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Abstract

Partitioned Global Address Space (PGAS) programming languages offer an attractive, high-

productivity programming model for programming large-scale parallel machines. PGAS

languages, such as Unified Parallel C (UPC), combine the simplicity of shared-memory

programming with the efficiency of the message-passing paradigm. PGAS languages parti-

tion the application’s address space into private, shared-local, and shared-remote memory.

The latency of shared-remote accesses is typically much larger than that of local, private

accesses, especially when the underlying hardware is a distributed-memory machine and

remote accesses imply communication over a network.

To achieve good performance, an optimizing compiler must be able to handle two fea-

tures commonly found in PGAS languages: shared data distribution and a parallel loop

construct. When developing a parallel application, the programmer identifies data that is

shared among threads and specifies how the shared data is distributed among the threads.

This thesis introduces new static analyses that allow the compiler to distinguish between

local shared data and remote shared data. The compiler then uses this information to reduce

the time required to access shared data using three techniques. (i) When the compiler can

prove that a shared data item is local to the accessing thread, accesses to the shared data

are transformed into traditional memory accesses; (ii) When several remote shared-data

accesses are performed and all remote shared-data is owned by the same thread, a single co-

alesced shared-data access can replace several individual shared-data accesses; (iii) When

shared-data accesses require explicit communication to move shared data, the compiler can

overlap the communication with other computation to hide the communication latency.

This thesis introduces a new locality analysis, describes the implementation of four

locality-aware optimizations in a UPC production compiler, and presents a performance

evaluation of these techniques. The results of this empirical evaluation indicate that the

analysis and code transformations implemented in the compiler are crucial to obtain good

performance and for scalability. In some cases the optimized benchmarks run as much as

650 times faster than the unoptimized versions. In addition, the performance of many of the



transformed UPC benchmarks is comparable with the performance of OpenMP and MPI

implementations of the same benchmarks.
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Chapter 1

Introduction

With the advent of petascale computing, programming for large-scale machines is becom-

ing evermore challenging. Traditional languages designed for uni-processors, such as C

or Fortran1, only allow the simplest kernels to scale to millions of threads of computation.

When building solutions for real-life applications, understanding the problem and designing

an algorithm that scales to a large number of processors is a challenge in itself. Thus, ad-

equate programming tools are essential to increase programming productivity for scientific

applications.

A long-standing issue in High Performance Computing (HPC) is the productivity of

software development for high-end parallel machines. Partitioned Global Address Space

(PGAS) languages are increasingly seen as a convenient way to enhance programmer pro-

ductivity for HPC applications on large-scale machines. A programming language that is

designed under a PGAS programming model facilitates the encoding of data partitioning

information in the program. Closing the gap between the programming and the machine

models should increase software productivity and result in the generation of more efficient

code.

Unified Parallel C (UPC) is a PGAS extension of the C programming language that pro-

vides a few simple primitives to allow for parallelism. The programming model is Single

Program Multiple Data (SPMD). The memory model allows for PGAS programming with

each thread having access to a private section, a shared-local section and a shared-global

section of memory. The programmer specifies the data that is shared among threads using

the shared keyword. All data not explicitly marked as shared is considered private to each

thread. Threads have exclusive, low latency, access to the private section of memory. Typ-

1The original version of FORTRAN, as well as FORTRAN77, was conventionally spelled in all-caps. This
convention was changed with Fortran 90 and subsequent versions to only capitalize the first letter. The official
language standard now refers to it as Fortran [1].
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ically the latency to access the shared-local section is lower than the latency to access the

shared-global section.

UPC provides programmers with two distinct advantages over alternative parallel pro-

gramming languages. First, the programmer must specify what data is to be shared among

threads and can describe an affinity between shared data and threads. Every shared data

item has an affinity with one, and only one, thread. This affinity can be seen as a logical

ownership of the data. The second advantage of UPC is that it will run on both shared-

memory and distributed-memory architectures. These two advantages allow programmers

to rapidly prototype a data-parallel program and determine its performance characteristics

on a variety of hardware platforms.

The UPC specification defines an object as a “region of data storage in the execution

environment that can represent values” and a shared object as “an object allocated using

a shared-qualified declarator or allocated by a library function defined to create shared

objects” [56]. The same definitions will be used in this document. A shared object can also

be used to describe a single element of a shared array. For example, the element of a shared

array As at position i, As [i], can also be represented as a shared object Os . Thus, As [i] and

Os can be used interchangeably.

The IBM UPC Runtime System (RTS) provides a platform-independent interface that

allows compiler optimizations to be applied independent of the machine-code generation.

The RTS provides functions to get and set the value of each shared variable in a UPC

program. The RTS maintains a Shared Variable Directory (SVD) internally that stores

information about where to find specific shared objects. The SVD function is similar to the

function of a cache directory. The SVD is a partitioned data structure that is designed to

scale to a large number of threads while allowing for the efficient manipulation of shared

data.

Every access (use or definition) of a shared variable is translated into a function call

to get or set the value of the shared variable. These are shared object accesses. These

function calls use the SVD to locate the underlying memory containing the shared variable.

The location resolution consists of a series of pointer dereferences to determine the thread

that owns the shared object, followed by an address translation to determine the location of

the shared-object in the owning thread’s address space. These pointer dereferences and the

subsequent address translation are very costly in terms of performance.
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1.1 Objectives

The primary goal of this research is to implement a compiler framework — analysis and

code transformation — that improves the performance of accessing shared data in UPC

programs. This goal will be achieved through optimizing local shared-object accesses, coa-

lescing multiple shared-object accesses into a single access, and scheduling remote shared-

object accesses to overlap communication and computation. The second goal is to reduce

the overhead incurred during the execution of parallel loops.

(a) Shared-memory (b) Distributed memory (c) Hybrid

Figure 1.1: Target environment configurations

Figure 1.1 shows the three types of environments that this work will consider. Unless

stated otherwise, a thread will refer to a UPC thread that is started by the UPC RTS prior

to the execution of main and that is stopped prior to the UPC program exiting. In Fig-

ure 1.1(a), N threads map to one physical shared-memory domain, resulting in a single

global address space (all-to-one mapping). This will be referred to as a shared-memory

or Symmetric Multiprocessing (SMP) environment. In Figure 1.1(b), N threads map to

N physical shared-memory domains (one-to-one mapping) resulting in each thread having

a unique address space. This will be referred to as a distributed-memory environment. In

Figure 1.1(c), N threads map toM physical shared-memory domains, 1 < M < N (many-

to-one mapping), resulting in more than one thread sharing the same address space, but not

all threads sharing the same address space. This is equivalent to a cluster of shared-memory

parallel machines and will be referred to as a hybrid environment. The configuration in Fig-

ure 1.1(c) includes multi-processor nodes as well as multi-threaded single-processor nodes

(e.g., nodes with Simultaneous Multi-Threading (SMT) capabilities). For simplicity, we
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assume that in Figure 1.1(c) each physical shared-memory domain is shared by the same

number of threads. We will refer to the physical shared-memory domain for a thread as

an Address Partition. Compiler options are used to specify the number of threads and the

number of address partitions at compile time.

The thread that owns a shared object Os will be represented as Owner(Os), where

the subscript s indicates that the object is shared. Similarly, Owner(As[i]) represents the

thread that owns the element i of the shared array As. A local shared access occurs when a

thread T accesses a shared object Os that is located in the address partition of T . A remote

shared access occurs when Os is not located in the same address partition as T .

In the IBM UPC compiler, every UPC shared variable has a unique handle that is used

by the RTS to locate the object using the SVD. This handle is conceptually a fat pointer that

contains several fields. A shared-object access is performed using functions defined in the

RTS. Each access (i) determines the location of the shared object in memory using the SVD

and (ii) sets or gets the value of the shared object, depending on the access type. The SVD

determines the memory location of a shared-object in two distinct steps. First, the owning

thread is determined by querying several data structures containing information about the

layout of the shared object. Although these queries translate into pointer dereferences and

thus are expensive, they allow the SVD to scale to a large number of threads. Once the

owning thread has been determined, the SVD performs an address translation to determine

the exact memory location in the owner’s address space. This address translation is required

by the UPC language specification, which states how shared-objects are laid out in memory.

A local shared-object access occurs when a thread T accesses a shared object Os and

both T and the owner of Os map to the same address partition. A remote shared-object

access describes a shared object Os that is being accessed by a thread T that maps to a

different address partition than the owner of Os . In an all-to-one mapping, all shared-object

accesses are local, while in a one-to-one mapping only shared-object accesses performed

by the object’s owner are local — all other accesses are remote. In a many-to-one mapping,

some shared-object accesses are local while others are remote, based on the layout of the

shared objects.

A direct-pointer access refers to directly accessing the shared object using its address.

Direct-pointer accesses can only be performed by threads that map to the address partition

containing the shared object. In other words, it is not possible to perform a remote direct-

pointer access. A local shared-object access uses the SVD to determine the owner of the

shared object and to locate the underlying memory location. A remote shared-object access
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also uses the SVD to determine the owner of the shared object but in addition it requires a

message to be sent to the owner to either request or update the value of the shared object.

A direct-pointer access is a direct access to the underlying memory containing the shared

object (a pointer dereference in C). Thus, direct-pointer accesses are much more efficient

than shared-object accesses, but are only applicable in the address partition containing the

shared object. Performing a shared-object access, while much slower than performing a

direct-pointer access, is always legal.

Unless stated otherwise, all of the analysis and optimizations presented in this document

focus on statically allocated shared arrays. The analysis and optimizations presented here

can also be applied to dynamically allocated shared data (e.g., pointers to shared data) how-

ever additional compile-time and runtime checks are required. This extension is discussed

in more detail throughout the document. In addition, the current implementation requires

the machine configuration (number of threads and address partitions) to be specified at

compile time. Chapter 11 discusses how the implementation can be extended to perform

the required analysis and optimizations when the machine configuration is not known until

runtime.

1.1.1 Optimizing Shared-Object Accesses

When a thread reads a shared object Os , a function call to the RTS is inserted to retrieve the

value of Os from memory. Similarly, when a thread writes a shared object, a function call

to the RTS is inserted to assign a value to Os . These function calls use the handle associated

with Os to locate the object in memory using the SVD. Using the SVD to locate a shared

object in memory introduces a large overhead and significantly impacts the performance of

UPC programs. When the underlying memory of the shared object is located in a thread T ’s

address partition, T can access Os directly. Thus, the fat pointer used to identify Os in the

SVD can be converted into a thin pointer, representing the memory location of the shared

object. If the underlying memory location is not in T ’s address partition, function calls to

the RTS must be used to access Os . That is, conversion from fat to thin pointers is only

valid when the accessing thread maps to the address partition containing the shared object.

The RTS allocates the underlying data for the shared object based on the shared object’s

affinity. If a thread T1 owns a shared object Os , the underlying storage for Os is located in

T1’s address partition. Thus, all shared-object accesses of Os by T1 can use thin pointers.

A second thread, T2, that maps to the same address partition can also use thin pointers to

access Os . Similarly, T1 will be able to convert fat pointers to thin pointers for any shared
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objects owned by T2.

