pattern designer.

Fig. 1. A conceptual breakdown of the relative amounts of technical expertise
and problem-domain knowledge for each of the three roles in the development
process using a pattern-based parallel-programming system.

This paper presents two new parallel-programming patterns
in the MPI/C Advanced Pattern-based Parallel Programming
System (MAP3S): the Simulation pattern and the Wavefront
pattern. Both patterns target iterative computations on static-
and-regular meshes. The mesh is static in the sense that its
dimensions are fixed, and regular in the sense that it has an
element for each element in the volume of the mesh. The
Simulation pattern targets an iterative computation where the
current iteration uses the values computed in the previous
iteration as input. Examples of such iterative computations are
found among cellular-automata algorithms such as Conway’s
Game of Life. In the Wavefront pattern, a function is computed
at each element in a mesh. However, the computation of
the value of an element uses the values of certain other
mesh elements. Therefore, the computation is done in regions,
where the computation for a region uses the values at other
regions as input. Examples of Wavefront computations are
found in dynamic-programming algorithms such as the Matrix
Chain Multiplication algorithm. MAP3S provides advanced

1The term “end-user” refers to the user of the application being developed.

performance-oriented features, such as asynchronous com-
munication, and tailored distribution of the computational
workload. MAP3S also features powerful usability-oriented
features, such as direct mesh-access, automatic distribution of
the mesh memory-footprint, and a scripting language for the
specification of data-dependencies. The main contributions of
this paper are:

- A demonstration that generative pattern systems can be
implemented effectively using the combination of MPI
and C.

- A simple, yet very expressive, data-dependency-
specification language that frees the pattern user from
being limited to using pre-defined data-dependencies.

- Two very reasonable patterns and the possibility of
reusing the engine code for the creation of more patterns.
Moreover, the development of the engine code is inde-
pendent of the patterns: the engine can be swapped for a
better engine without changing the patterns.

- An experimental evaluation demonstrating that MAP3S is
successful not only at producing performance-gains, but
also at producing capability-gains by way distributing the
memory footprint of the computation, thereby allowing
for the handling of computations that are limited by space
as much as by time.

The remainder of this paper is organized as follows.
Section II, presents a pattern-user oriented overview of the
patterns. Section III presents a pattern-developer oriented
overview of the patterns. Section IV presents an experimental
evaluation of the patterns. Section V presents a summary of
related work. Section VI presents the conclusions of this paper.

II. THE PATTERN-USER PERSPECTIVE

This section describes the use, structure, and main features
of the Wavefront and Simulation patterns.

A. Using the patterns

The use of a pattern involves the execution of a pattern-
instance generator. The generator reads a pattern-instance
specification-file with parameters such as the identity of the
pattern, the number of dimensions of the mesh, and the data
dependencies governing the computation.

An instance of a pattern is a collection of source-code files
organized into the categories of user-side code and engine-
side code. The engine-side code carries out the parallel com-
putation defined in the user-side code. The pattern-instance
generator generates the engine-side code and a template
code for the user-side. This template code contains function
and data-structure declarations. The user defines the parallel
computation by providing definitions for the functions and
data-structures whose declarations are in the user-side code
templates.

B. The Simulation pattern user-side code

The user-side code of an instance of the Simulation pattern
is based on five phases of computation: prelude, prologue,

(a) Sequential prologue and se-
quential epilogue.

(b) Parallel prologue and paral-
lel epilogue.

Fig. 2. The Simulation pattern on a distributed-memory system consisting
of three nodes.

(a) Sequential prologue and se-
quential epilogue.

(b) Parallel prologue and paral-
lel epilogue.

Fig. 3. The Wavefront pattern on a distributed-memory system consisting
of three nodes.

body-local, body-global and epilogue. Each phase has a cor-
responding function in the user-side code.

The prelude executes on a single node to determine the size
of the mesh along each dimension. The prologue computes
the first instance of the mesh. As shown in Figure 2, the
prologue may be executed on a single node or on all nodes
in parallel. The body-local, executed in parallel, computes the
next instance of the mesh based on portions of the previous
instance of the mesh. The body-global is executed on a single
node to compute the termination condition. The epilogue uses
the last instance of the mesh to produce the application’s
output. The epilogue can be executed on a single node or
in parallel. Figure 4 shows the template declarations of user-
side functions corresponding to the five phases of computation.
The parameters in these declarations highlight the ability to
forward information from one phase to another.

