University of Alberta

Library Release Form

Name of Author: Angela Jean Blanch French

Title of Thesis: A Study of Later Phase Static Single Assignment in the Open
Research Compiler

Degree: Master of Science

Year this Degree Granted: 2004

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Angela Jean Blanch French
P.O. Box 23

Bay Roberts, NL

AOA 1GO

Date:

If you have no voice, scream;
if you have no legs, run;
if you have no hope, invent.

- Cirque du Soleil’s Alegria

University of Alberta

A STUDY OF LATER PHASE STATIC SINGLE ASSIGNMENT IN THE OPEN
RESEARCH COMPILER

Angela Jean Blanch French

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2004

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled A Study of Later
Phase Static Single Assignment in the Open Research Compiler submitted
by Angela Jean Blanch French in partial fulfillment of the requirements for the degree

of Master of Science.

José Nelson Amaral (Supervisor)

H. James Hoover

Vincent Gaudet (External)

Date:

To the memory of Dr. Cyril P. Coombs,
who valued education as highly as anyone else I have ever known.

Abstract

Static single assignment (SSA) is an intermediate code representation used in con-
temporary production compilers. In processor architectures that implement predi-
cated execution, the intermediate code is typically converted out of SSA form before
later phases in the compilation process. In such architectures, the elegant framework
provided for code optimizations by SSA is not available after predication is used to
eliminate conditional expressions. Thus such compilers cannot benefit from SSA in
later compiler phases. 1-SSA is a new intermediate representation that allows the
maintenance of SSA after if-conversion.

This thesis introduces 1-SSA in a later phase of the Open Research Compiler
(ORC). Most traditional SSA algorithms use a worklist to process the nodes in the
Control Flow Graph representation of the program when building the SSA form.
We propose an improvement to the SSA construction algorithm that reduces both
the number of worklists processed as well as the size of the initial set of nodes in
some of the remaining worklists. We measure the gains of this improvement in the

standard SPEC CINT2000 benchmark suite.

Acknowledgements

First of all, I would very much like to thank my fiancé. Dave, your constant support
in everything I do continues to amaze me. In particular, I want to thank you for
your ever-present interest in my work, confidence in my abilities, and encouragement
of my dreams. We really are a team.

Next, I want to express my gratitude towards my family. Mom and Daddy, you
have always inspired me to strive to do my best. Even though you said I was “on my
own” for further education, your consistent interest in what I do is still appreciated.
Greg and Debbie, you’ve always been there to help take my mind off school, which
has helped so much over the years. Thanks to all of you.

I would also like to mention Arthur Stoutchinin, my external collaborator for
this project. Thanks for being so patient with my questions, and helping me to
understand your complex piece of work. Allowing me to be a part of your research
has been an amazing opportunity.

Finally, my supervisor, Dr. José Nelson Amaral deserves a huge thank you.
Nelson, you used the perfect combination of guiding me and giving me freedom to
create an excellent working relationship. The immense knowledge you have shared

with me has been wonderful. Thanks for always being so patient and supportive.

Table of Contents

1 Introduction
1.1 Contributions of this Thesis

2 Background Material
3 Static Single Assignment

4 SSA Algorithms

4.1 Algorithms for ¢-Function Insertion
411 Cytronetal. e
4.1.2 Sreedharand Gao
4.1.3 Bilardiand Pingali oL

4.2 Variable Renaming o o o
4.3 Discussiono e e
4.4 Conversion out of SSAo Lo
4.4.1 Naive Translation,
4.4.2 Translation Based on Interference Graph Update
4.4.3 Translation Based on Data Flow and Interference Graph Up-
dates. L

4.4.4 Comparison of Individual Translation Methods

5 SSA for Predicated Code
5.1 Predication e
5.2 1-SSA . L
5.3 Predicated SSA e
5.4 Comparison of 9-SSA and PSSA

6 Open Research Compiler
6.1 Existing Functionality
6.2 Modified Code Generator,

7 Eliminating Redundant Join Set Computations in SSA

8 Experimental Results
81 Timing Results
8.2 Imserted Instructions
8.3 Executed Instructions

11

15
15
15
18
19
23
24
26
27
28

29
32

34
34
35
38
40

41
41
44

51

9 Future Work
10 Conclusion

Bibliography

65

66

68

List of Tables

4.1
6.1

7.1

7.2

7.3

8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

8.15

8.16
8.17

The ADT for Figure 4.1 21
Description of SSA translationlevels 45
Opportunities for eliminating redundant join set computations in
SPEC CINT2000 benchmarks 54
Instances where two join sets are equivalent in SPEC CINT2000
benchmarks Lo 55
Instances where one join set is a subset of another join set in SPEC
CINT2000 benchmarks 56
SPEC CINT2000 benchmark compile and run times (in seconds) . . 58
Compile and run times for gzip (inseconds) 59
Compile and run times for mef (inseconds) 59
Compile and run times for gap (inseconds) 59
Compile and run times for bzip2 (in seconds) 60
Number of ¢, ¥ and copy instructions inserted in the SPEC CINT2000
benchmarks Lo 60
Number of ¢, ¥ and copy instructions inserted at individual transla-
tionlevelsin gzip 61
Number of ¢, ¥ and copy instructions inserted at individual transla-
tionlevelsin mef Lo oL 61
Number of ¢, ¥ and copy instructions inserted at individual transla-
tion levels in mcf for Sreedhar’s et al.’s translation method 1 61
Number of ¢, 1 and copy instructions inserted at individual transla-
tionlevelsingap oL 62
Number of ¢, 9 and copy instructions inserted at individual transla-
tion levels in bzip2 oL Lo 62
Number of executed instructions for the SPEC CINT2000 benchmarks 63
Number of executed instructions at individual translation levels in gzip 63
Number of executed instructions at individual translation levels in m¢f 63
Number of executed instructions at individual translation levels in
mcf using Sreedhar’s et al.’s translation method 1 64
Number of executed instructions at individual translation levels in gap 64
Number of executed instructions at individual translation levels in