The conversion from fat pointer to thin pointer is facilitated by functions defined in the

RTS. These functions return the base address of the shared object in local memory. This

conversion requires several address translations by the SVD and thus has a cost similar to

a shared-object access. Thus, converting fat pointers to thin pointers at runtime for every

shared-object access will result in little performance improvement. However, if a shared-

object is referenced many times, the base address is only computed once and all subsequent

shared object accesses will use the thin pointer which will result in a performance improve-

ment. In the case of shared arrays, the base address of the array is obtained from the RTS

functions. Local elements of the shared array can then be accessed directly using the base

address and an offset computed based on the index for each array element.

The analysis will focus on shared-object accesses located in upc forall loops. Data-

parallel programs tend to spend most of their computation time in loops. Therefore, op-

timizing loops should have the greatest impact on performance. The affinity between a

shared object and a thread is determined at compile time using the affinity test specified in

the upc forall loop combined with the blocking factor of the shared object and the number

of threads.

1.1.2 Shared-Object Access Coalescing

The coalescing of shared-object accesses allows several such accesses to be executed by a

single call to the RTS. AssumeN shared references, rs1 , rs2 , . . . rsN each accessing a differ-

ent shared object Os1 , Os2 , . . . OsN . Each shared-object access is translated into a function

call to the RTS, resulting in N function calls. When all shared objects belong to the same

shared array and have affinity with the same thread T , the N shared-object accesses can

be coalesced into a single function call to the RTS. This Shared-Object Access Coalescing

(SOAC) eliminates the overhead of N − 1 function calls. When the shared-object accesses

are remote reads, the coalesced RTS function will only send a single message to T request-

ing all N shared objects. Thus, N remote shared-object accesses that originally resulted in

N individual messages now result in a single coalesced message to obtainN shared objects.

When the shared-object accesses are remote writes, a single coalesced message is used to

specify the N remote shared objects to be written.

To perform SOAC, the compiler must allocate and manage a temporary buffer to contain

the coalesced shared-objects. Shared-objects that are read are placed into the temporary

buffer by the owning thread. Subsequent uses of the shared-objects must be modified by the
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compiler to refer to the temporary buffer. Similarly, write instructions to coalesced shared-

objects must be modified by the compiler to write to a temporary buffer. The content of this

buffer is sent to the owning thread to be updated once all coalesced writes are performed in

the buffer.

1.1.3 Shared-Object Access Scheduling

When a thread accesses a remote shared-object, the access requires communication from

the accessing thread to the owner of the shared-object. The primary goal of Shared-Object

Access Scheduling (SOAS) is to overlap the latency of the required communication with

other computation. Let Os be a remote shared object. The retrieval of Os must be com-

pleted before Os is used. To avoid stalled CPU cycles due to long communication laten-

cies, the function call to retrieve Os should be scheduled such that Os is available before

the instructions that use Os begin execution. While Os is being retrieved, other com-

putations can be performed. Thus, SOAS only applies to remote shared-object accesses.

Performing this split-phase communication requires: data locality analysis by the compiler

to distinguish between local and remote shared objects, a def-use analysis by the compiler

to determine the placement of the RTS calls, and a mechanism in the RTS to (i) initiate the

retrieval/update of a shared object, (ii) proceed while the retrieval/update is taking place,

and (iii) verify that the retrieval/update has finished before proceeding past a certain point.

This is similar to software prefetching, a well-known compiler optimization that attempts

to reduce the number of data cache misses thereby improving performance [4, 6, 58].

Two cases must be treated separately: an access that must be remote and an access that

may be remote. In the case of an access that must be remote, a call to the RTS initiates

the data transfer and a subsequent call to the RTS blocks until the transfer is complete

(possibly using the return value from the original call for identification). These calls should

be inserted by the compiler. In the case of an access that may be remote, a runtime check is

performed in the RTS to determine the location of the shared object. If the object is local, it

can be returned immediately and the subsequent blocking call is not necessary. If the object

is remote, a later blocking call is required. Analysis and placement of the initiation and

blocking calls will be performed by the compiler.

1.1.4 Optimizing Parallel Loops in UPC

A upc forall loop is a special version of a for loop that is used to distribute iterations of the

loop among all threads. A fourth parameter is added to the loop that specifies an affinity
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test. For a given thread T and a specific iteration of the loop Li, if the affinity test is true

then T executes Li. The UPC front-end transforms a upc forall loop into a traditional for

loop that contains information about the affinity test. In many cases, the loop can be strip

mined to remove the necessity of a branch inside the loop. The new loop nest created by

strip mining will have two loops: the outer loop iterates over blocks of the shared variable

owned by each thread while the inner loop iterates through each block. When the compiler

cannot determine how to strip-mine the upc forall loop, it must insert a branch statement

into the loop body based on the affinity test. Every thread executes the branch statement on

every iteration of the loop to determine if the body of the loop should be executed.

shared [B] int A[N];

u p c f o r a l l ( i =0 ; i<N; i ++; i ) {
A[ i ] = 0 ;
}

f o r ( i =MYTHREAD; i<N; i += THREADS) {
A[ i ] = 0 ;

}

(a) upc forall loop with integer affinity (b) for loop after strip mining

u p c f o r a l l ( i =0 ; i<N; i ++; &A[ i ] ) {
A[ i ] = 0 ;

}

f o r ( i =MYTHREAD∗B ; i<N; i +=THREADS∗B) {
f o r ( j = i ; j<i +B ; j ++) {

A[ j ] = 0 ;
}

}

(c) upc forall loop with pointer-to-shared (d) for loop after strip mining
affinity

Figure 1.2: upc forall loops and the resulting strip-mined loop

Figure 1.2 provides two examples of common upc forall loops and the resulting loops

after strip-mining has been applied. Figure 1.2(a) shows a upc forall loop with an integer

affinity test. Note that the resulting strip-mined loop is a single nest because the inner loop

would be a single iteration (iterate from 0 to 1) and thus can be simplified to the loop shown

in Figure 1.2(b). Figure 1.2(c) shows a upc forall loop with a pointer-to-shared affinity

test based on a one-dimensional shared array A. Each thread is allocated B contiguous

elements of A, where B is the blocking factor specified at compile time. The corresponding

strip-mined for loop is shown in Figure 1.2(d).

1.2 Contributions

The thesis presented here is that the overhead of accessing shared data in a PGAS pro-

gramming model can be significantly reduced using the optimizations described in this
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dissertation. To support this thesis this dissertation makes the following contributions:

• Presents a new locality analysis that allows a compiler to identify the relative thread

that owns shared references in a upc forall loop.

• Describes four locality-aware optimizations that use the results from the locality anal-

ysis: (i) Shared-Object Access Privatization converts accesses to shared data that is

local to the accessing thread into direct memory accesses, circumventing the over-

head of the UPC runtime; (ii) Shared-Object Access Coalescing combines multiple

shared-object accesses to the same remote thread into a single remote access, re-

ducing the number of messages required to access remote data; (iii) Shared-Object

Access Scheduling hides the cost of accessing remote shared data by overlapping the

remote accesses with other computation; and (iv) Updating remote shared-object ac-

cesses reduces the number of accesses to remote data by specifying the operation to

be performed by the owner of the remote data.

• Describes strip-mining optimizations that a compiler can use to reduce the overhead

of executing parallel loop nests.

• Presents performance results that demonstrate significant benefits from performing

locality-aware optimizations and parallel loop overhead reduction. These results in-

clude up to 650 times increase in the sustained memory bandwidth for the STREAM

benchmark; a 60% reduction in the number of remote accesses for the Sobel bench-

mark; and a 2-time increase in the Millions of Floating Point Operations Per Second

for the Random Access benchmark. The results also show that the performance of the

optimized UPC benchmarks are comparable with corresponding OpenMP and MPI

implementations.

1.3 Organization of this Document

The remainder of this document is organized as follows: Chapter 2 introduces the Unified

Parallel C programming language. Chapter 3 defines commonly-used terms that are used

throughout the document. The IBM UPC Compiler and Runtime System are described in

Chapter 4. The locality analysis algorithm is presented in Chapter 5. Chapter 6 presents

optimization algorithms that use the results of the locality analysis to optimize shared-object

accesses. Chapter 7 presents techniques to optimize UPC parallel loops. A performance

analysis of the locality optimizations and of the parallel loop optimization is performed
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on several benchmarks and presented in Chapter 8. There is extensive work related to the

material presented in this document. The related work is presented in Chapter 9, after all

new contributions have been described. This order of presentation allows the related work

to be contrasted to the new contributions. Chapters 10 and 11 present conclusions and future

work. Appendix A presents compiler terminology that should be useful to readers that are

not familiar with the compiler literature.
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Chapter 2

Unified Parallel C

Unified Parallel C (UPC) is an extension of the C programming language that is designed

for parallel programs. UPC employs a Partitioned Global Address Space (PGAS) model,

where the programmer can use a shared address-space programming model but the under-

lying architecture can be shared memory, distributed memory or a combination of both.

The shared memory is partitioned, with a portion of it being local to each thread. The com-

piler and runtime system handle the movement of shared data between processors when

necessary, based on the underlying architecture.

2.1 Shared Objects in UPC

The shared keyword is used in UPC to identify data that is to be shared among all threads.

Every shared object has affinity with one, and only one, thread. The programmer uses a

blocking factor to specify the affinity between shared objects and threads. If a shared object

Os has affinity with a thread T then T owns Os . In an ideal UPC program, the majority

of shared data accesses will be to shared data owned by the accessing thread. Such a data

distribution reduces the amount of data movement between threads, thereby improving the

performance of the program. When a thread T1 uses a shared object that is owned by

another thread T2, and T1 and T2 map to different address partitions, the shared object has

to be copied between T1’s address partition and T2’s address partition.

Shared scalars and structs are considered unique shared objects, while a shared array is a

collection of shared objects. Thus, each shared-array element is a unique shared object; the

terms shared-array element and shared object will be used interchangeably throughout the

document. All shared scalars and structs have affinity with thread 0. Individual elements of

a shared array are distributed among all threads based on the blocking factor. If no blocking

factor is specified by the programmer, elements are distributed in a cyclic fashion, with the
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shared int A[10]; shared [2] int A[10];

Thread 0 Thread 1
A[0]
A[2]
A[4]
A[6]
A[8]

A[1]
A[3]
A[5]
A[7]
A[9]

Thread 0 Thread 1
A[0]
A[1]
A[4]
A[5]
A[8]
A[9]

A[2]
A[3]
A[6]
A[7]

(a) Default (cyclic) blocking factor (b) Blocking factor of 2

Figure 2.1: Shared-array declaration and data-affinity examples (2 threads)

first element owned by thread 0, the second element owned by thread 1, and so forth. If

an infinite blocking factor is specified (denoted with empty square brackets: []), the entire

array has affinity with thread 0. If a blocking factor B is specified, B contiguous elements

of the array are allocated to each thread (i.e. the first B elements are allocated to thread

0, the second B elements are allocated to thread 1 and so forth). Figure 2.1(a) shows the

affinity of each array element given the default (cyclic) blocking factor while, Figure 2.1(b)

uses a blocking factor of 2.