The mesh is logically partitioned into mesh blocks. A mesh
block is an n-dimensional sub-mesh, where n is the number
of dimensions of the mesh. The size of a mesh-block along
each dimension is uniform across all dimensions. Mesh blocks
located at the boundaries of the mesh may be smaller due to

2

Action_t Prelude(i32_t argumentCount, i8_t **argument, MeshDescriptor_t *meshDescriptor, PreludeData_t *preludeData);

Action_t Prologue(MeshElement_t **firstMesh, MeshDescriptor_t meshDescriptor, PreludeData_t *preludeData,
PrologueData_t *prologueData);

Action_t BodyLocal(MeshElement_t **currentMesh, MeshElement_t **previousMesh, MeshDescriptor_t meshDescriptor,
MeshBlockDescriptor_t meshBlockDescriptor, PreludeData_t *preludeData, PrologueData_t *prologueData,
BodyGlobalData_t *bodyGlobalData, BodyLocalData_t *bodyLocalData, i32_t iteration);

Action_t BodyGlobal(MeshDescriptor_t meshDescriptor, i32_t meshBlockCount, MeshBlockDescriptor_t *meshBlockDescriptor,
BodyLocalData_t *bodyLocalData, PreludeData_t *preludeData, PrologueData_t *prologueData,
BodyGlobalData_t *bodyGlobalData, i32_t iteration);

Action_t Epilogue(MeshElement_t **lastMesh, MeshDescriptor_t meshDescriptor, PreludeData_t *preludeData,
PrologueData_t *prologueData, BodyGlobalData_t *bodyGlobalData, i32_t lastIteration);

Fig. 4. User-side functions for the Simulation pattern using a two-dimensional mesh, sequential prologue, sequential epilogue and dense mesh-storage. Use of
a parallel prologue requires the arguments i32 t MeshBlockCount and MeshBlockDescriptor t *meshBlockDescriptor in the Prologue function. Use
of a parallel Epilogue also requires these arguments. Use of sparse mesh-storage requires the argument MeshElement t ** to change to MeshElement t
****.

truncation. Each node is assigned one or more mesh blocks.
The degree of parallelism achieved is limited by the data
dependencies that govern the computation.

C. The Wavefront pattern user-side code

The single body phase in the Wavefront pattern (see Fig-
ure 3) executes on all nodes in parallel to compute values for
different regions of the mesh. Each node has access to the re-
gions of the mesh that it uses. Figure 5 shows the declarations
of the user-side functions for this pattern. Information is passed
from one phase to another via parameters. The computation is
carried out at the granularity of a mesh block.

D. Data dependencies

The mesh computations are governed by a set of data
dependencies. For simplicity, in the discussion that follows,
“element” refers to the value of a mesh element. The com-
putation of an element cannot proceed until all the elements
that it uses are available. In the Simulation pattern, successive
instances of the mesh are computed. The computation of the
next instance does not proceed before the current instance
is finished. The computation of elements in each instance
can use any elements from the previous instance, but none
from the current one. Therefore, the order in which elements
are computed during a particular iteration does not matter.
However, in the Wavefront pattern, only a single instance of
the mesh is computed. Elements in the single instance of the
mesh may depend on other elements in this instance. Therefore
data dependencies impose a partial-order constraint on the
computation of the elements.

In MAP3S the pattern user specifies the set of data-
dependencies in a pattern-instance specification file. Such a
specification should be straightforward to read/write and suf-
ficiently expressive to permit the specification of both conven-
tional and non-conventional data-dependencies. To meet this
criterion, MAP3S implements a language based on conditional
shape-lists for data-dependency specification.

A conditional shape-list consists of two parts: the condition
and the shape list. The condition is a C language expression
that evaluates to true or false. The shape list is a list of
shapes defined by shape descriptors. A shape descriptor for
an n-dimensional mesh consists of n pairs of values, each

{y > x , {([0, x - 1], [y, y]), ([x, x], [0, x - 1]),
([x, x], [x, x])}};

{y <= x, {([0, y - 1], [y, y]), ([x, x], [0, y - 1])}};

Fig. 6. Data dependencies of the Lower/Upper Matrix Decomposition
problem as specified using conditional shape-lists.

specifying a range in dimension i, 0 ≤ i < n. For instance,
if the mesh has two dimensions then each shape descriptor
is of the form ([x0, x1], [y0, y1]). Such a descriptor defines a
rectangular area of the mesh limited by the specified range-
boundaries. Each boundary is specified by a C expression
that evaluates to an integer. The C expressions of conditions
and shape descriptors can use integer variables called mesh-
element-position variables, which describe the position of a
mesh element. For instance, if the mesh has two dimensions,
then the C expressions can use the mesh-element-position
variables x and y, for the x-axis and y-axis positions of the
mesh element. The C expressions can also use integer variables
describing the sizes of the mesh along each of its dimensions.
For a two-dimensional mesh, the variables maxX and maxY can
be used.