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

A control flow graph L oo
Pointsina CFG
A dominator tree
Finding a dominance frontier
Finding a local dominance frontier
Finding a dominance frontier passed up to an immediate dominator

Simple conversion into SSAo
Conversion into SSA form o oo oL

Pseudo-code for the running example
CFG for the running example
Dominance frontiers for the running example
J-edges of the CFG for the running example
Constructing the DJ-graph for the running example
The SSA form of Figure 4.1
The result of naively inserting copies to remove the SSA form
Translating out of SSA using Sreedhar et al.’s first method
Modified example e
Translating out of SSA based on live range interference
Translating out of SSA based on live range interference and dataflow
information o

(a) Example from Figure 4.1; (b) If-converted example
p-converted form of Figure 5.1(b)
(a) After removal of SSA and 9-SSA from Figure 5.2;

(b) Final code product after redundant copy removal . .

Flow of control in ORC
ORC’s code generator
Modified ORC code generator
CFG for sample code before SSA construction
CFG for sample code after SSA construction
CFG for sample code after level 1 SSA removal
CFG for sample code after level 2 SSA removal
CFG for sample code after levels 3, 4 and 5 SSA removal
Sample code after level 6 SSA removal

Example of sets of assignments for two variables, z andy

© © 00 g Ut i

12
12

16
16
17
18
19
23
26
28
29
30

32

35
36

38

Chapter 1

Introduction

Static Single Assignment (SSA) is a modern intermediate code representation that
aids dataflow analysis by ensuring that each use of a variable can only be associ-
ated with one definition. The SSA form is traditionally removed well before the
code generator in a production compiler. In particular, the SSA algorithm has not
been capable of maintaining its form after predication is used to eliminate condi-
tional branches. Architectures that support predication generally do not use SSA in
later phases. Hence, code transformations that occur after predication in supported
architectures cannot reap the benefits afforded by the elegant SSA framework.

In this thesis, a method for constructing the SSA form in a later phase of the
Open Research Compiler (ORC) is presented. More importantly, a new algorithm for
allowing SSA after if-conversion, called 1-SSA, is discussed. 1-SSA combines tradi-
tional SSA techniques with ideas incorporating the unique properties of predicated
code. Using this method, SSA can be maintained throughout global instruction
scheduling. Our initial experiments suggest that building and removing the SSA
form in the ORC code generator does not significantly increase compile-time, nor
add an overwhelming number of instructions to the baseline results. As well, run
time performance is not degraded by the additional work performed during the SSA
algorithm.

Current SSA construction algorithms use a worklist method to identify nodes in
the Control Flow Graph where ¢-functions have to be inserted. This thesis suggests
an improvement to this technique whereby individual worklists are compared for
equality. If two sets to be iterated over by a worklist are identical, one of the
worklists can be eliminated, thus reducing the amount of work performed by the

algorithm. Additionally, if one set is a subset of the other, the number of elements

in the second worklist can be decreased. On average, 45% of worklist elements to
be processed can be saved when the subset relationship is detected.

We begin this thesis with a presentation of background material required to
discuss the remainder of the document in Chapter 2. Then, Chapter 3 formally
introduces the concept at the heart of this work, SSA. Using the key ideas from
Chapter 3, Chapter 4 gives an overview of the current state of the art with respect
to SSA. The three main ¢-placement techniques are introduced in detail with fully
expanded examples. As well, the process of removing the SSA form is discussed,
focusing on three techniques currently being studied. The issue of predicated SSA
is then the topic of Chapter 5, where the methods discussed are extensions to the
traditional SSA algorithms of Chapter 4.

The work of this thesis is performed on the ORC, which is thus the subject of
Chapter 6. The ORC’s current capabilities are discussed, as well as the modified
code generator that results from including ¥-SSA. Our suggested improvement to
the SSA ¢-placement algorithm comes next in Chapter 7, where opportunities for
improvement on the ORC are identified. Finally, Chapter 8 presents an experimental
evaluation of the modified code generator with respect to compile and run times,
instructions inserted, and instructions executed, for a selection of programs from
the SPEC CINT2000 benchmark suite. Directions for future work are discussed in

Chapter 9, with conclusions tying the entire thesis together found in Chapter 10.

1.1 Contributions of this Thesis

This thesis is a comprehensive study of the effects of SSA in a later phase of the

compilation process. The major contributions of this thesis include:

1. A detailed examination of current SSA algorithms, using step-by-step exam-
ples to illustrate their behaviour. SSA methods for predicated code are also
discussed. Particular attention is given to the ¥-SSA technique, which is ex-

amined with examples.

2. A proof showing that the iterated join set of a set of nodes can be calculated

as the union of the iterated join sets of its partitions.

3. An improvement to the standard ¢-placement algorithm, based on the proof

from item 2, that reduces both the number of worklists processed as well as the

size of the initial set of nodes in some of the remaining worklists. We quantify

this enhancement using a selection of the SPEC CINT2000 benchmark suite.

. An implementation of SSA in a later phase of the ORC. The modified ORC
code generator includes an implementation of 1-SSA, which extends the SSA

form through global instruction scheduling.