2.2 Shared and Private Pointers

UPC supports four types of pointer declarations:

1. int ∗pp;

2. shared int ∗ps;

3. int ∗shared sp;

4. shared int ∗shared ss ;

Item 1 shows a private pointer pointing to private space (PP), which is a standard C

pointer. Item 2 shows a private pointer pointing to shared space (PS). In this case, each

thread has a private copy of ps that can be used to access shared objects. Item 3 shows

a shared pointer pointing to private space (SP). This type of pointer is not encouraged

because dereferencing it by a thread that does not own the private space may cause an

access violation. To ensure that an access violation does not occur and that the correct data

is obtained when this type of pointer is used, the programmer must be very careful when

allocating memory and assigning the pointers. Item 4 shows a shared pointer pointing to
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shared space (SS). Here, there is only one instance of ss with affinity to thread 0, but all

threads have access to it.

In UPC, the blocking factor is considered part of the type system. Thus, two pointers

to shared data, shared int ∗ps1 and shared [5] int ∗ps2 have different types. This is

important when determining the aliasing in UPC programs – two pointers to shared data

with different blocking factors are not aliased to each other.

2.3 UPC Built-in Functions

UPC provides three predefined identifiers to the programmer. MYTHREAD is an integer

value that evaluates to a unique thread index for each thread at runtime. THREADS is an

integer value that specifies the number of threads created to run the program. It is possible

to specify the number of threads at compile time. Providing this information will allow the

compiler to perform more aggressive optimizations. The number of threads can be defined

at runtime (prior to program execution) using an environment variable. If the number of

threads at runtime is different than the number of threads specified at compile time, the

program terminates with an error message.

The upc threadof function takes a pointer to a shared object as an argument and returns

the thread index that has affinity to the shared object. This function is used to determine the

owner of a shared object.

The remaining built-in functions are outside the scope of this document. A description

of them can be found in the UPC Specifications [56].

2.4 Parallel Loops

The upc forall statement distributes iterations of the loop among all threads. Instead of

each thread executing all iterations of the loop, an iteration is conditionally executed by a

thread based on an affinity test.

The affinity test is specified by the programmer using a fourth parameter in the upc forall

loop declaration. This parameter must contain either an integer, a pointer-to-shared, or the

continue keyword. If no parameter is specified, the continue keyword is assumed. Table 2.1

illustrates the different types of affinity statements that can be used and the corresponding

for loops. When the affinity parameter is an integer, an iteration i will be executed by a

thread j if and only if the affinity parameter modulo the number of threads is equal to j.

When a shared address is used, an iteration i of the loop will be executed by thread j if
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u p c f o r a l l ( i =0 ; i < THREADS; i ++; i ) {
A[ i ] = MYTHREAD;

}

f o r ( i =0 ; i < THREADS; i ++) {
i f ( ( i%THREADS) == MYTHREAD )

A[ i ] = MYTHREAD;
}

u p c f o r a l l ( i =0 ; i < N; i ++; &A[ i ] ) {
A[ i ] = MYTHREAD;

}

f o r ( i =0 ; i < THREADS; i ++) {
i f ( upc threadof (&A[ i ] ) == MYTHREAD)

A[ i ] = MYTHREAD;
}

u p c f o r a l l ( i =0 ; i < N; i ++; c o n t i nu e ) {
A[ i ] = MYTHREAD;

}

f o r ( i =0 ; i < N; i ++) {
A[ i ] = MYTHREAD;

}

(a) upc forall loop (b) Corresponding for loop

Table 2.1: Example upc forall loops and their associated for loops

and only if the shared address has affinity with j. In this case, it is common to use the loop

induction variable as an index into a shared array. When the continue keyword is used, or no

statement is specified, the loop body is executed by all threads. Note that in this example,

since A is a shared array, the use of the continue keyword causes a data race as seen in the

third loop of Table 2.1(b).

2.5 Synchronization

Synchronization can be performed in several different ways. The upc barrier statement

denotes a synchronization point. A thread cannot begin executing the next statement after

the upc barrier until all threads have reached the upc barrier statement.

Split-phase barriers are implemented using an upc notify followed by an upc wait

statement. The upc notify statement indicates when a thread T reaches a synchroniza-

tion point. T continues executing instructions located between the upc notify and upc wait

statements. T must halt execution when it reaches the upc wait statement until all threads

have executed the upc notify statement. When a upc notify statement has been encoun-

tered, the next synchronization statement to be executed must be a upc wait [56].

The upc fence statement ensures the completion of all shared-object accesses located

lexically before the fence prior to the execution of any shared-object access located lexically

after the fence.
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2.6 UPC Memory Model

The memory model in UPC has two distinct access modes: strict and relaxed. In the relaxed

memory model, shared-object accesses can occur in any order as long as data dependencies

are preserved and all shared-object accesses have completed at the end of a synchronization

point. Similarly, no shared-memory accesses can begin until all shared-memory accesses

prior to a synchronization point have completed and are visible to all threads. This memory

model is very flexible in that it provides the compiler with the most opportunities to reorder

shared-object accesses. As long as traditional data dependencies are preserved, the compiler

is free to move shared object accesses anywhere between synchronization points.

The strict memory model forces sequential consistency. All shared-memory accesses

must complete in the specified order before execution continues. A strict shared-memory

reference can also act like a fence in that any relaxed shared-memory access that occur

before it cannot be moved after it. Furthermore, any relaxed shared memory accesses that

occur before the strict access must complete before execution can proceed. In this sense,

strict accesses can be used to perform memory synchronization. This model is very restric-

tive in terms of the optimizations that can be performed by the compiler.

The programmer has the ability to specify an access mode to a specific shared variable,

to a region of code or to the entire program. That is, the programmer can declare a program

to run in relaxed mode, but define specific shared variables, specific statements or regions

of code that must adhere to the strict access mode. Accesses to these strict variables are

identical to a upc fence instruction: all shared accesses before the strict access must com-

plete and no accesses to subsequent shared variables can be performed until after the strict

access has completed. Similarly, shared variable accesses cannot be moved across a strict

shared variable access. Unless otherwise stated, we will assume a relaxed memory model

throughout this document.

2.7 Collectives

The UPC specification provides many collective operations (e.g., broadcast, scatter, gather,

exchange, permute, reduction, and sort) that can be used to simplify common operations

in parallel programs [55]. The collectives must be executed by every UPC thread. The

collective operations allow the programmer to specify the type of synchronization for both

the beginning of the collective and the end of the collective using one of three modes.

1. NO: the collective may read or write as soon as a thread enters the collective function.

15



2. MY: the collective may read or write data only to threads that have entered the col-

lective function.

3. ALL: the collective may read or write data only after all threads have entered the

collective function.

The synchronization mode is specified in the flags parameter passed to the function

call. Thus, the compiler has access to the synchronization mode and is typically able to

determine the type of synchronization specified by the programmer.

2.8 Limitations of UPC

We have implemented several parallel algorithms — stencil computation and linear algebra

operations such as matrix-vector and Cholesky factorization — in the UPC programming

language. During this effort we identified several issues with the current language defini-

tion, such as:

• UPC has rudimentary support for data distributions. In UPC, shared arrays can only

be distributed in a block cyclic fashion.

• UPC has a flat threading model. This model does not support subsets of threads.

• UPC focuses primarily on data parallel applications. While task-parallelism in UPC

is possible, UPC task-parallel programs are not as elegant as the same programs in

other programming languages.

• The definition of collectives in UPC has the following shortcomings: collectives can-

not operate on subsets of threads; shared data are not allowed as a target for collective

operations; a thread cannot concurrently participate in multiple collectives.

Section 4.2 presents an extension to the UPC language that we proposed to enhance data

distribution. This change to UPC extends the way shared data can be distributed among

threads and is extremely useful for certain types of scientific applications. In addition, this

extension allows UPC programs to interface with existing libraries that require a specific

data layout.

2.9 Chapter Summary

This chapter has presented a brief overview of the UPC programming language including

(i) how shared objects are declared and laid out; (ii) the different types of pointers that are
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available in UPC; (iii) how work is distributed using parallel loops; (iv) the UPC memory

model; (v) how synchronization is performed; (vi) collective operations that can be used

to simplify programming. The following chapter presents UPC-specific definitions and

terminology that will be used throughout the remainder of the document.
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Chapter 3

Definitions

This chapter introduces terminology that will be used throughout the document. It begins

with a discussion of the the global view (logical layout) and local view (physical layout)

of UPC shared arrays and defines terms used to describe the different parts of the shared

arrays for the different views. These terms are used when describing the locality analysis

and subsequent UPC optimizations. Definitions of general compiler terminology used in

this document can be found in Appendix A.

3.1 UPC Shared Array Layout

Shared arrays in UPC can be viewed in two separate ways: (i) the global or logical view;

(ii) the local or physical view. The global view encompasses the entire array. The physical

view shows how the blocks of the shared array are allocated to each thread.

3.1.1 Global Shared Array Layout

The global view of a shared array is concerned with how elements of the array are logically

distributed among each of the threads. In the global view, elements of a shared array As are

grouped together in blocks of size B and divided among T threads.

When discussing the global view of a shared array, the following terminology is used.

Blocking factor The blocking factor, B for a shared object Os describes the number of

consecutive elements that have affinity to each thread.

Block group A block group, G is a group of blocks of elements for the shared object

Os such that each thread owns one block in the group. The size of a block group, |G|,
is computed by multiplying the blocking factor of the shared object by the number of

threads, as seen in Equation 3.1.
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|G| = B ∗ T (3.1)

Given a linearized offset, pos, for a shared object, the block group index where pos

is located is computed using equation 3.2. The linearized offset representing the first

position of a block group is computed using equation 3.3. Note that equation 3.2

uses integer division and thus the division cannot be simplified when substituting

equation 3.2 into equation 3.3.

Index(G) =
⌊
pos

|G|
⌋

(3.2)

Gstart = Index(G) ∗ |G| (3.3)

Within a block group, the block of shared array elements owned by the executing

thread T is specified as BlockT .

BlockStartT = B ∗ MYTHREAD (3.4)

BlockEndT = BlockStartT + B − 1 (3.5)

The first and last indices for BlockT are computed using equations 3.4 and 3.5 re-

spectively. It follows from BlockStartT and BlockEndT that the size of BlockT is

B.

Thread group A thread group is a group of threads that maps to the same address parti-

tion. The thread group size, TAP , is the number of threads that map to an address

partition. The subscript AP indicates that we are referring to the subset of threads

that map to the same address partition. In a shared-memory environment, all threads

belong to the same thread group and thus the thread group size is the total number

of threads (TAP = T ). In a distributed memory environment, each thread maps to a

different address partition (TAP = 1). In a hybrid environment, the thread group size

is determined by the number of threads and the number of nodes. For simplicity, we

assume the same thread group size for all address partitions (i.e. T % TAP = 0). We

also assume a straightforward sequential mapping of threads to address partitions:

given T threads, N nodes and a thread group size of TAP (TAP ≤ T , TN = TAP )

threads 0 to TAP−1 are mapped to node 0, threads TAP to TAP +TAP−1 are mapped

to node 1, etc.
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Consider a shared array As with blocking factor B and Z elements, declared in UPC as:

shared [B] int A[Z];

Figure 3.1 shows the logical view of As , when run in an execution environment containing

T threads and N address partitions. Assume that each thread is allocated K contiguous

blocks of As (i.e. Z > B ∗ T and Z
B = K).

... ...... ............ ... ...... ...