A conditional shape-list defines the set of data dependencies
for the computation as follows. The set of mesh elements that
are used in the computation of a mesh element p is obtained by
replacing the coordinates of p for the mesh-element-position
variables in the C expressions of the conditional shape-list.
Whenever a condition evaluates to true, the computation of
p depends on all of the elements specified by its shape
descriptors.

Conditional shape-lists can express non-trivial sets of data
dependencies. For instance, the Lower/Upper Matrix Decom-
position problem is solved using a dynamic-programming
algorithm that involves a square two-dimensional mesh and the
following set of data dependencies. Given two mesh elements
e = (x, y) and e′ = (x′, y′), if e is at or above the diagonal
of the mesh, then the computation of e uses: every element
e′ where 0 ≤ x′ ≤ y − 1 and y′ = y, and every element e′

where x′ = x and 0 ≤ y′ ≤ y − 1. If e is below the diagonal
of the mesh, e depends on: every element e where x′ = x and
y′ = x, every element e′ where 0 ≤ x′ ≤ x−1 and y′ = y, and
every element e′ where x′ = x and 0 ≤ y′ ≤ x − 1. Figure 6
shows how this set of data-dependencies can be expressed
using conditional shape-lists.

3

Action_t Prelude(i32_t argumentCount, i8_t **argument, MeshDescriptor_t *meshDescriptor, PreludeData_t *preludeData);

Action_t Prologue(MeshElement_t **mesh, MeshDescriptor_t meshDescriptor, PreludeData_t *preludeData,
PrologueData_t *prologueData);

Action_t Body(MeshElement_t **mesh, MeshDescriptor_t meshDescriptor, MeshBlockDescriptor_t meshBlockDescriptor,
PreludeData_t *preludeData, PrologueData_t *prologueData, BodyData_t *bodyLocalData);

Action_t Epilogue(MeshElement_t **mesh, MeshDescriptor_t meshDescriptor, PreludeData_t *preludeData,
PrologueData_t *prologueData);

Fig. 5. User-side functions for the Wavefront pattern using a dense two-dimensional mesh, sequential prologue, sequential epilogue and dense mesh-storage.
Use of a parallel Prologue requires the arguments i32 t MeshBlockCount and MeshBlockDescriptor t *meshBlockDescriptor. Use of a parallel
Epilogue also requires these arguments. Use of sparse mesh-storage requires the argument MeshElement t ** to change to MeshElement t ****.

MAP3S uses element-wise data-dependencies to compute
data dependencies at the mesh-block granularity. The compu-
tation of a mesh block does not proceed until the computation
of all the blocks that it uses is finished. The conversion of
element-wise dependencies to block-level dependencies may
generate a cycle in the block-level data-dependency graph
which would make it impossible for a schedule to be gen-
erated. The engine-side code detects cyclic dependencies and
generates an error message. Despite the potential for cyclic
dependencies, the mesh computations that are targeted by the
Wavefront pattern are unlikely to feature cyclic dependencies.

E. Mesh representation, access and memory-footprint distri-
bution

MAP3S offers two mesh-representations: dense mesh-
storage and sparse mesh-storage. The dense mesh-storage res-
perentation is a conventional mesh-representation. The sparse
mesh-storage representation introduces a level of abstraction
that partitions the mesh into sub-meshes corresponding to
mesh blocks. The indirection required to access a sparse
mesh-storage representation involves the use of simple bit
operation, namely bit-shifts and bit-masks. For convenience,
the user has access to a macro function to access sparse meshes
that hides the bit operations.2 The motivation behind offering
the two mesh-representations is that the dense mesh-storage
representation is familiar to most users, while the sparse
mesh-storage representation affords advanced users with the
opportunity to potentially improve data-reference locality and
to benefit from the distribution of the mesh memory-footprint
among the nodes of the system.