. An experimental evaluation with original measurements for the later phase
SSA’s performance. We focus on the effects of compile and run times, the
number of instructions inserted, and the number of those executed using the

later phase SSA algorithm.

Chapter 2

Background Material

Most definitions found in this section are paraphrased from Aho et al. [1]. Excep-

tions are noted.

Definition 1. A basic block is formed by a sequence of consecutive statements in

which flow of control enters at the beginning and only leaves at the end.

Definition 2. A control flow graph, CFG = G(V,E), is a directed graph repre-
senting the flow of control in a program, where V is a set of basic blocks and an
edge (B; — Bj) € E indicates that the execution of the program may be transferred
from the basic block B; to the basic block B;.

In Figure 2.1, By is the start node and Bg is the end node of the CFG. Nodes

By and Bj are successors of node B; and predecessors of node By.

P,
D

Bo (=2

Figure 2.1: A control flow graph

Definition 3. Within a basic block, there is a point between any two consecutive
statements, as well as a point before the first statement, and a point after the last

statement.

Figure 2.2 shows some points for the CFG of Figure 2.1. Note that the edge

from node B; to node B3 contains 2 points.

point after
. Bs a definition
gotirel%i:ifttl((e)rn of z point, before
o <a——— a definition
of Bs etin
point after
a definition
of z

point before
an use of z

Figure 2.2: Points in a CFG

Definition 4. A path from p; to p, is a sequence of points p1, P, ..., p, such that
for each 7 : 1 <4 < mn — 1, either

1. p; is the point immediately preceding a statement and p;1; is the point imme-

diately following that statement in the same block; or
2. p; is the end of some block and p;; is the beginning of a successor block.

We often refer to paths in terms of the basic blocks in which their points appear.
Given a collection of points such that p; € B;, p; € Bj, ..., pp € By, then a path
that includes p;, pj,...,p, may be referred to as the path B;, Bj,..., By,.

Definition 5. A definition of a variable x is a statement that assigns a value to .

In the CFG in Figure 2.1, the statements in basic blocks By, B3, and By are all

definitions of z.

Definition 6. Let statement S; define a variable z and statement S; have = as an
operand. If there is a path P from S; to S; that contains no other definitions of z,

then S; uses the value of z defined by S;.

The statement in node Bs of the CFG in Figure 2.1 uses the value of = defined
in node Bj, since the path from B; to By contains no other definitions of z. We say
that the definition of z from By reaches Bs. If another definition did occur along

the single path from B; to By, the definition found in By would be killed.

Definition 7. A statement S; that defines a variable x kills all previous definitions

of z that reach S; along the paths that include S;.

In Figure 2.1, the definition of z in node B is killed along the path By, B3, By
since B3 contains a definition of z, but is not killed along the path Bj, Be, By.
When multiple definitions of a variable z appear in a CFG, we are interested in

the points that a given definition of = reaches.

Definition 8. Suppose that a variable x is defined in a statement S; in a node of

a CFG = G(V,E). We say that S;’s definition of z is live at point p; in G if:
1. there is at least one path from S; to p; in which z is not killed; and
2. there exists a path from p; to an use of = that contains no definition of z [33].

Definition 9. Two variables and ¥y in a program interfere if there exists a point

p; in the graph in which both variables are live.

Definition 10. The live-in set of a basic block B; (denoted L;,(B;)) is the set of
all variables live on entry to B;, while the live-out set of B; (denoted Ly (B;)) is

the set of variables live upon exit from B;.

We want to know how individual CFG nodes relate to each other. The con-
cept of dominance is important because it enables the compiler to prove that some

definitions cannot reach some uses of a variable.

Definition 11. Suppose By is the start node of a CFG = G(V, E). Consider two
nodes B; and B;. If every path in G from By to Bj goes through B;, then B;
dominates Bj;. Every node dominates itself. If B; dominates B; and B; # B;, then
B; strictly dominates Bj [18].

In the CFG of Figure 2.1, node By dominates every node in the graph. Node B
dominates nodes B1, B2, B3, and B4. Node B; does not dominate node Bg because
there is another path from By to Bg, namely the path By, Bs, Bg. A convenient
representation of the dominance relationships among nodes in a CFG is given by
the dominator tree.

If there exists a downward path P from node B; to Bj in a directed graph, then
B; is an ancestor of B; and B is a descendant of B;. These relationships are strict

if B; # Bj.

Definition 12. Suppose By is the start node of a CFG = G(V, E). The corre-
sponding dominator tree for G has By as its root, and each node B; dominates its

descendants in the tree.

The dominator tree corresponding to the CFG in Figure 2.1 is given in Figure
2.3. Nodes By, B3 and By are children of node B; and By is the parent of nodes
B, Bs and Bg. The terms parent and child will be reserved for the dominator tree,
while predecessor and successor will reference the CFG. Also, the terms descendant
and ancestor will be used in conjunction with the dominator tree. In Figure 2.3,
node By is an ancestor of every other node, while node B> is a strict descendant of

nodes By and Bj.

Bg

By B }Bi

By Bg By

-

Figure 2.3: A dominator tree

We can also associate a level with nodes in the dominator tree.

Definition 13. A level number for a node B; in the dominator tree (written

Bi.level) is the depth of B; from the root of the tree [32].

In Figure 2.3, By.level = 0, By.level = Bs.level = Bg.level =1, and Bs.level =
Bs.level = By.level = 2.

Definition 14. Suppose that By is the start node of a CFG = G(V, E). Consider
anode B; in G. The immediate dominator (idom) of B; is the last strict dominator

of B; on any path from By to B; [18].