BB B B

G

BB
AP 0 AP N − 1 AP 0

T − TAP − 1 T − 10 TAP − 1 0 TAP − 1

Figure 3.1: Global view of a UPC shared array

Figure 3.1 presents the elements of the array As grouped into segments of B elements

(first division below the array). The thread that owns each segment is indicated above the

array. The figure also shows the address partition that each thread group belongs to (second

division below the array). Finally, the figure indicates where the first block group ends

(third division below the array).

Given TAP threads per address partition, TAP ≤ T , each address partition contains

AP = B × TAP elements of As. The representation in Figure 3.1 is general. In a hybrid

environment with multiple threads per address partition (i.e. many-to-one mapping) 1 <

TAP < T . In a shared-memory environment TAP = T . When TAP = 1 there is a single

thread operating in each address partition (i.e. one-to-one mapping).

3.1.2 Local Shared Array Layout

Thread 0 ...
...

... ...

...
...

... ...

.
.
.

Thread T − 1

C1C0 CK

C1C0 CK

Figure 3.2: Physical view of a UPC shared array

The local view of a shared array is concerned with the layout of the shared array on each

thread. Within the local storage of each thread a block is kept as a collection of contiguous

memory locations called a course. Figure 3.2 shows the corresponding physical view of
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the shared array in Figure 3.1. When discussing the logical view of a shared array, the

following terminology is used.

threadof The threadof of a specific array location is the thread ID that owns the specified

array element. For shared arrays, the threadof term is only used in reference to a

specific array element (i.e. it does not make sense to discuss the threadof of an entire

shared array).

courseof The courseof of a specific array element is the local block number (or course

index) in which the element resides. The term courseof is only used in reference to a

specific array element of a shared array.

phaseof The phaseof of a specific array element is the offset within the course where the

element resides. The term phaseof is only used in reference to a specific array element

of a shared array.

This physical layout of elements of the shared array is required by the UPC memory

model. This layout allows the programmer to cast a local shared array element to a local

pointer and then walk through all of the local elements of the shared array contiguously. The

downside to this layout is the indexing computations that need to be generated to convert

a shared array element As (global view) into a memory location (physical view). This

indexing is discussed in more detail in Section 4.3.4.

3.2 UPC Terminology

Shared-object access A shared-object access is an access (read or write) to a variable

marked as shared in a UPC program. The object can be any type (scalar, struct,

array) and thus the access may or may not have an index or offset associated with it.

A shared-object access is performed using functions defined in the RTS. Each access

(i) determines the location of the shared object in memory using the SVD and (ii)

sets or gets the value of the shared object, depending on the access type. The SVD

determines the memory location by performing several address translations using a

unique handle or fat pointer that identifies the object. A single handle is used to

identify all shared objects from the same shared array. Shared-object accesses are

expensive to perform because of the required address translations.

Owning thread Given a shared object Os , the owning thread or owner thread is the thread

that Os has affinity with.
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Accessing thread Given an access to a shared object, the thread performing the access is

the accessing thread.

Local shared-object access A local shared-object access occurs when a thread T accesses

a shared object Os that is located in the address partition of T . In an all-to-one

mapping, all shared-object accesses will be local, while in a one-to-one mapping

only shared-object accesses performed by the owner thread will be local. In a many-

to-one mapping, some shared object accesses will be local based on the layout of the

shared objects.

Remote shared-object access A remote shared-object access occurs when a thread T ac-

cesses a shared object Os that is not located in the address partition of T . In an all-to-

one mapping there are no remote shared-object accesses. In a one-to-one mapping,

any shared-object access performed by a thread that does not own the shared-object

will be remote. In a many-to-one mapping, the shared-object accesses may be remote,

depending on the layout of the shared objects.

Direct pointer access A direct pointer access refers to directly accessing a shared object

using its address. Direct pointer accesses can only be performed for local shared-

object accesses. In other words, it is not possible to perform a remote direct pointer

access.

Thread The UPC specification defines a thread as “an instance of execution initiated by

the execution environment at program startup”[56]. Unless otherwise stated, a thread

will refer to a UPC thread.

Node A node corresponds to a unique address partition in a given execution environment.

A shared-memory environment will contain a single node while distributed and hy-

brid environments will contain multiple nodes.

Shared reference The compiler uses a reference to represent indirect accesses to memory

(access through a pointer, array or a structure). A reference contains information

about the base symbol being accessed, the offset (also referred to as the index) and

the data type and length. A shared reference is a reference where the base symbol

has been marked as shared. A shared reference for the shared array access A[i ][ j ] is

represented as Ai,j .
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Iteration Space A loop nest Lnest can be described by its iteration space. The iteration

space contains one point for every iteration of the loops in Lnest, where a point is a

unique combination of loop induction variables.

Iteration Vector An iteration vector is used to represent points in the iteration space.

Given a loop nest Lnest containing m loops, the iteration vector contains m inte-

gers representing the iteration number for each loop in Lnest, ordered by nesting

level [4, 58]. The iteration number for a loop corresponds to a unique value for

the loop induction variable, based on the loop bounds and increment. When Lnest

contains a upc forall loop it is a parallel loop nest and each iteration vector is exe-

cuted by only one thread. We assume the upc forall loop has either an integer or a

pointer-to-shared affinity test; upc forall loops that use the continue affinity test are

not considered as parallel loops.

To determine the physical location of each array element accessed by a loop, the itera-

tion vector is converted into a linearized offset from the base of the array. This is done by

multiplying the iteration vector by a column vector representing the dimension sizes. Given

an N -dimensional array where xi represents the number of elements in dimension i, the

dimension size vector dimsize is computed as follows:

dimsize[i] =
{ ∏N

j=i+1 xj 1 ≤ i < N

1 i = N

0 3 6 9
12 15 18 21
24 27 30 33
36 39 42 45
48 51 54 57

1 4 7 10
13 16 19 22
25 28 31 34
37 40 43 46
49 52 55 58

2 5 8 11
14 17 20 23
26 29 32 35
38 41 44 47
50 53 56 59

A[][][0] A[][][1] A[][][2]

Figure 3.3: Layout of 3-dimensional array: int A [5][4][3]

Figure 3.3 shows an example of a 3-dimensional array with dimension sizes of 5, 4 and

3. The value in each element indicates the element’s offset from the base of the array. The

dimension size vector for this array is:

dimsize =

 12
3
1


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The iteration vector for element A [0][1][2] is [0 1 2], which is multiplied by dimsize

to obtain a linearized offset of 5. Similarly, the iteration vector for element A [3][3][2] is

[3 3 2] which represents a linearized offset of 47.

3.3 Chapter Summary

This chapter provides an overview of terminology used to describe UPC shared arrays. A

shared array has two views: (i) a logical or global view; and (ii) a physical or local view.

Typically the programmer will consider the logical view of the shared array, however the

compiler must use the physical view when performing locality optimizations. The defini-

tions presented here will be used extensively when describing the locality analysis and the

locality optimizations in Chapters 5 and 6.
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Chapter 4

The IBM UPC Compiler and
Runtime System

The IBM XL UPC compiler, xlupc, is a full implementation of the UPC language version

1.2 supporting IBM pSeries R© systems running the AIX R© or Linux operating systems. The

xlupc compiler builds on the well-known strength of the IBM XL compiler family and on

a scalable runtime system designed and implemented as a collaboration between IBM’s

compiler technology group in Toronto and IBM Research.

The xlupc compiler is a full compiler providing extensive diagnostics and compile-time

syntax checking of UPC constructs. As opposed to a source-to-source translator, a full

compiler offers the advantage that the language semantics can be carried on from parsing

through different levels of optimization and all the way to the code generator. Figure 4.1

shows the components of xlupc and UPC Runtime System.

The compiler Front-End (FE) parses the UPC source code and generates a three-address

intermediate representation called Wcode. Wcode is a stack-based intermediate language

that provides a well-established interface between IBM compiler components. The Toronto

Portable Optimizer (TPO) performs high-level optimizations using the Wcode generated by

the FE. The compiler back-end (TOBEY) generates object code based on the Wcode input

from TPO. TOBEY performs various low-level optimizations including software pipelining

and register allocation based on the optimization level. The UPC Runtime System (RTS)

contains data structures and functions that are used during the runtime execution of a UPC

program, similar to GASNet [13]. Of the components seen in Figure 4.1, the FE and TPO

have been modified to handle UPC code while TOBEY remains unchanged. The UPC

Runtime System was created specifically for the UPC compiler.

The FE transforms all UPC-specific source code into traditional Wcode with additional

information. For shared symbols, this information includes the type (shared array, private
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Figure 4.1: Components used in IBM’s XL UPC compiler and runtime system

pointer to shared, shared-pointer to shared), the blocking factors (if applicable) and the

access semantics to use (strict or relaxed). For upc forall loops, the affinity test is specified.

General information including the number of threads and number of nodes (if specified at

compile time) is also included in the Wcode.

When compiling UPC programs TPO performs two different functions: transforma-

tions and optimizations. When performing transformations, TPO converts all shared-object

accesses (reads and writes) into corresponding function calls defined in the RTS. These

function calls are used to access the shared-objects using the SVD. Upc forall loops are

transformed into traditional C for loops with a branch guarding the execution of the loop

body. When performing optimizations, UPC-specific optimizations are performed in addi-

tion to a subset of traditional optimizations. When compiling with optimizations, all opti-

mizations are performed before the transformations and any UPC-specific code that is not

optimized is converted using the transformations. When compiling without optimizations,

the transformations are run to ensure the correct execution of the program.

The output of TPO is standard Wcode — TOBEY has not been modified to deal with

UPC code. All UPC-specific portions of the program are either optimized or transformed

by TPO. Likewise, the system linker/loader also has not been modified.
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4.1 Overview of TPO

Toronto Portable Optimizer (TPO) originated as an interprocedural optimizer for RS/6000

machines. It has evolved since its conception into a compiler component that analyzes

and transforms programs at both the procedure (intraprocedural) and whole program (in-

terprocedural) level. The purpose of TPO is to reduce the execution time and memory re-

quirements of the generated code. TPO is both machine- and source-language independent

through the use of Wcode.

Wcode from front end

Wcode to back end

Wcode and partial
call graph and 
symbol table to 

link pass

Decode

Optimize

Collection

Encode

Control Flow
Data Flow
Loop Optimization

Figure 4.2: High-level control flow through TPO

TPO performs intraprocedural analysis on individual files at compile time. Intraproce-

dural and interprocedural analysis is performed on an entire program at link time. Figure 4.2

shows the high-level flow of control through TPO. At compile time, input into TPO is pro-

vided from the compiler front end. At link time, input into TPO is provided from object

files and libraries, some of which may have been compiled by TPO. Object files compiled

by TPO are supplemented by Wcode and a partial call graph and symbol table.

The three main groups of optimizations performed in TPO are control flow optimiza-

tions, data flow optimizations, and loop optimizations. While these optimizations can

be performed at both compile time (intraprocedural scope) and link time (interprocedu-

ral scope) the UPC-specific optimizations are only applied at compile time. Unless stated

otherwise, all discussions in this document pertain strictly to the intraprocedural analysis

steps performed by TPO.