MAP3S provides the user-side code with direct mesh-
access. This differs from the approach commonly employed
in other pattern-based parallel-programming systems, whereby
the user-side code uses indirect mesh-access. With indirect
mesh-access, the user-side code accesses a dedicated data-
structure representing the sub-mesh and a dedicated data-
structure representing other regions of the mesh that are
required to carry out the computation. The difficulty with
indirect mesh-access is in the expression of the computation
for each element of the mesh. If the user starts with a
sequential version of the mesh computation, the conversion
of the code to access indirect mesh-access data-structures may
be non-trivial and error-prone, thus hindering productivity. The

2In the future, MAP3S is likely to provide support for the C++ program-
ming language, in which case the usability of sparse mesh-storage would
improve with operator overloading.

more complex data-structures may also reduce the success of
compiler optimizations and prevent vectorization. In contrast,
with direct mesh-access each mesh element can be directly
referenced by the user-side code.

Direct mesh-access has the following semantics. When
computing elements of a mesh block, the user-side code can
read any element from the current mesh-block and from mesh
blocks that contain elements that it uses, as specified by the
pattern data-dependencies. It can only write to elements of
the current mesh-block. When the computation of a mesh
block is scheduled, all elements that the mesh block needs
are guaranteed to be up to date.

In the mesh computations that are targeted by MAP3S
the memory footprint of the computation can be as much
a limiting factor as the execution time. This is illustrated
by the Needleman-Wunsch dynamic-programming algorithm
for computing an optimal alignment of genetic sequences.
A sequential implementation of this algorithm finishes in a
few seconds on a contemporary workstation even when the
mesh occupies the entire memory. A similar scenario plays
out in cellular-automata algorithms where there is an inverse
relationship between the granularity of the simulation and the
size of the mesh. Moreover, the accuracy of simulation results
is often a function of granularity and, consequently, mesh size.
Thus, MAP3S implements automatic distribution of the mesh
memory-footprint when using sparse mesh-storage.

Distribution of the mesh memory-footprint allows the so-
lution of problems that are too large to fit in the memory
of a single workstation. The performance yielded by ex-
isting distributed-shared memory software packages, i.e. to
distribute the mesh memory-footprint, suffers because of large
communication-latencies. In contrast, MAP3S leverages data-
dependency information to produce an execution schedule for
the user-side code that effectively hides large communication-
latencies. The engine-side code constructs an asynchronous-
communication pipeline that is aware of data-dependency
relationships. This pipeline is not only proficient at hiding
communication latency in the presence of irregular data depen-
dencies but also strives to minimize the size of communication
buffers.

III. THE PATTERN-DEVELOPER PERSPECTIVE

This section describes the execution of the engine-side
code, its distribution of the computational workload, and the
computation and communication schedule.

4

A. The execution of the engine-side code

The execution of the engine-side code consists of two
phases: preprocessing and processing. During preprocessing,
the engine-side code:

1) obtains the size of the mesh along each of its dimensions
by executing Prelude;

2) processes the conditional shape-lists to determine data-
dependency relationships;

3) maps mesh blocks to nodes, based on the data-
dependency relationships;

4) creates a computation and communication schedule
to drive the execution of either BodyLocal and
BodyGlobal for the Simulation pattern, or Body for
the Wavefront pattern; and

5) allocates two instances of the mesh for the Simulation
pattern, or a single instance of the mesh for the Wave-
front pattern.

During processing, the engine-side code executes Prologue
and then it follows the computation and communication sched-
ule to execute either BodyLocal and BodyGlobal for the
Simulation pattern, or Body for the Wavefront pattern, and,
finally, it executes Epilogue.

B. Distribution of the computational workload

The engine-side code uses the data-dependency relation-
ships to assign each mesh block to a node. First each mesh
block b is assigned a label. In this assignment, b is said to
use a mesh block b′ if and only if one or more elements in
b uses one or more elements in b′. The assignment proceeds
as follows. If b does not use itself or any other mesh block
and is not used by itself or any other mesh blocks, then b is
a dead mesh-block. Otherwise, b is an alive mesh-block. An
alive mesh-block that does not use itself or any other mesh
block is an alive/non-computed mesh-block. Otherwise, it is
an alive/computed mesh-block.