The children of a node B; in a dominator tree are all immediately dominated by
B;. In Figure 2.3, node By immediately dominates nodes Bi, Bs and Bg. Node By

immediately dominates nodes Bs, Bs, and Bj.

Definition 15. Consider a node B; in a CFG = G(V, E). The dominance frontier
(DF) of B is the set of all nodes B; € V' in G such that B; dominates a predecessor
of Bj, but B; does not strictly dominate B; itself [18].

There are different ways to find the dominance frontier of a CFG node B;. We
can start by identifying all the nodes that B; dominates. These nodes are found
by searching the subtree rooted at B; in the dominator tree. For example, to find
the dominance frontier of B; in the CFG of Figure 2.1, we start by finding the
nodes that are dominated by Bj, as shown in Figure 2.4(a). We now want to check
the successors of these nodes. The set of successors is indicated by the rectangle
in Figure 2.4(b). We are looking for successors that are not themselves strictly

dominated by B;. Thus, DF(B;) = {Bs}.

Bg Bg

V
(a) Nodes dominated by B; (b) Successors of nodes dominated by B

Figure 2.4: Finding a dominance frontier

Another computation method for finding the dominance frontier requires the
local dominance frontier and the dominance frontier passed to a node B; from nodes

that B; immediately dominates.

Definition 16. Consider a node B; in a CFG = G(V, E). The local dominance
frontier (DFjyeq) of B; is the set of successors of B; that are not strictly dominated
by B; [18].

Consider node By from Figure 2.1. We know from the dominator tree in Figure
2.3 that Bs does not strictly dominate any nodes. The set of successors of Bj
is shown by the rectangle in Figure 2.5. The local dominance frontier can then
be found by subtracting the set of nodes strictly dominated by B from the set of
successors of By. Since By does not strictly dominate any node, the local dominance
frontier of By is just its set of successors. Thus, DFj,.q(B2) = {Bs}. Similarly,
DPFjocai(Bs) = {Bu}.

Definition 17. Consider a node B; in a CFG = G(V, E). The dominance frontier
of B; that can be passed up (DF,p) to the immediate dominator of B; is the set

Bg

Bs

By
mC DO C D
By

Bg

Figure 2.5: Finding a local dominance frontier

of nodes in the dominance frontier of B; that are not strictly dominated by the

immediate dominator of B; [18].

Consider node By of Figure 2.1. We want to compute DF,,(Bs). From Figure
2.3, the immediate dominator of node By is node B;. We need DF(B4). From
Figure 2.3, we know that node B only dominates itself. The only successor of By
is Bg. Since Bg is not strictly dominated by By, DF(B4) = {Bg}, shown in Figure
2.6(a). We also need the set of nodes strictly dominated by idom(Bs) = By, as
indicated by the rectangle in Figure 2.6(b). We are looking for shaded nodes not
found in this rectangle (i.e., nodes in DF(By) that are not strictly dominated by
By). Thus, DF,,(By) = {Bg}.

By B3
By By

(a) Dominance frontier of By (b) Nodes strictly dominated by B

Figure 2.6: Finding a dominance frontier passed up to an immediate dominator

The dominance frontier can also be computed using Equation 2.1 [18].

DF(B;) = DFjpear(Bi) U U DF,(B;) (2.1)
Bj€Children(B;)

Recall that the children of a node are found by looking at the dominator tree.

Using Equation 2.1, the dominance frontier of node B; in Figure 2.1 can be calcu-

lated:

DF(Bl) = DFlocal(Bl) U U DF, (B])
B;€Children(Bi)
= DFlocal(Bl) U (DFup(B2) UDFup(B3) UDFup(B4))

The local dominance frontier of By is the set of nodes strictly dominated by
B; subtracted from the set of successors of B;. Thus, DFjseqi(B1) = {B2,Bs} —
{B3, B3, By} = 0.

For the dominance frontiers being passed up to Bj, it has already been shown
that DF,;,(Bs) = {Bgs}. Nodes B and B3 do not pass up anything to B;. Since each
of By and B3 only dominates itself, and their common successor is node By, By is
the only element in each of their dominance frontiers. By itself is strictly dominated
by node Bi, and it therefore does not contribute to the dominance frontier of Bj.
Thus, DF,,(Bs) = DF,,(B3) = 0.

The final equation then becomes

DF(By) = DFeu(B1)U(DF,,(B2) U DF,,(Bs)UDF,,(B4))
= QUOUOU{Bs})
= {Bs}

The result of Equation 2.1 is the same as was computed using Definition 15.

10

Chapter 3

Static Single Assignment

Within compiler research, much work has been done towards effective code anal-
ysis and optimization techniques. Traditionally achieved with def-use and use-def
chains, code analysis techniques have matured. Now, methods for understanding
and improving code focus on the relationships among individual statements and
basic blocks [25]. Briggs et al. argue that the static single assignment (SSA) form

is a sparse representation of these relationships [7].

Definition 18. A program is in static single assignment form if each variable is

defined only once.

An SSA form is attractive for compiler code analysis because it reduces the
complexity of dataflow analysis. In SSA each variable has a single definition, thus
whenever an use of the variable is encountered, there is only one place in the code
where the value consumed by that use could have been produced. Allen and Kennedy
claim that the most important benefit of the SSA form is the improved performance
of optimization algorithms such as constant propagation, forward substitution of
expressions, and induction-variable substitution [3]. In particular, an entire category
of dependences that arise from reusing variables (resulting in an anti-dependence) or
reassigning variables (resulting in an output dependence) can be eliminated, called
false dependences. Then, the program analysis is left only with true dependences
(arising from flow dependences that cannot be eliminated by SSA) with which to
contend [39].