4.1.1 Loop Optimizations in TPO

The current version of TPO performs a subset of traditional loop optimizations when han-

dling UPC code. In addition to the traditional loop optimizations, the locality analysis,
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locality optimizations and the parallel loop-nest optimizations described in Chapters 5, 6,

and 7 have been added to the loop optimization framework.

Figure 4.3: Loop optimizations in TPO

The execution sequence of the major loop optimizations performed in TPO is seen in

Figure 4.3. The following sections discuss the traditional loop optimizations, providing

examples to illustrate the code transformations that they perform.

Loop Normalization

Loop normalization modifies a countable loop to start at a specific lower bound and iterate,

by increments of 1, to a specific upper bound. In TPO, normalized loops have a lower

bound of 0. The upper bound is computed based on the original lower bound, upper bound,

and increment of the loop to ensure that the loop iterates the correct number of times. Uses

of the induction variable in the loop body are modified to maintain consistency with the

original loop. Figure 4.4(a) shows an example of an un-normalized loop. The normalized

version of the loop is seen in Figure 4.4(b).

1 f o r ( i =10; i < n ; i ++) {
2 A[ i ] = A[ i +2] ∗ 2 ;
3 B[ i +1] = A[ i −1] + 3 ;
4 }

1 f o r ( i =0 ; i < ( n−10); i ++) {
2 A[ i +10] = A[ i +12] ∗ 2 ;
3 B[ i +11] = A[ i +9] + 3 ;
4 }

(a) Un-normalized loop (b) Loop after normalization

Figure 4.4: Loop normalization example

Whenever possible, the compiler creates bump normalized loops. A loop is bump nor-

malized if its first iteration is 0 and the induction variable is incremented by 1 in every

iteration of the loop. Loops whose induction variables increment by 1 every iteration are

described as having a stride of 1. A loop that is not countable cannot be bump normalized.
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UPC Locality Versioning

UPC locality versioning operates on parallel loop nests that contain pointers to shared-

objects. It creates two copies of the original parallel loop nest, guarded by a check to

determine if the shared-object is a candidate for locality analysis. This check creates two

control flow paths, the true path and the false path. The shared references in the true control

flow path (i.e. the shared-object is a candidate for locality analysis) are added to a list and

considered by the subsequent locality analysis. The shared references in the false control

flow path are not added to a list and thus will not be considered by locality analysis.

1 i n t foo ( shared i n t ∗A) {
2 i n t i ;
3 u p c f o r a l l ( i =0 ; i<N; i ++; &A[ i ] ) {
4 A[ i ] = MYTHREAD;
5 }
6 re turn 0 ;
7 }

1 i n t foo ( shared i n t ∗A) {
2 i n t i ;
3 i f ( i s s h a r e d a r r a y (A) &&
4 upc threadof (A)==0 &&
5 upc phaseof (A)==0 ) {
6 u p c f o r a l l ( i =0 ; i<N; i ++; &A[ i ] ) {
7 /∗ A i s a c a n d i d a t e f o r
8 l o c a l i t y a n a l y s i s ∗ /
9 A[ i ] = MYTHREAD;

10 }
11 }
12 e l s e {
13 u p c f o r a l l ( i =0 ; i<N; i ++; &A[ i ] ) {
14 /∗ A i s NOT a c a n d i d a t e
15 f o r l o c a l i t y a n a l y s i s ∗ /
16 A[ i ] = MYTHREAD;
17 }
18 }
19 re turn 0 ;
20 }

(a) Original upc forall loop (b) After UPC locality versioning

Figure 4.5: UPC locality versioning example

Figure 4.5 shows an example upc forall loop before and after locality versioning. For

the loop to be a candidate for locality analysis, the compiler must be able to prove that the

shared reference A points to a shared array and begins at the beginning of a block group.

The calls to upc threadof and upc phaseof return the thread and phase of the first element

of A. If either of these values are non-zero, then the first element of A is not located at the

start of a block group. If A does not point to a shared array (i.e. it points to a scalar), it is

also not a candidate for locality analysis. The shared reference on line 9 of Figure 4.5(b)

will be added to a list and considered for locality analysis while the shared reference on

line 16 will not be considered.

UPC locality versioning was implemented by Ettore Tiotto at IBM and thus a detailed

discussion falls outside the scope of this document.
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Division/Modulo Strength Reduction

The division and modulo strength reduction optimization performs strength reduction op-

timizations on division and modulo operations that are created by the UPC optimizations.

More information about strength reduction can be found in Appendix A.

4.1.2 Internal Representations in TPO

During the optimization pass, TPO decodes Wcode and builds several internal represen-

tations used during the optimization phase. A Control Flow Graph (CFG), Data Flow

Graph (DFG), and Data Dependence Graph (DDG) are among the representations avail-

able throughout the optimization phase. The additional information passed by the FE about

shared symbols is accessible from all of these representations. A data structure containing

information specifically about loops is maintained separately from the CFG and DDG. A

loop descriptor contains information about each loop, including (i) the lower and upper

bounds (in numerical form if known at compile time or symbolic form otherwise); (ii) the

induction variable used in the loop; and (iii) a list of references that occur in the loop.

For references corresponding to shared pointers and shared arrays, information about the

blocking factor, passed through the Wcode, can be accessed. Every procedure has a loop

table that contains the loop descriptors for each loop found in the procedure.

TPO also contains a lexicographical list of statements for each procedure. A statement

is a collection of one or more expressions, stored in a tree representation. Every expression

contains an instruction and (when applicable) a symbol index.

For UPC-specific programs, TPO also maintains several data structures that contain

information specific to shared symbols. These structures include an associative map that

associates the shared symbol with the handle used by the RTS to identify the shared ob-

ject. This map contains typical information about the shared object (such as data type and

length), as well as UPC-specific information including the blocking factor and access type

(strict or relaxed).

Loop Structure in TPO

The structure of loops in TPO corresponds to the general description of regions in the

definitions section. A loop in the source code is transformed into five distinct parts in TPO,

each having its own purpose.

Figure 4.6 gives a general overview of the parts of a loop structure in TPO. The guard

block is the block immediately preceding entry into a loop. The guard branch protects

32



Guard
Block

 Loop 
Prolog

Loop
Body

 Loop 
Epilog

Exit
Block

Figure 4.6: Loop structure in TPO

the execution of the loop and is the last statement in the guard block. If the guard branch

evaluates to true, a jump instruction is executed and control jumps directly to the exit block,

skipping the loop entirely. If the guard branch evaluates to false, all blocks representing the

loop are executed at least once.

The loop prolog is located immediately below the guard branch of the loop, before the

loop body. Since it is not included in the loop body, only instructions that are invariant to

the loop are located in the loop prolog. The loop prolog normally contains the initialization

of the induction variables used in the loop body, as well as any loop invariant code that has

been moved out of the loop by the loop invariant code motion optimization.

The loop body contains all of the loop variant statements that were in the original loop

plus any additional statements that were moved into the loop body by optimizations.1 Note,

in Figure 4.6, that the loop body can contain an arbitrary number of basic blocks with

arbitrary control flow between them. The last statement of the last basic block in the loop

body is called the Latch Branch. It is a test to determine if the current value of the induction

variable is within the bounds set by the original loop. If it is, the latch branch is taken,

resulting in the execution of another iteration of the loop. If the value is not within the

bounds, the latch branch is not taken and control flows to the loop epilog.

The loop epilog block contains statements to be executed after the loop body has exe-

cuted but only if the loop body was executed. Like the loop prolog, the loop epilog only
1Aggressive copy propagation is one example of an optimization that can move statements into a loop body.
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contains statements that are invariant to the loop body. For instance, any statements that

were identified as loop invariant but could not be put into the loop prolog due to data de-

pendencies would be placed in the loop epilog. It is possible that the loop epilog remains

empty in which case it is removed by a later optimization.

The beginning of the exit block contains the target of the guard branch. This is the first

block executed if the guard condition protecting the loop evaluates to true and the jump is

taken.

Figure 4.7 shows an example loop in C source code (a), and the loop representation

within TPO (b). This representation ensures that no unnecessary instructions are executed

if the loop body does not execute at least one iteration.

1 f o r ( i =k ; i < j ; i ++) {
2 A[ i ] = A[ i ] + 2 ;
3 B[ i ] = B[ i −1] ∗ 3 ;
4 }

1 i f ( k >= j ) goto L1
2 i = 0
3 L2 :
4 A[ i +k ] = A[ i +k ] + 2 ;
5 B[ i +k ] = B[ i +k−1] ∗ 3 ;
6 i = i + 1 ;
7 i f ( i < j−k ) goto L2
8 L1 :

(a) Source loop (b) TPO representation

Figure 4.7: Example loop

The first branch (guard branch) in the code of Figure 4.7(b), protects the initial execution

of the loop. This branch ensures that no code between the guard branch (line 1) and the

branch target (line 8) is executed if the original loop would not have been executed at

least once. If the compiler can ensure that the test condition always evaluates to true (i.e.

the initial value of the induction variable is always less than the upper bound) the guard

branch can be removed by later optimizations. However, the guard branch is always present

while loop optimizations are performed. All loops in TPO are changed into do loops in

which the exit condition is tested at the end of the iteration, instead of the beginning of the

iteration. This transformation is always legal because the initial execution of the loop body

is protected by the guard branch.

The body of the loop remains the same; the assignments to the two arrays A and B

remain unchanged. The latch branch (line 7) tests whether the induction variable is within

the original bounds. As long as it is, control continues to jump back to the first statement

in the loop body (line 3). As soon as the induction variable has passed the upper bound,

control falls through to the second label (line 8).
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4.2 Multidimensional Blocking of UPC Arrays in the XL UPC
Compiler

The IBM XL UPC compiler provides an extension to the UPC language to add support for

multiblocked or tiled arrays. Tiled data structures are used to enhance locality (and therefore

performance) in a wide range of HPC applications [12]. Multiblocked arrays can help UPC

programmers to better express the parallelism, enabling the language to fulfill its promise

of allowing both high productivity and high performance. Also, having this data structure

available in UPC facilitates the use of library routines, such as the Basic Linear Algebra

Subprograms (BLAS) [26], that already make use of tiled data structures.

1 shared double A[M] [N ] ;
2 f o r ( i =1 ; i<M−1; i ++) {
3 u p c f o r a l l ( j =1 ; j<N−1; j ++; &A[ i ] [ j ] ) {
4 B[ i ] [ j ] = 0 . 2 5∗ (A[ i −1][ j ]+A[ i + 1 ] [ j ]+A[ i ] [ j −1]+A[ i ] [ j + 1 ] ) ;
5 }
6 }

Figure 4.8: Stencil computation on a 2-dimensional shared array

Consider a simple stencil computation on a 2-dimensional array that calculates the av-

erage of the four immediate neighbours of each element as seen in Figure 4.8. Since it has

no data dependencies, this loop can be executed in parallel. However, the naive declaration

of A above yields suboptimal performance. For example, A[i−1][j] will likely not be on

the same UPC thread as A[i ][ j ] and thus its access may require inter-node communication.