In the Simulation pattern, the engine-side code evenly
partitions all alive/non-computed mesh-blocks according to
their positions in the mesh to obtain n sets of mesh blocks,
where n is the number of nodes. The engine-side code then
assigns all mesh blocks in the i-th set of mesh blocks to the
i-th node. This partitioning and assignment is repeated for all
alive/computed mesh-blocks. A similar approach is used in the
Wavefront pattern.

The labeling of mesh blocks saves time and space. Time
is saved since no computations are performed on dead mesh-
blocks and only a single computation is performed on each
alive non-computed mesh-block (during the prologue). Space
is saved because dead mesh-blocks do not need to be stored.
For example, the engine-side code is more efficient on the
Matrix Chain Multiplication problem, which is solved using
a dynamic-programming algorithm, because mesh elements
below the diagonal are not computed; mesh elements on the
diagonal are only initialized; and mesh elements above the
diagonal are computed. In expressing the data-dependencies
for this algorithm, the user can force mesh blocks below the

diagonal to be ignored completely. The user simply creates
conditionals that evaluate to false for mesh elements below
the diagonal.

C. The computation and communication schedule

The schedule is constructed using a mesh-block data-
dependence graph.3 In this directed acyclic graph, each vertex
represents an alive/computed mesh-block and each arc repre-
sents a data dependency, where the mesh block at the head
of the arc uses the mesh block at the tail. The graph can be
organized into distinct levels, where the topmost level contains
every vertex with no incoming arcs. Note that there must be
at least one such vertex, since the graph is finite and has
no cycles. The next level consists of every vertex that has
incoming arcs only from vertices in the top level. There must
be at least one node in each level because otherwise the graph
would have cycles. This level-assignment algorithm continues
until there are no more vertices to be placed in a level. The
algorithm must end since the graph is finite.

In the Simulation pattern, the schedule is built around a
while loop whose iteration count is infinite. In each iteration
of the while loop, the computation portion of the schedule
drives the engine-side code to execute BodyLocal on each
alive/computed mesh-block assigned to the local node, and
then calls BodyGlobal if the local node is the root machine.
Each iteration of the while loop performs communication
operations involving mesh-block data that is produced and
consumed by BodyLocal. These communication operations
comprise the asynchronous-communication pipeline of the
Simulation pattern. In each iteration i, the engine-side code
completes sending operations and receiving operations that it
initiated in iteration i − 1, and initiates sending operations
and receiving operations that it will complete in iteration
i + 1. In addition, each iteration of the while loop performs
communication operations involving control data as well as
auxiliary data produced and consumed by BodyLocal and
BodyGlobal.

In the Wavefront pattern, the schedule is built around a for
loop whose iteration count is equal to the number of levels of
the mesh-block data-dependence graph. Iteration i of the for
loop executes Body on each alive/computed mesh-block that
is at level i in the data-dependence graph and is assigned to
the local node. The communication schedule in the Wavefront
pattern uses a pipeline similar to that of the Simulation pattern.

IV. EXPERIMENTAL EVALUATION

This section assesses both the performance of applications
generated by MAP3S and MAP3S’ capability in solving larger
instances of problems than sequential implementations. The
main findings of this experimental evaluation are:

- With dense mesh-storage, on problems with suffi-
ciently large granularity of computation, MAP3S delivers
speedups in the range of ≈ 10 to ≈ 12 on a 16-node

3Because the computation of mesh elements in the Simulation pattern is
not constrained by data dependencies, the graph is only used to create a
communication schedule for the Simulation pattern.

5

(a) GOL on GigE system. (b) GOL on IB system. (c) RTA on GigE system. (d) RTA on IB system.

(e) LUMD on GigE system. (f) LUMD on IB system. (g) MSA on GigE system. (h) MSA on IB system.
Fig. 7. Performance on three instances of each problem on GigE and IB. Speedup over sequential implementation (y-axis) is plotted against the number of
nodes (x-axis).

system, and in the range of ≈ 10 to ≈ 43 on a 64-node
system.

- With sparse mesh-storage, MAP3S delivers speedups that
are smaller than those obtained with dense-mesh storage,
but does so while consuming between ≈ 20% to ≈ 50%
less memory on a per node basis, which allows for the
solving of problems that are too large to be solved using
the sequential implementation.