Consider the sample code in Figure 3.1. The code shown in Figure 3.1(a) is not
in SSA form, since there are two definitions of z and y. In this example, a simple
renaming of variables produces the SSA form shown in Figure 3.1(b).

Now consider the code of Figure 3.2. The code in Figure 3.2(a) is not in SSA

11

T+ 3; 1 < 3;

Y T Y1 < T1;

T 4 To 4;

Y < x; Y2 < T2;

(a) Non-SSA form (b) SSA form

Figure 3.1: Simple conversion into SSA

form, since two definitions of z exist in two distinct control flow paths. By renaming

the variables, the code of Figure 3.2(b) is produced.

ifx>a ifx1 >a ifx1>a

T 4+ a; Ty a; Ty a;
else else else

T+ b T3 < b; T3 < b;
Y=z Y1 =7 Y1 = ¢(z2,23);
(a) Non-SSA form (b) Partial SSA form (c¢) SSA form

Figure 3.2: Conversion into SSA form

In the final statement of Figure 3.2(b), the value of z assigned to y; depends on
which path is executed at runtime. The potential for an use to be associated with
more than one definition occurs at the first node that belongs to two distinct paths
in the CFG. Such nodes are called join nodes [19].

Alpern and Rosen first introduced a ¢-function, which is an abstraction used in
the join node, to “decide” which definition to use [4, 30]. Figure 3.2(c) shows the
example code in SSA form.

¢-functions are found in the SSA intermediate code representation, and are not
executable. Inserting ¢-functions can be done trivially by determining every variable
used in a join node. Let = be a variable used in a join node B;. Then we need to
look at definitions of = that are live on entry to B;. A ¢-function can be inserted at
the point following each such definition of . However, the number of ¢-functions
that are actually required can be much smaller than those inserted by this method.
Inserting unnecessary ¢-functions increases the compilation time.

Let z be a variable defined in two or more basic blocks in a CFG = G(V, E).
Sg(x) is defined as the minimum set of join nodes in V' that must receive a ¢-function

for z. A method for computing Sy (z) is required. Let A(z) be the set of nodes in V'

12

that contain a definition of z. Clearly, DF'(A(x)) C Sy(z). However, a ¢-function
is itself a definition of z, therefore an iterated method to compute S4(z) is needed.
Based on this formulation, the notion of dominance frontiers from Chapter 2 can be
extended to sets of nodes.

When constructing the SSA form of a program, if a variable x has multiple
definitions, it is desirable to insert a collection of ¢-functions for z at a time instead
of just a single ¢-function. We therefore want to analyze sets of nodes [18]. Let X

be a set of CFG nodes. Then,
DF(X)= | J DF(By) (3.1)
B;eX
In Section 4.1.1, we will examine the relationship between the iterated dominance

frontier and where ¢-functions should be placed.

Definition 19. Given a set of CFG nodes X, the iterated dominance frontier (DF™)
of X is the limit of the following sequence [18]:

DF, = DF(X) (3.2)
DF;,, = DF(XUDEF) (3.3)

We make a key assumption during the analysis of a CFG. To ensure that we
never have a variable that is used without being previously defined, we assume that
all variables are defined in the start node of the CFG. Code analysis is therefore
simplified, as we can always assume there is a single definition with which to associate

an use.

Definition 20. Suppose X is a subset of nodes in a CFG = G(V, E) such that
the start node is in X. The join set (J) of X is then the set of all nodes B; € V
for which distinct nodes B;, By € X exist where a pair of paths B;,...,B; and
By, ..., B; intersect only at B; [19].

Definition 21. Given a set of CFG nodes X, the iterated join (J*) of X is the

limit of the increasing sequence [18]:

Ji = J(X) (3.4)
Jit1 = J(X U J;) (3.5)

13

Cytron et al. showed that Sy(z) = J*(A(z)), i.e., the minimum set of nodes
that require a ¢-function for a variable z is the iterated join of the set of nodes that
define z [19].

Many algorithms have been developed for constructing the SSA form of a pro-
gram. Among these algorithms, techniques for ¢-function placement and variable
renaming have been developed. However, since the ¢-function has yet to be found
in an instruction set of a machine architecture, the “function” is still not executable.
In fact, an instruction that decides which control path was taken is unlikely to exist.
Because the function cannot be executed, it must be eliminated before code gener-
ation, since there is no code corresponding to the ¢-function. Therefore, ¢-function
removal methods are also of interest. The algorithms for all the phases of SSA

construction and removal are presented in Chapter 4.

14

Chapter 4

SSA Algorithms

4.1 Algorithms for ¢-Function Insertion

The insertion of ¢-functions is widely thought to be the core of the SSA construction
problem. Several algorithms were proposed for deciding where ¢-functions should

be placed.

4.1.1 Cytron et al.

The primary ¢-placement method still used in many compilers was presented by
Cytron et al. in 1989 [18], and further elaborated on in 1991 [19]. This method
uses dominance frontiers to determine where the ¢-functions should be placed. The
relationship between dominance frontiers and ¢-functions is established by Theorem

1 [19].

Theorem 1. The set of nodes that need ¢-functions for any variable x is the iterated

dominance frontier DF'(A(z)). Equivalently,
J*(A(s)) = DF* (A(z) (@)

Cytron et al. compute the dominance frontiers needed for their ¢-placement
algorithm using Equation 2.1.