A somewhat better solution allowed by UPC is a striped 2D array distribution, created by

declaring the shared array as:

shared [N∗b] double A[M][N];

The blocking factor, N ∗ b causes the array to be allocated in contiguous blocks of size

N ∗ b. This however, limits parallelism to N
b processors and results in O(1

b ) of the array

accesses to be remote. By contrast, a tiled layout allows M×N
b2

parallelism and requires only

O( 1
b2

) of the accesses to be remote. Typical MPI implementations of stencil computations

tile the array and exchange “border regions” between neighbours before each iteration. This

approach is also possible in UPC by declaring the shared array as:

struct block double tile [b][b ]; ;
shared block A[M/b][N/b];
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However, the declaration above complicates the source code because two levels of indexing

are needed for each access. We cannot pretend that A is a simple array anymore. To allow a

simpler implementation of multi-dimensional stencil computations, we propose a language

extension that can declare a tiled layout for a shared array, as follows:

shared [b0][b1 ]...[ bn−1] <type> A[d0][d1] ... [dn−1];

Array A is an n-dimensional multiblocked (or tiled) array with dimensions d0 . . . dn−1 with

each tile being an array of dimensions b0 . . . bn−1. Tiles are understood to be contiguous

in memory. Section 4.3.4 explains how the RTS determines the location of a multiblocked

shared array element based on the indices used to specify the element.

4.2.1 Multiblocked Arrays and UPC Pointer Arithmetic

The address of any UPC array element can be taken with the upc addressof function or with

the familiar & operator. The result is called a pointer-to-shared, and it is a reference to

a memory location somewhere within the space of the running UPC application. In our

implementation a pointer-to-shared identifies the base array as well as the thread, course

and phase of an element in that array.

UPC pointers-to-shared behave much like pointers in C. They can be incremented,

dereferenced, compared, etc. The familiar pointer operators (*, &, ++) are available. A

series of increments on a pointer-to-shared will cause it to traverse a UPC shared array in

row-major order. Pointers-to-shared can also be used to point to multiblocked arrays. Users

can expect pointer arithmetic and operators to work on multiblocked arrays just like on

regular UPC shared arrays. Multiblocked arrays can support affinity tests (similar to the

upc threadof function) and type casts the same way as regular UPC arrays do.

Dynamic allocation of UPC shared arrays can also be extended to multiblocked arrays.

UPC memory allocation routines always return shared variables of type shared void ∗,
thus multiblocked arrays can be allocated with such primitives as long as they are cast to

the proper type.

4.2.2 Implementation Issues

The current implementation supports only statically-allocated multiblocked arrays. Dynam-

ically allocated multiblocked arrays could be obtained by casting dynamically allocated data

to a shared multiblocked type, making dynamic multiblocked arrays a function of correct

casting and multiblocked pointer arithmetic. While correct multiblocked pointer arithmetic
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is not conceptually difficult, implementation is not simple: to traverse a multiblocked array

correctly, a pointer-to-shared will have to have access to all blocking factors of the shared

type.

Another limitation of the current implementation is related to the cyclic distribution

of blocks over UPC threads. An alternative would be to specify a processor grid over

which blocks could be distributed. To do this, the equations to convert a shared array index

into an offset (Section 4.3.4) would have to be modified to take thread distribution into

consideration. We have not implemented this yet in the RTS.

4.3 The IBM UPC Runtime System

The IBM UPC Runtime System (RTS) was designed and implemented by a group of re-

searchers at the IBM TJ Watson Research Center [7, 10]. It has been designed for scalability

in large parallel machines, such as BlueGene/L. It exposes to the compiler an Application

Program Interface (API) that is used to allocate and free shared data, to access shared data,

and to perform synchronization.

The RTS uses a common API implemented by one of several transport layers. This

API includes library-specific functions to get and set shared data and perform synchroniza-

tion. The RTS currently supports three transport layers: (i) SMP using Pthreads, and two

types of distributed memory processing using (ii) the Low-level Application Programming

Interface (LAPI) and (iii) the Blue Gene R©/L message layer. This document will focus on

two transport layers: Pthreads and LAPI. For hybrid environments, the transport layer uses

a combination of Pthreads and LAPI.

4.3.1 The Shared Variable Directory

The Shared Variable Directory (SVD) is a partitioned data structure used by the RTS to

manage allocation, de-allocation and access to shared objects. It is designed to scale to

a large number of threads while allowing efficient manipulation of shared objects. Every

shared variable in a UPC program has a corresponding entry in the SVD. Each shared

variable has a unique handle that is used by the RTS to locate the object through the SVD.

This handle is conceptually a fat pointer that contains several fields. The handle is used by

the SVD to determine the location of the shared object in memory. In the case of shared

arrays, the combination of the array’s handle and an index are used to locate the shared

object. It is the responsibility of the compiler to manage the SVD entries when shared
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objects are created or go out of scope. A more detailed discussion of the SVD can be found

in [7, 10, 30].

4.3.2 Allocating a Shared-Object

Shared objects are allocated in contiguous segments in each address partition. Within an

address partition, the shared object is further grouped into contiguous sections that have

affinity with the threads that map to the address partition. To allocate a shared array A

declared as:

shared [b] <type> A[N];

the RTS first computes the total number of blocks required for A using the number of

elements (Equation 4.1). Based on the total number of blocks required, the RTS computes

the number of blocks that must be allocated to each thread (Equation 4.2). The local size of

the array that is owned by each thread is computed using Equation 4.3. The sizeof operator

is the traditional C sizeof operator that computes the size of the specified parameter. Finally,

the size that is allocated on each node is computed using Equation 4.4. Note that the total

number of blocks and the number of blocks-per-thread are rounded up to the nearest integer

when the array size is not a multiple of the blocking factor and the number of threads. This

will cause additional array elements to be allocated that will never be accessed. However,

this also makes the local size uniform across all threads, which simplifies the computations

to convert an array index into an offset (see Section 4.3.4).

nblocks(A) =
⌈
num elts

b

⌉
(4.1)

blocks per thread(A) =
⌈
nblocks

T
⌉

(4.2)

local size(A) = blocks per thread(A) ∗ b ∗ sizeof (type) (4.3)

node size(A) = local size ∗ threads per node (4.4)

For example, consider a shared array declared as:

shared [2] int A[15];

compiled for 4 threads, with 2 threads-per-node.

Figure 4.9 shows the logical layout and physical layout per node and per thread for A.

The total number of blocks is 8 and the number of blocks per thread is 2. Thus, each thread
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(a) Logical data layout (all threads) (b) Physical data layout (per node and thread)

Figure 4.9: Shared and private data layouts for shared [4] int A[15], 4 threads, 2 threads
per node

will own 4 elements of A and each address partition will contain 8 elements. Threads T0 and

T1 map to node 0 while threads T2 and T3 map to node 1. Within each node, the blocks for

each thread are allocated in one contiguous segment of memory. Thus, on node 0 all of the

elements owned by thread T0 are located before the elements owned by thread T1. Similarly,

on node 1 all elements owned by thread T2 are located before the elements owned by thread

T3. The UPC specification requires all elements for a shared object that have affinity with a

specific thread to be contiguous in memory. Our implementation places all elements for a

shared object within an address partition into contiguous memory to facilitate the locality-

aware optimizations. The final element owned by thread T3, which corresponds to A[15] is

allocated by the RTS but should never be accessed.

The RTS provides an interface to the compiler to obtain the base address for a given

shared object on an address partition. This function always returns the address of the first

element of a specified shared object in the current address partition. For example, if either

thread T0 or T1 requests the base address of the shared array A in Figure 4.9, the RTS will

return the address of the first element of the local shared array on node 0 (the element that

corresponds to A[0]). Similarly, if either thread T2 or T3 requests the base address of A,

the RTS will return the address of the first element of the local shared array on node 1 (the

element that corresponds to A[4]).

4.3.3 Accessing a Shared-Object

Figure 4.10 shows the high-level control flow through the RTS when performing a shared

array dereference. The process begins with the compiler issuing an xlupc deref function

call, specifying the handle of the shared array and the index. The RTS performs an SVD

lookup to determine the location of the specified shared object. If the shared object is local,

a memory copy is used to return the requested data to the caller. In this context, local

indicates that the shared object is located in the address partition of the accessing thread.
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Figure 4.10: RTS control flow for a shared array dereference

Thus, the shared object will always be local for an all-to-one mapping and will be local

for a many-to-one mapping if the owner thread and the accessing thread are located on the

same node. For a one-to-one mapping, the shared object will only be local if it is owned by

the accessing thread.

If the shared object is remote, a xlupc distr get () function call is issued by the RTS

to call a routine that retrieves the data. The GET routine is responsible for communication

with the owning thread and for the subsequent retrieval of the shared object. LAPI uses

active messages with a handle routine that is run on the node that owns the shared object.

This handler determines the location of the shared object, dereferences it and sends the data

back in a subsequent message. Finally, when the reply has been received on the accessing

node, the data is copied into the local buffer and a call to the RTS is issued to indicate

that the transfer has completed. If one-sided communication is supported, as in LAPI ac-

tive messages, then the GET routine uses it. Otherwise, the GET routine must use another

communication protocol, such as point-to-point.

A similar process is used when assigning shared objects. Except that the GET com-

mands are replaced with PUT commands. All other steps remain the same.

4.3.4 Index-to-Offset Conversion

As described in Section 3.1, a shared array can be viewed in two ways: the global view and

the local view. A shared array element is specified using an index in the global view. To
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access the underlying storage for a specific shared array element, the index is converted to

an offset on the thread that owns the specific shared array element.

A UPC shared array declared as:

shared [b] <type> A[d0][d1 ]...[ dn];

is distributed in memory in a block-cyclic manner with blocking factor b. Given an array

index v = v0, v1, . . . , vn−1, to locate element A[v] the RTS first calculates the linearized

row-major index (as we would in C):

L(v) = v0 ×
n−1∏
j=1

dj + v1 ×
n−1∏
j=2

dj + · · ·+ vn−1 (4.5)

The block-cyclic layout is based on this linearized index. The RTS then calculates the UPC

thread on which array element A[v] resides using the threadof equation. The local threadof

is the local thread on the given node where the shared element is located. Within the local

storage of this thread the array is kept as a collection of blocks. The courseof of an array

location is the block number in which the element resides; the phaseof is its location within

the block.

threadof (As ,v) =
⌊
L(v)
b

⌋
% T (4.6)

local threadof (As ,v) =
⌊
L(v)
b

⌋
% TAP (4.7)

courseof (As ,v) =
⌊
L(v)
b× T

⌋
(4.8)

phaseof (As ,v) = L(v) % b (4.9)

Consider again the shared array in Figure 4.9. Given two shared array accesses, A[7]

and A[8], the RTS first computes the thread that owns the elements of A using Equation 4.6.

Using the linearized indices, 7 and 8, b = 2, T = 4, and TAP = 2 the RTS determines that

thread 3 owns A[7] and thread 0 owns A[8]. However, given that there are two threads

per address partition, the local threadof (A, 7) = 1 and local threadof(A, 8) = 0. The

courseof , which corresponds to the block index containing the array element, is computed

using Equation 4.8. The course for the two array elements are 0 and 1 respectively. The

phaseof , computed using Equation 4.9 determines the offset within the block. These are

determined to be 1 and 0 for the two shared array elements.