A. Software and hardware

Implementations for four applications were developed using
MAP3S: Room-Temperature Annealing (RTA) and Game-of-
Life (GOL) using the Simulation pattern; and Lower/Upper
Matrix Decomposition (LUMD) and the Multiple-Sequence
Alignment (MSA) using the Wavefront pattern. RTA features
floating-point aithmetic and has immediate-neighbor data de-
pendencies on a three-dimensional non-toroidal mesh. Both
GOL and MSA feature integer arithmetic and immediate-
neighbor data dependencies. GOL uses a two-dimensional
fully-toroidal mesh and MSA uses a three-dimensional non-
toroidal mesh. LUMD features floating-point arithmetic and
has non-trivial data-dependencies (see Figure 6) on a two-
dimensional non-toroidal mesh.

The sequential implementation of each application is
straightforward and representative of, what we believe to be,
average programming-skill. These sequential implementations
were the basis for the user-side code of each corresponding
MAP3S implementation.

Two systems are used for performance evaluation: GigE and
IB. GigE has 16 dual AMD Opteron 248 nodes with 5 GB
of RAM and a single-switch Gigabit Ethernet interconnect. IB
has 128 dual AMD Opteron 250 nodes with 2 GB of RAM
and a 4X SDR Infiniband interconnect with multiple-switches
in a fat-tree configuration. GCC at level -O3 is used on both

systems. GigE uses MPICH2 (MPI-2 standard) and IB uses
the HP implementation of the MPI-1 standard. GigE was used
in exclusive mode (no other activities in the machine). IB has
a shared-access policy. The experiments had dedicated access
up to 64 of the 128 nodes. Nonetheless, there was interconnect
contention from other activities during the parallel runs.

B. Performance

Figure 7 shows the speedups of parallel implementations
using a parallel prologue, a parallel epilogue and dense
mesh-storage, with 4096-element mesh blocks. Each curve
represents a different mesh size. With the exception of MSA,
MAP3S achieved consistent performance gains on both sys-
tems. In MSA the granularity of the computation is too small:
a sequential run of the largest MSA instance runs in less than
5 seconds.

The use of 4096-element mesh-blocks was effective for all
applications other than LUMD. In all applications the amount
of computation and communication on an element varies
depending on the element’s location in the mesh. However,
the magnitude of this variance is much larger in LUMD. The
solution is to decrease the mesh-block capacity for LUMD [4],
[1]. The use of a 1024-element mesh-block had no effect on
performance on the GigE system, but did increase performance
on the IB system, where it brought up the 32 node speedup to
≈ 20. A 256-element mesh-block decreased performance on
the GigE system but increased performance on the IB system,
where it brought up the 32 node speedup to ≈ 15.

All four applications are communication intensive, thus
coping with communication latency is important. Except for
LUMD, MAP3S achieves a balanced distribution of the com-
putational workload. Under these circumstances, discrepancies
between the wall-clock and process-clock times reliably as-
sesses successful latency hiding. In the experiments ran on

6

(a) GOL: 16,384 x 16,384. (b) RTA: 256 x 256 x 256. (c) LUMD: 8,192 x 8,192. (d) MSA: 512 x 512 x 512.
Fig. 8. Performance and capability on the largest instance of each problem on GigE. Speedup over sequential implementation (left y-axis) and percentage
of sequential implementation memory-consumption (right y-axis) is plotted against the number of nodes (x-axis).

the IB system, wall-clock time is, on average, less than ≈ 1%
larger than process-clock time. For the GigE system wall-clock
time is, on average, ≈ 28% larger than the process-clock time.
Thus, it appears that MAP3S is efficiently handling latency
on the IB system but not on the GigE system. It appears
that the culprit is the communication in the body-global
phase — a single gather and a single scatter. Removing this
communication, for investigation, in GOL and RTA renders
the discrepancies virtually non-existent.

The parallel implementations of GOL and RTA incur an
overhead for packing/unpacking mesh data. A sending node
examines a bit vector to identify the mesh data to be sent
and copies this data into a communication buffer. Conversely,
the receiving node unpacks the mesh data by examining a bit
vector to identify the received mesh data and copy the data
from a communication buffer to the mesh. In the future better
algorithms may reduce this communication overhead.