The algorithm takes a CFG = G(V, E) and V as input. Also required for each
node B; € V is DF(B;), as well as A(z) for each variable z in G. The main loop
of this worklist algorithm iterates for every variable. For each variable, a worklist,
W, represents the nodes being processed. Suppose an iteration of the algorithm’s
main loop is working on a variable v. W is initialized to A(v). Then, if B; € W,
a ¢-function is inserted in every B; € DF(B;), and B; is removed from W. Recall
that a node with a ¢-function for v is itself in A(v). Thus for every B; € W, each

15

y live-in
if (y>1)
=2
else if (y < 1)
=3
else z =10
for (1 =057 < y;¢ + +){
if (z>y)
T+ +
else
T ——

}
return(x + y)

x,y are live-out

Figure 4.1: Pseudo-code for the running example

B; € DF(B;) is also relevant, and therefore included in W. The algorithm ends
when W = ().

Consider Figure 4.2, the CFG for the running example in Figure 4.1. The only
non-empty dominance frontiers for this example are given in Figure 4.3. Let Sy(x)
be the set of nodes that are assigned ¢-functions for variable z.

y live-in

2G> 1D
B3

Bo
SoGew

Bs
2 (G=0)
5y <)

\312
c z,y live-out

Figure 4.2: CFG for the running example

The loop iteration for z begins by initializing W = A(z) = {Bs, B4, Bs, By, B1g }-

Based on the dominance frontiers of these nodes, Sy(x) = {Bs, B11}, and nodes By,

16

DF(BQ) = {Bﬁ} DF(BQ) = {Bll}
DF(B4) = {Bs} DF(Bio) = {Bu}
DF(Bs) = {Bs} DF(Bw) = {Br}

Figure 4.3: Dominance frontiers for the running example

By, Bs, By and Byg are removed from W. Then each of nodes Bg and B11 need to
be analyzed, and are thus added to W. Since DF(By;) = {B7}, node By is added
to Sy(r) and nodes Bg and Bi; are eliminated from W. Node By must itself be
processed, and is appended to W. Since DF(B7) = (), By is taken from W and
there are no additional nodes to include in W. Thus, Sy(z) = {Bs, B7, B11}, and
¢-functions for z can be added to nodes Bg, By and By;. With W = (), this loop
iteration is complete. The main loop will then proceed for every variable in the
CFG.

Cytron and Ferrante continued their work in 1995 with improvements to their
original algorithms [21]. In particular, the new work avoids computing all the dom-
inance frontiers by producing an order to determine the entire DF relation. Using
the order ensures that no elements of the DF' relation will be skipped. They focus
on two cases. The more general case checks, for an edge (B; — Bj;) in the CFG,
nodes in the dominator tree between the immediate dominator of B; and B;, which
have been established in the DF relation. The order used is a reverse depth-first
numbering, hence nodes are processed if their immediate dominators have decreasing
depth-first numbers.

The alternate case encompasses nodes that are siblings in the dominator tree.
The pre-determined order from the general case is not applicable, since both nodes

have the same immediate dominator. A new relationship is needed [21].

Definition 22. Consider a node B;. The equidominates of B; are those nodes with

the same immediate dominator as B;. Equivalently,
equidom(B;) = {Bj | idom(B;) = idom(B;)} (4.2)

The equidominates are partitioned into blocks of nodes that are contained in
each other’s iterated dominance frontiers. However the cost of computing individual
dominance frontiers is avoided. The required order is then computed based on the

edges between equidominates.

17

y live-in
2w > 1)
Bs
By

By

Bs

Bg

<
Br @
P (x>0 Gennte +0)
B \312
@ e z,y live-out
Bio

Figure 4.4: J-edges of the CFG for the running example

This method avoids the computation of all dominance frontiers, and also the
recursive iteration through the nodes in the dominance frontiers of the worklist
nodes.

The final form that Cytron and Ferrante have presented is pruned SSA [12].
This method only places a ¢-function for z at a join node if = is used within or after
the join node, i.e., z is live at the entry point of the join node. This strategy differs

from the original algorithm, which places ¢-functions at all join nodes.

4.1.2 Sreedhar and Gao

The next ¢-placement method was introduced in 1995 by Sreedhar and Gao [32].
This algorithm requires the construction of a DJ-graph, a modification of the tradi-
tional dominator tree. The DJ-graph contains all dominator tree edges (referred to

as D-edges), as well as a set of J-edges [32].

Definition 23. An edge (B; — Bj) in a CFG = G(V, E) is a join edge (J-edge) if

B; does not strictly dominate B;.

A DJ-graph can be constructed by inserting join edges from the CFG into the
dominator tree. Figure 4.4 indicates the J-edges of the CFG from Figure 4.2 in bold
print. Figure 4.5(b) shows the DJ-graph corresponding to the dominator tree of the
CFG shown in Figure 4.2. J-edges are indicated by dotted lines in the graph. Also

given in the figure are the node levels.

18

C B D
B D
S

(a) Dominator tree

Figure 4.5: Constructing the DJ-graph for the running example

This algorithm takes as input a DJ-graph and a subset of CFG nodes, N,, and
returns DF'(N,). It begins by initializing an array PB to N,, with indices based
on the level numbers of the individual nodes.! The start level is set to be the highest
level. Then, each level represented in the PB is processed by visiting each node in
that level stored in PB. Say node B; of level [is the current node being processed.
For each successor B; of B;, if (B; — Bj) is a J-edge, then Bj; is included in DF*
and is placed in PB. If (B; — B;) is a D-edge, B; is recursively processed.