To determine the offset (in bytes) from the base address for a shared array As with

blocking factor B and type type, accessed at index v, the RTS uses Equation 4.10.
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offset(As , v) = local threadof (As , v) ∗ local size(As) +

(courseof (As , v) ∗ B + phaseof (As , v)) ∗ sizeof (type) (4.10)

The local size is computed using Equation 4.3. For the shared array in Figure 4.9, the

local size is computed to be 16, assuming sizeof (int) = 4. Thus, the offsets for the

shared array accesses A[7] and A[8] are 20 bytes and 8 bytes respectively.

This example illustrates the difference between the logical and physical layouts of

shared arrays. Two adjacent shared array elements in the global layout do not necessar-

ily reside in adjacent memory locations in the local shared array layout. In fact, as seen in

this example, adjacent shared array elements in the global layout do not necessarily map to

the same address partition.

Multiblocked Arrays

The goal of multiblocked arrays is to extend UPC syntax to declare tiled arrays while min-

imizing the impact on language semantics. Therefore, the internal representation of multi-

blocked arrays should not differ significantly from that of standard UPC arrays. Consider

a multiblocked array A with dimensions D = {d0, d1, . . . , dn−1} and blocking factors

B = {b0, b1, . . . , bn−1}. This array would be allocated in k =
∏n−1

i=0

⌈
di
bi

⌉
blocks (or

tiles) of b =
∏n−1

i=0 bi elements. We continue to use the concepts of threadof, courseof and

phaseof to find array elements. However, for multiblocked arrays two linearized indices

must be computed: one to find the block and another to find an element’s location within a

block. Note the similarity of Equations 4.12 and 4.11 to Equation 4.5:

B(As , v) =
n−1∑
k=0

⌊vk

bk

⌋
×

n−1∏
j=k+1

⌈
dj

bj

⌉ (4.11)

Lin−block(As , v) =
n−1∑
k=0

(vk % bk)×
n−1∏

j=k+1

bj

 (4.12)

Equation 4.11 computes the linearized block index for a specific shared array element

A[v], where v = v0, v1, . . . , vn−1 The phaseof of a multiblocked array element is its lin-

earized in-block index, computed using Equation 4.12. The courseof and threadof are

calculated with a cyclic distribution of the block index, as in the case of uni-dimensional

UPC arrays.
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threadof (As , v) = B(As , v)% T (4.13)

courseof (As , v) =
⌊
B(As , v)
T

⌋
(4.14)

phaseof (As , v) = Lin−block(v) (4.15)

When handling multiblocked arrays, the RTS uses Equation 4.16 to determine the offset

from the base address on a given thread.

offset(As , v) =

(
courseof (As , v) ∗

n−1∏
i=0

bi + phaseof (As , v)

)
∗ sizeof (type) (4.16)

The dimensions of the multiblocked arrays do not need to be multiples of their respec-

tive blocking factors, just as the array dimension of a regular UPC array is not required to

be a multiple of the blocking factor. Arrays are padded in every dimension to allow for

correct index calculation.

4.3.5 Shared-Object Access Timing

Figure 4.11 shows the times to access a shared array element using the different transports

in the RTS (SMP, LAPI local and LAPI remote). In this context LAPI local refers to a

different thread of the same address partition. Thus, the LAPI transport is still used to

perform the access but no network communication is required. The time to access an array

element in a C array is also given as a reference. These results were collected on a 1.9 GHz

POWER5 machine. The tests were compiled with -O3 -qhot.

Figure 4.11(a) shows the difference in local access times. The difference between the

sequential C time and the local SMP time (5X increase) is due to the additional calculations

needed to determine the course and phase when computing the offset. The local LAPI ac-

cess includes the same calculations to determine the thread, course and phase but also calls

down to the transport layer to perform the actual access, resulting in a 6.5x overhead over

the SMP access. Finally, the remote LAPI access (11700ns) requires network communica-

tion in addition to the address calculations, resulting in a 58x increase in time over a local

LAPI access, as seen in Figure 4.11(b).

4.4 Chapter Summary

This chapter presented an overview of the IBM UPC Compiler and Runtime System. The

discussion of TPO included an overview of the optimizations performed on UPC code and
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Figure 4.11: Time to access a shared-array element

a discussion of some of the internal representations used by TPO. The concept of a multi-

blocked array, a solution for one limitation of the UPC language, was introduced. Nishtala

et al. have shown that multiblocked arrays can be combined with a new collective interface,

which is another limitation identified in Section 2.8, to improve both performance and scal-

ability of UPC programs [46]. The discussion of the IBM RTS included a description of

the SVD, an overview of the process of accessing a shared-object and a description of how

the RTS converts between a shared-array index and the corresponding address offset. This

conversion is used throughout Chapter 6 when optimizing shared-object accesses. Finally,

the cost of accessing local and remote shared objects through the RTS using two types of

transports (SMP and LAPI) was discussed. These times demonstrate some of the overheads

incurred when using the RTS access shared objects and provide motivation for the compiler

to bypass the RTS and directly access the shared objects whenever possible.

44



Chapter 5

Locality Analysis

As seen in the previous chapter, there is a significant overhead to accessing shared-objects

using the RTS. Thus, to obtain reasonable performance it is crucial that the executing thread

bypass the RTS and directly access local shared-objects whenever possible.

1 shared [ 1 0 ] double A[ 1 0 ] [ 1 0 ] ;
2 shared [ 1 0 ] double B [ 1 0 ] [ 1 0 ] ;
3 f o r ( i =1 ; i < 9 ; i ++) {
4 u p c f o r a l l ( j =1 ; j < 9 ; j ++; &A[ i ] [ j ] ) {
5 B[ i ] [ j ] = (A[ i−i ] [ j −1] + A[ i −1][ j ] +
6 A[ i −1][ j +1] + A[ i ] [ j −1] +
7 A[ i ] [ j ] + A[ i ] [ j +1] +
8 A[ i + 1 ] [ j −1] + A[ i + 1 ] [ j ] +
9 A[ i + 1 ] [ j + 1 ] ) / 9 . 0 ;

10 }
11 }

(a) 9-point stencil example (b) Access pattern

Figure 5.1: Example stencil computation in UPC

Consider the 9-point stencil example in Figure 5.1(a). This example uses two 10x10

shared arrays, distributed such that each row in the shared arrays have affinity with a thread.

For a given element at position A[i ][ j ] the values at the eight neighbouring positions are

obtained and used to compute an average. This average is assigned to B[i ][ j ]. Consider

the case where this example is run on a distributed architecture with four threads. For every

assignment to B[i ][ j ] the compiler will generate nine calls to the RTS to retrieve elements

of A and an additional call to the RTS to assign an element of B. Of the elements of A that

are accessed, three are owned by the accessing thread (A[i ][ j−1], A[i ][ j ], and A[i ][ j+1])

because of the affinity test and the distribution of A. The remaining six array elements are

owned by other threads, resulting in remote accesses. Based on the access times presented
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in Chapter 4.3.5, there will be a significant overhead to perform these accesses using the

RTS. However, the compiler can convert the calls to the RTS for the three accesses that are

owned by the accessing thread (A[i ][ j−1], A[i ][ j ], and A[i ][ j+1]), into direct memory

accesses, thereby achieving performance similar to the performance of a C pointer derefer-

ence for these accesses. Similarly, remote accesses that are owned by the same thread can

be grouped together in a single access to reduce the number of calls to the RTS and hence

the number of messages that are required. However, to perform these optimizations, the

compiler must be able to identify the thread that owns the shared-objects being accessed.

This chapter presents a new shared-object locality analysis developed for UPC shared ar-

rays with multi-dimensional blocking factors. The algorithm uses a shared-object access

with a known locality to determine the locality of other related shared-object accesses. This

locality information is used by the locality optimizations presented in Chapter 6 to optimize

the shared-object accesses. While this analysis is presented specifically for UPC, it should

apply to any language that uses a partitioned global address space.

A previously published analysis allowed the compiler to distinguish between local and

remote shared-object accesses by computing the relative node ID of each shared reference.

All shared references that map to node 0 are local and thus candidates for privatization. All

shared references that map to a node other than 0 are remote and are handled using calls

to the RTS [9]. This analysis differs from that previous work because it provides more

information about the owners of each shared reference. Instead of categorizing the shared

references into local and remote, it tracks the relative thread ID for each reference. This

provides the compiler with more precise information that can be used to perform additional

locality optimizations described in Chapter 6.

5.1 Shared Object Properties

... ...... ............ ... ...... ...

BB B B

G

BB
AP 0 AP N − 1 AP 0

T − TAP − 1 T − 10 TAP − 1 0 TAP − 1

Figure 5.2: Shared-array layout in UPC

Figure 5.2 illustrates that G = B × T elements of a shared array As are allocated to

the threads in a cyclic fashion. Each array segment with G elements forms a block group.

The memory layout pattern shown in Figure 5.2 is only dependent on the blocking factor
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B and the number of threads that map to each address partition, TAP . Thus two shared

arrays with the same blocking factor in the same program execution always have the same

layout because the mapping of threads to address partitions is constant. This distribution

is independent of the overall sizes of the shared arrays. Therefore, the analysis presented

in this section does not require that the two shared-array elements be located in the same

shared array. The only requirement is that the two shared arrays have the same blocking

factor.

Given two shared references that represent accesses to elements of a shared array, the

compiler can analyze the two indices to determine if both accesses refer to data owned by

the same thread. In the following discussion, i and j represent indices into a shared array

As while the normalized indices i′ = i% |G| and j′ = j% |G| represent the offset of i and

j within their block group. Owner(Os) represents the thread that owns the shared object

Os .1

Property 5.1 below states that when the distance between the two normalized indices is

zero, both array elements are owned by the same thread. The distance of two normalized

indices is computed by subtracting the smaller index from the larger index. Property 5.2

addresses the case when the distance between the two normalized indices is less than the

blocking factor. In this case it is possible for the two array elements to map to the same

thread or to different threads. The relationship between the two indices determines which

case occurs. Property 5.3 states that when the distance between the normalized indices

is between the blocking factor and the group size, the two array elements are owned by

different threads. It is not possible for the difference between the normalized indices to be

larger than the group size.