C. Capability

Two set of experiments study the capability of MAP3S
to solve large problem instances: large sequential and large
distributed. The large sequential experiments solve large
problem-instances that can be solved sequentially. The corre-
sponding parallel versions use parallel prologue, parallel epi-
logue and the sparse mesh-representation. These experiments
assess the effectiveness of MAP3S at distributing the memory
footprint of the comutation, and the performance overhead
incurred by distribution. The large parallel experiments solve
large problem-instances that cannot be solved sequentially
because of the limited memory capacity of a single node.
These experiments assess MAP3S capability to distribute the
memory footprint of the computation.

Both sets of experiments measure the maximum memory-
consumption on any node. They do so not as the maximum
memory-footprint of the program on any node, but as the
maximum system-memory-footprint of any node, which is the
sum of all memory footprints of all running programs on a
node, including the operating system. This approach provides
a more accurate comparison because in executing a parallel
program, the operating system requires communication buffers
and control data-structures that are not required when running
a sequential program.

Figure 8 presents the speedups and maximum memory-

consumption for the large sequential experiments. The maxi-
mum memory-consumption is reported as a percentage of the
maximum memory-consumption of the sequential implemen-
tation. MAP3S effectively distributes the memory footprint for
all problems. After certain number of nodes are used, the mem-
ory usage in each node stops decreasing. This phenomenon is
especially pronounced on LUMD because of the large number
of data dependencies — especially for elements at the lower-
right hand side of the mesh. Moreover, the distribution of the
memory footprint significantly improves performance on the
LUMD problem while significantly degrading performance on
the other problems. This performance improvement on the
LUMD problem appears to be due to better data-reference
locality. Indeed when we re-wrote the sequential version of
LUMD to use the sparse mesh-representation in combination
with mesh-block granularity processing, the performance of
the sequential version improved by a factor of ≈ 4.

The distribution of the mesh memory-footprint in the large
distributed experiments (see Figure 9) allows MAP3S to solve
instances of the GOL, RTA and MSA with a 32 GB mesh
memory-footprint, and an instance of LUMD with a 12
GB mesh memory-footprint. The GOL and MSA problems
were most amenable to mesh memory-footprint distribution,
followed by the RTA problem, and followed far behind by the
LUMD problem.

V. RELATED WORK

MAP3S is a derivative of another pattern-based parallel-
programming system called the Correct Object-Oriented
Pattern-Based Parallel Programming System (CO2P3S) [5].4
Like CO2P3S, MAP3S expresses parallelism using a template-
oriented approach [8]. The development of MAP3S was
spurred by the desire to address the principal limitations of
CO2P3S. The limitations in question are performance and
scalability. In particular, CO2P3S makes use of Java and
targets shared-memory systems. Although a later extension of
CO2P3S provides support for distributed-memory systems, the
resulting performance and scalability is limited [9]. For this
reason, MAP3S makes use of C, in combination with MPI, and
targets distributed-memory systems. In addition to striving to
address the performance and scalability limitations of CO2P3S,

4For an extensive listing of CO2P3S publications see
http://www.cs.ualberta.ca/ systems/cops/publications.html.

7

Problem Instance Global Mesh
Memory-Footprint (GB)

Maximum Local
Memory-Consumption (GB)

Process-Clock
Execution-Time (Hours)

Wall-Clock
Execution-Time (Hours)

GOL 131,072 x 131,072 32.0 3.0 19.2 19.9
RTA 1,024 x 1,024 x 1,024 32.0 4.4 12.9 17.7
LUMD 40,132 x 40,132 12.0 3.0 16.9 19.4
MSA 2,048 x 2,048 x 2,048 32.0 3.0 0.08 0.16

Fig. 9. Pushing the limits of mesh memory-footprint distribution on the GigE system using 16 nodes.

MAP3S strives to be more versatile with respect to supporting
a wider range of parallel computations without requiring the
involvement of the pattern-based parallel-programming system
developer. The data-dependency specification language is one
important example.

A preliminary investigation established that the combi-
nation of C and MPI enables MAP3S to support parallel-
programming patterns akin to those supported by CO2P3S [6].
This investigation was limited in scope. At that point, the
engine was primitive and performance was evaluated only on a
shared-memory system. Although the investigation addressed
issues concerning programmability, it did not deal with the
performance and capability issues.

It is difficult to assess the performance and capability
of MAP3S due to a lack of published comparable results.
For example, CO2P3S results are not comparable since the
performance and capability of CO2P3S was handicapped by its
use of Java, rather than C. However, we can point to the work
by Liu and Schmidt [4]. They describe performance gains
for hand-crafted solutions to problems that could be solved
using the Wavefront pattern, running on a Myrinet-based
interconnect. MAP3S generated code exhibits very similar
performance gains to their hand-coded implementations.