Consider the example in Figure 4.2. Let N, = A(z) = {Ba, B4, Bs, By, B1p}-
We then initialize PB = N,. Processing higher level nodes first means nodes By
and Bjg from level 4 are examined. (By — By) is a J-edge (see Figure 4.5(b)),
thus DFt = {By1}, and PB = PB U {Bj;}. Node Bjg’s only outgoing J-edge
is with node Bii, which is already in DFT. Now we process node Bi; in level
4. (B11 — By) is a J-edge, therefore DF't = {Bj1,B7}, and PB = PB U {Br}.
We continue processing at level 2 with node By. (By — Bg) is a J-edge, hence
DF* = {By1,B7,Bs} and PB = PB U {Bg}. The only other J-edges in the DJ-
graph are directed to node Bg, thus we are done, and ¢-functions for z can be added
to nodes Bg, B7, and By;. This process can be repeated with other initial sets; in

particular, with the sets representing assignments of the other variables in the CFG.

4.1.3 Bilardi and Pingali

The third ¢-placement algorithm was first introduced by Bilardi and Pingali in 1995
[28]. In 2003, they revisited the description of the original algorithm in an extensive

comparative study of SSA construction techniques [5, 6]. This algorithm uses a

! PB refers to the “PiggyBank” used in Sreedhar and Gao’s algorithm [32].

19

new data structure, the augmented dominator tree. First, the dominance frontier is

defined in terms of edges instead of nodes.

Definition 24. Suppose (B; — Bj;) is an edge in a CFG = G(V,E). If B, #
idom(B;), then the edge (B; — Bj) is an up-edge [5].

Definition 25. An edge (B; — B;) is in the edge dominance frontier (EDF') of a
node By, if By, dominates B; and By, does not strictly dominate B; [5].

In the Cytron et al. definition of a dominance frontier given in Definition 15,

the node B; would be in the dominance frontier of By.

Definition 26. Let By be a node in a CFG = G(V, E) such that an edge (B; —
B,) € EDF(By). Then, B; € DF(By) [5].

Finally, we need to know which nodes are boundary nodes. Several ways of
determining boundary nodes were discussed in [5]. For example, a simple problem
formulation defined a node to be a boundary node if it is a leaf node in the dominator
tree. It was also suggested that every node could be initialized as a boundary node.

In practice, however, boundary nodes are defined by Definition 28.

Definition 27. A zone is a smaller tree created by partitioning the dominator tree.

The zone associated with a tree node B; is denoted Zp,. The zone size of Zp, is

z[Bi] [5].
Definition 28. A node B; is a boundary node if:
1. B; is a leaf node in the dominator tree; or
2. (1 + X, cchitdren(;) 2[Bjl) > (B x |[EDF(B;)| + 1),
where 3 > 0 is a parameter used to control the space and query-time tradeoffs [5].2

Definition 29. A node B; in the dominator tree is an interior node if B; is not a

boundary node [5].

Definition 30. The zone size of a node B; is computed by the following [5]:

1 - Bj], if B;i interi de.
Z[BZ] _ + ZBjEchzld'ren(Bi) z[]]’ 1 1 TS al 1nterior node (43)
1, if B; is a boundary node.

2For the remainder of this discussion, it can be assumed that 8 = 1. This 3 value produced the
best results in the experiments of [5], and was encouraged for use by the authors.

20

Definition 31. The augmented dominator tree (ADT) consists of a number of

structures [5]:

1. a dominator tree capable of producing top-down and bottom-up traversals.

2. the depth-first search number (equivalently, the level number, discussed in

Section 4.1.2) for each node of the tree.
3. a boolean value for each node indicating whether or not it is a boundary node.

4. alist of CFG edges corresponding to a particular node B;. The list is EDF(B;)
if B; is a boundary node. If B; is an interior node, the list consists of the CFG

up-edges sourced at B;.

The ADT for the example in Figure 4.1 is given in Table 4.1.

‘ Node H Level ‘ Boundary Node? ‘ List ‘

B 0 T 6, 6, 6
B, 1 T 6
B; 1 F

By 2 T 6
Bs 2 T 6
Be 1 T 7
B, 2 T 7
Bs 3 T 7,11, 11
By 1 T 11
Bio 4 T 11
B 4 T 7
By 3 T

Table 4.1: The ADT for Figure 4.1

The algorithm, based on the ADT data structure, takes as input a set of nodes

and returns the set of merge nodes where ¢-functions are to be placed.

Definition 32. Suppose By is the start node of a CFG = G(V,E). The merge
relation (M) is a binary relation on nodes defined as a set of pairs, (B;, B;) such
that B; € V and B; € J({By, B;}). The merge set of B; is the set of all nodes B;
such that (Bj, B;) € M [5].

The relationship between merge nodes and ¢-functions is given in Theorem 2.

21

Theorem 2. The iterated dominance frontier is the same as the merge relation.
That is [5],
DFt =M (4.4)

The input set of nodes are initialized as a priority queue, PQ, using the node
levels as keys. The dominator tree is also required, and all nodes from the input set
are marked in the tree. The main loop of the algorithm iterates while PQ is not
empty, taking the next deepest node B; from P(Q for processing. Then each node
from the list for B; described in Definition 31, part 4, is studied. If the immediate
dominator of the current list node is a strict ancestor of B;, then it is a merge node,
and is added to M. If the node was not marked in the dominator tree, it is marked
and inserted in PQ for future processing. Finally, if B; is not a boundary node,
then we recursively visit all children of B; that aren’t marked.