A distinguishing usability-oriented feature of MAP3S is its
use of a versatile scripting-language for data-dependency set
specification. This approach to data-dependency set specifi-
cation is more practical than the approach used in CO2P3S,
where the user had at their disposal several data-dependency
sets in a database. If the desired data-dependency set was not
in the database then the user could potentially derive it by
extending a data-dependency set in the database. Because the
degree to which the user could extend a data-dependency set
is limited, the user may ultimately have to write code to add
a new dependency or contact the CO2P3S development team
in order to requisition the new data-dependency. A similar set
of complications arises in less advanced bit-oriented methods,
such as in the case of htalib [2].

Cole points out that despite years of research, pattern-
based parallel programming systems continue to fail to become
mainstream parallel-programming tools [3]. To that extent,
Cole outlines a four-point manifesto that developers of pattern-
based parallel programming systems should strive for in order
to attain such mainstream status. Because each of the four
points in Cole’s manifesto is general, whether or not MAP3S
is successful in fulfilling the points is subjective. However, we
believe that MAP3S, in its current state, fulfills the principles
of each point to some extent, especially in the case of the point
concerning ‘payback’.

An alternative to using a pattern-based parallel-

programming system is to utilize a parallel programming
language, such as ZPL, or a parallel programming library,
such as htalib [2], [7]. Doing so typically involves leveraging
data-level parallelism in array operations, whether through
the use of language constructs, or relaying on automatic
parallelization. In general, when the computation is well
handled and recognized by the underlying system the resulting
performance can be equivalent to that of a hand-coded effort.

VI. CONCLUSIONS

This paper describes an important step in the development
of MAP3S. The Simulation and Wavefront patterns are very
widely used for the implementation of parallel applications.
The demonstration that a generative pattern systems using
MPI/C can produce significant performance- and capability-
gains in distributed-memory environments is very encourag-
ing. We suspect that the levels of performance and capability
reported in this paper are on par with very good hand-crafted
solutions for each problem. A usage study will be necessary
both to test this hypothesis and to learn about the easy-of-use
of MAP3S by pattern designers and by pattern users that are
unfamiliar with pattern-based parallel programming.

REFERENCES

[1] John Anvik, Steve MacDonald, Duane Szafron, Jonathan Schaeffer,
Steven Bromling, and Kai Tan. Generating parallel programs from the
wavefront design pattern. In 6th International Parallel and Distributed
Processing Symposium (IPDPS 2002), 2002. On CD.

[2] Ganesh Bikshandi, Jia Guo a nd Christoph von Praun, Gabriel Tanase,
Basilio B. Fraguela, Marı́a Jesús Garzarán, David A. Padua, and Lawrence
Rauchwerger. Design and Use of htalib - A Library for Hierarchically
Tiled Arrays. In Languages and Compilers for Parallel Computing, 19th
International Workshop, LCPC 2006, pages 17–32, 2006.

[3] Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming. Parallel Computing, 30(3):389–406,
2004.

[4] Weiguo Liu and Bertil Schmidt. Parallel design pattern for computational
biology and scientific computing applications. In 2003 IEEE International
Conference on Cluster Computing (CLUSTER 2003), pages 456–459,
2003.

[5] Steve MacDonald. From patterns to frameworks to parallel programs.
PhD thesis, University of Alberta, Edmonton, AB, Canada, 2002, De-
partment of Computing Science, 2002.

[6] Paras Mehta, José Nelson Amaral, and Duane Szafron. Is MPI Suitable for
a Generative Design-Pattern System? Parallel Computing, 32(7-8):616–
626, 2006.

[7] Lawrence Snyder. The design and development of ZPL. In Proceed-
ings of the Third ACM SIGPLAN History of Programming Languages
Conference, pages 1–37, 2007.

[8] Duane Szafron and Jonathan Schaeffer. An Experiment to Measure the
Usability of Parallel Programming Systems. Concurrency Practice and
Experience, 8(2):147–166, 1996.

[9] Kai Tan, Duane Szafron, Jonathan Schaeffer, John Anvik, and Steve
MacDonald. Using generative design patterns to generate parallel code for
a distributed memory environment. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, (PPOPP
2003), pages 203–215, 2003.

8