Consider the example in Figure 4.1. Let the input set S = A(z) = {Bs, By, Bs,
By, B1p}. Also, PQQ = S = {By,B4,Bs,By,B1p}. Using the level as the key to
P(Q means nodes By and Bjg are processed first. The list for node Bg consists just
of node By;. From Figure 4.5(a), we know that the immediate dominator of node
Bi1 is node Bg, which is a strict ancestor of node Bg. Thus, node Bi; is a merge
node and M = M U {B;;}. Node Bj; is not in S, thus it is not marked in the
dominator tree. It is then marked and PQ = PQ U {Bi:}. The ADT in Table 4.1
shows that node By is a boundary node, therefore this loop iteration is finished. We
next process node Big, whose only list element is node Bj1, which is already in M.
Then node By itself is examined, since its level is also 4. Node Bj1’s list consists
of node By, whose immediate dominator is node Bg, a strict ancestor of node Bi;.
Thus, M = {B;1,B;}. Node By is not in S, hence it is marked in the dominator
tree and PQ = PQ U {B7}. Node By is also a boundary node. Node By, with the
next highest level number, is then extracted from P@. Node Bg is the only node
in node By’s list. Node Bg’s immediate dominator is node By, a strict ancestor of
all other nodes. Node Bg is a merge node and M = {By1, B7, Bg}. Node Bg is not
in S, thus it is marked and added to P@Q. And node By is a boundary node. From
Table 4.1, we can see that all the lists of the remaining nodes contain nodes that
have already been added to M, therefore we are done. ¢-functions for z can then
be added to nodes Bg, By, and Bi;. To obtain the required ¢-functions for other

variables, other input sets can be used; namely, A(v) for all other v.

22

4.2 Variable Renaming

The renaming of variables that subsequently occurs during SSA construction is
much less studied in the literature. Cytron et al. propose renaming variables using
a top-down traversal of the dominator tree [19]. During this pass, arrays of stacks
are accessed to find the next available variable for an assignment, or the previous
definition that should now be referenced. The array is indexed by the original
variable name, and the stacks contain the replacement subscripts. By visiting a
specific node, statements associated with that node, beginning with any ¢-functions,
are processed in sequential order. Only variables referenced in the statement are
handled.

Briggs et al. presented improvements to this algorithm in 1998 [7]. They pro-
posed pushing a subscript on the stack only at the first definition of a variable z in
the block. Then, subsequent definitions would overwrite the subscript, thus taking
away the pure stack nature of the data structure. Information would have to be
maintained as to which variables had subscripts pushed into a particular block. To
restore the original state of the stack, the algorithm reads the already-pushed list,
and pops subscripts from that list.

y1 live-in

x4 = ¢(x1,X2,X3

B k
6 21 =0

i2 = ¢(i1,i3)
x5 = ¢(Xa,Xg)
if (i2 < y1)

X8 = (X6, X7
i3 =12+ 1

Figure 4.6: The SSA form of Figure 4.1

23

The SSA form of our running example is given in Figure 4.6. This product results
from any of the techniques discussed in Sections 4.1 and 4.2. Added ¢-instructions

are shown.

4.3 Discussion

Cytron et al.’s algorithm from Section 4.1.1 is widely thought to be the easiest
of the three presented algorithms to implement. It is thus still found in many
production compilers today. Since the algorithm is based on the dominance frontiers
of individual nodes, the calculation of these structures is crucial in compile-time
analysis. Consider a CFG with N nodes, E edges, A, number of assignments and
M.+ number of references to variables. Let DF be the mapping from nodes to their
dominance frontiers,> and avg(DF) be the weighted average of the sizes |DF(B)].
X is the set of all nodes in the CFG. Then the total running time of the algorithm is
the time required to compute the dominance frontiers, along with the time to place

¢-functions and the time to rename variables [19]. That is,

Time = O (Z \DF(N)|> + O(Atot X avg(DF)) + O(Myot) (4.5)
BeX

Now let T" be the overall size of the original program, calculated by:

T = maz{N,E, Aorig, Morig} (4.6)
The worst-case running time is then [19]:

Timeworst = O(R?) + O(R?) (4.7)

The authors argue that in practice, the calculation is actually linear.
Sreedhar and Gao’s DJ-graph algorithm for placing ¢-functions presented in Sec-
tion 4.1.2 is in fact linear. Given a dominator tree, the DJ-graph can be constructed

in O(E) time, just the time required to insert the J-edges. It was shown that [32]:
Theorem 3. The time complezity of Sreedhar and Gao’s algorithm is O(|E|).

Now let V' be the number of variables in the CFG. Sreedhar and Gao’s method
takes as an initial set the set of assignments to a particular variable. The algorithm

will have to be performed for each variable in the CFG to produce the complete

3Assume for all of these calculations that the dominator tree is available. It has been shown
that the dominator tree computation is O(E) [23, 22].

24

set of iterated dominance frontiers. Therefore, the actual time to compute the SSA

form of a program using this method is:
Time = O(E) + |V| x O(|E|) + O(Mo) (4.8)

The final algorithm presented in Section 4.1.3 was that of Bilardi and Pingali,
which places ¢-functions based on another new data structure, the ADT. Let E,,

be the set of up-edges in the CFG. It was shown that [5]:

Theorem 4. The ADT for a given CFG can be constructed in time
Timeapr = O(|Eyp| + (1 +1/8) x |N|) (4.9)

Given that the version of the algorithm presented here uses § = 1, Equation 4.9
becomes:

Tz'meADT == O(|Eup| + 2|N|) (4.10)

Let F' be the number of extractions from the P data structure and K be
the number of keys used by the PQ) implemented as a heap. Then the ¢-function

placement algorithm was shown to be [5]:
Timeg— fu