Without loss of generality, all the properties below assume that the following relation

holds:

i′ ≤ j′ (5.1)

Property 5.1 If i′ = j′ then Owner(As [i]) = Owner(As [j])

Proof 5.1 Owner(As [i]) = Owner(As [j]) if and only if i′

B% T = j′

B% T which is trivially

true from the premise that i′ = j′. �

Property 5.2 If the following condition is true:

1 ≤ j′ − i′ < B (5.2)
1Recall that since Os and As [i] can be used interchangably (see page 2), Owner(Os) ≡ Owner(As [ i ]).
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then

1. If i′% B < j′% B then Owner(As [i]) = Owner(As [j])

2. If i′% B ≥ j′% B then Owner(As [i]) 6= Owner(As [j])

Proof 5.2

This proof will use the following relations that are true for any positive integers i′, j′, and

B: ⌊
i′

B
⌋
× B = i′ − (i′% B) (5.3)⌊

j′

B
⌋
× B = j′ − (j′% B) (5.4)

From assumptions 5.1 and 5.2 it follows that:⌊
i′

B
⌋
≤
⌊
j′

B
⌋
≤
⌊
i′

B
⌋

+ 1 (5.5)

Case 1: We want to prove that Owner(As [i]) = Owner(As [j]). To do this, it is sufficient

to show that As [i] and As [j] are located in the same block. Thus, we must show that⌊
j′

B

⌋
=
⌊

i′

B

⌋
. For the sake of contradiction, assume that:

⌊
j′

B
⌋

=
⌊
i′

B
⌋

+ 1 (5.6)⌊
j′

B
⌋
× B =

⌊
i′

B
⌋
× B + B (5.7)

Replacing 5.3 and 5.4 in 5.7:

j′ − (j′% B) = i′ − (i′% B) + B (5.8)

Using the assumption i′% B < j′% B in 5.8:

j′ − i′ − B = (j′% B)− (i′% B) > 0 (5.9)

j′ − i′ > B (5.10)

Inequality 5.10 contradicts assumption 5.2. Thus it must be the case that⌊
j′

B
⌋
6=
⌊
i′

B
⌋

+ 1 (5.11)

From 5.11 and 5.5 it follows that
⌊

j′

B

⌋
=
⌊

i′

B

⌋
. Thus Owner(As [i]) = Owner(As [j]).
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Case 2: Here, we want to prove that Owner(As [i]) 6= Owner(As [j]). To do this, it is

sufficient to show that As [i] and As [j] belong to different blocks. Thus, we want to show

that
⌊

j′

B

⌋
6=
⌊

i′

B

⌋
. For the sake of contradiction, assume that:

⌊
j′

B
⌋

=
⌊
i′

B
⌋

(5.12)⌊
j′

B
⌋
× B =

⌊
i′

B
⌋
× B (5.13)

Replacing 5.3 and 5.4 in 5.13:

j′ − (j′% B) = i′ − (i′% B) (5.14)

(i′% B)− (j′% B) = i′ − j′ (5.15)

Using the assumption i′% B ≥ j′% B in 5.15:

0 ≤ i′ − j′ (5.16)

j′ ≤ i′ (5.17)

The relation 5.17 contradicts assumption 5.1. Thus, it must be the case that
⌊

j′

B

⌋
6= b i′

Bc,
and thus Owner(As [i]) 6= Owner(As [j]). �

Intuitively, Property 5.2 can be explained as follows: since the distance between the two

shared objects is less than the size of a block, either As [i] and As [j] are in the same block

(Case 1) or As [i] is in block k and As [j] is in block k + 1 (Case 2). The positions of i and

j within their own blocks is used to determine which of these two cases holds.

Property 5.3 If j′ − i′ ≥ B then Owner(As [i]) 6= Owner(As [j])

Proof 5.3 For the sake of contradiction assume that:⌊
i′

B
⌋

=
⌊
j′

B
⌋

(5.18)

Replacing equations 5.3 and 5.4 in the hypothesis of this property:

j′ − i′ =
⌊
j′

B
⌋
× B + (j′% B)−

⌊
i′

B
⌋
× B + (i′% B) ≥ B (5.19)

Replacing 5.18 into 5.19:

(j′% B)− (i′% B) ≥ B (5.20)

But by definition, (j′% B) < B and (i′% B) < B, therefore its difference cannot be greater

or equal to B. Thus, equation 5.18 is false and it must be true that Owner(As [i]) 6=
Owner(As [j]). �
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5.2 Shared-Object Locality Analysis

The goal of shared-object locality analysis is to identify the relative thread ID that owns

each shared reference in a upc forall loop. This analysis will allow the compiler to perform

specific optimizations on the shared references based on the locality information. The key

to the locality analysis is the observation that for each dimension, a block can span at most

two threads. Therefore, in each dimension the locality can only change in one place. We

call this place the cut.

5.2.1 Cuts

Given a upc forall loop where the shared reference in the affinity test is formed by the cur-

rent loop-nest index, every shared reference in the upc forall loop body has a displacement

with respect to the affinity expression. This displacement is specified by the distance vec-

tor k = [k0, k1, . . . , kn−1], where ki represents the number of array elements between two

shared references in dimension i.

Property 5.2 demonstrates that when the displacement distance between two shared

references in a given dimension is less than the blocking factor in that dimension, the shared

references can have two owners.

Definition 5.1 The value of a cut in dimension i, Cut i, is the distance, measured in number

of elements, between the first element of a block and the transition between threads on that

dimension.

1 /∗ 8 t h r e a d s and 2 t h r e a d s / node ∗ /
2

3 shared [ 2 ] [ 3 ] i n t A [ 8 ] [ 9 ] ;
4

5 f o r ( i n t c =0; c <7; c ++){
6 u p c f o r a l l ( i n t d =0; d<6; d ++; &A[ c ] [ d ] ){
7 A[ c + 1 ] [ d +2] = c∗d ;
8 }
9 }
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(a) Example UPC loop nest (b) Multiblocked shared-array layout

Figure 5.3: A two-dimensional array example.

Consider the two-level loop nest that accesses a two-dimensional blocked array shown

in Figure 5.3(a). Assume that this example is compiled for 8 threads and 4 nodes, resulting
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in 2 threads-per-node. The layout of the array used in the loop is shown in Figure 5.3(b).

Thin lines separate the elements of the array. Large bold numbers inside each block of 2×3

elements denote the node ID to which the block is mapped. Thick lines separate threads

from each other. The grey area in the array represents all elements that are referenced by

iterations of the upc forall loop that are affine with &A[0][0]; cuts in this iteration space

are determined by the thick lines (thread boundaries).

Finding the Cuts

In general, for dimension i the value of the cut is computed using Equation 5.21.

Cut i = bi − ki % bi (5.21)

Where ki is the distance between the shared reference in the affinity statement and the

shared reference in the upc forall body in dimension i, and bi is the blocking factor of the

shared reference in dimension i.

In the example in Figure 5.3, the distance vector for shared array A is [1, 2]. Thus, the

cut in the outer dimension (i=0) is Cut0 = (2− 1)% 2 = 1. Similarly, the cut for the inner

dimension (i=1) is Cut1 = (3−2)% 3 = 1. This indicates that the locality changes between

c=1 and c=2 in the outer dimension and between d=1 and d=2 in the inner dimension.

Theorem 5.1 Let As be an n-dimensional shared array with dimensions d0, d1, . . . , dn−1

and with blocking factors b0, b1, . . . , bn−1. Let p be an arbitrary dimension, let w =

v0, v1, . . . , vp, . . . , vn−1 and y = v0, v1, . . . , vp+1, . . . vn−1 be two vectors such thatA(w)

and A(y) are elements of A. Notice that w and y only differ by 1 in dimension p. Let

v′i = vi% bi − ki% bi (5.22)

If v′p 6= Cutp − 1 then Owner(w) = Owner(y). Note that p < n− 1.

Proof 5.4 The expressions for the owner of elements w and y are given by:

Owner(w) = L(w)% T and Owner(y) = L(y)% T (5.23)

where L(w) is the linearized block index for w as defined in Equation 4.5. L(w) and L(y)

can be written as:

L(w) =
n−1∑
i=0

⌊
vi

bi

⌋
×

n−1∏
j=i+1

⌈
dj

bj

⌉
(5.24)

L(y) = L(w) +
(⌊

vp + 1
bp

⌋
−
⌊
vp

bp

⌋)
×

n−1∏
j=p+1

⌈
dj

bj

⌉
(5.25)
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Substituting equations 5.21 and 5.22 in the assumption that v′p 6= Cutp − 1, results in:

vp% bp − kp% bp 6= bp − kp% bp − 1 (5.26)

vp% bp 6= bp − 1 (5.27)

For any integers vp and bp it is true that:

vp% bp < bp (5.28)

vp% bp = vp −
⌊
vp

bp

⌋
× bp (5.29)

From 5.27 and 5.28, it follows that:

vp% bp < bp − 1 (5.30)

Therefore adding one to vp is equivalent to adding one to the module vp% bp:

(vp + 1)% bp = vp% bp + 1 (5.31)

Using relation 5.29 for both vp and vp + 1 and substituting in equation 5.31:

vp + 1−
⌊
vp + 1
bp

⌋
× bp = vp −

⌊
vp

bp

⌋
× bp + 1 (5.32)

which can be simplified to ⌊
vp + 1
bp

⌋
=

⌊
vp

bp

⌋
(5.33)

Substituting this result in equation 5.25 results thatL(w) = L(y) and therefore Owner(w).

Owner(y). �

Theorem 5.1 can be stated informally as follows: two adjacent elements, A(w) and

A(y), of an n-dimensional shared array As must have the same owner unless A(w) is on

one side of a cut and A(y) is on the other side of the cut.

5.2.2 Algorithm

The locality analysis algorithm considers one parallel loop nest at a time. At each nest

level, the compiler computes the cuts for each shared reference using the properties in

Section 5.1. Using these cuts, the iteration space of the loop is refactored into regions.

Regions are created using cuts such that a shared reference is owned by the same thread for

every iteration of the loop that falls into the region. Each region is a subset of the original

iteration space and the collection of all regions will form the iteration space of the original
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loop. For each region, the compiler keeps track of one value of the loop induction variable

that falls into the region. We call this information the position of the region. When all cuts

have been determined and the corresponding regions created, the compiler computes the

owner of each shared reference in each region using the position information. The owner

of the shared reference will always remain the same in the given region.

The locality analysis works on parallel loop nests that contain a upc forall loop. The

affinity test used in the upc forall loop provides the analysis with a shared reference with a

known locality, meaning the thread that executes that loop iteration will “own” the shared

reference used in the affinity test. The locality analysis determines the relative position of all

other shared references inside the loop, relative to the affinity test, and uses that information

to compute therelative thread ID of the owners. A upc forall loop can use one of two types

of affinity test: integer or pointer-to-shared. A typical integer affinity test will contain the

loop induction variable, which may be modified by a constant factor (i.e. upc forall ( int

i=0; i < N; i++; i )). A typical pointer-to-shared affinity test will use the loop induction

variable to access a shared array (i.e. upc forall ( int i=0; i < N; i++; A[i ]) , where A

is a shared array). Again, this index can be modified by a constant value. If the affinity

test uses a non-affine function or contains a constant that cannot be determined at compile

time, the upc forall loop is not considered for locality analysis. This is discussed further in

Section 5.2.3.

The example in Figure 5.4 will be used to illustrate how the compiler uses the properties

in Section 5.1 to determine the relative thread ID that owns a shared reference. Assume

that this code is compiled for four threads and a machine that runs one thread per address

partition. Thus, referring to Figure 5.2, we have B = 4, TAP = 1, T = 4, G = 16 and

AP = 4. The shared array A contains N elements distributed in blocks of four elements

per thread. For this example, assume that N is greater than 32. Thread 0 owns A[0] to A[3],

A[16], to A[19]; thread 1 owns A[4] to A[7], A[20] to A[23] and so forth.

Figure 5.4(b) shows the access pattern for the three shared arrays on the first four itera-

tions of the upc forall loop: j=0, j=1, j=2, and j=3. These four iterations will be executed

by thread 0. In iteration j=0, the statements on lines 9 and 10 are local to thread 0 (A[i ][0]

and B[i ][1] respectively) while the statement on line 11 is not local (C[i ][14] is owned

by thread 3). For iteration j=3, the statements on lines 9 and 11 are local to thread 0 (A[i

][3] and C[i ][17] are owned by thread 0) while the statement on line 10 is not (B[i ][4] is

owned by thread 1). The compiler must decide for which values of j the shared references

are owned by MYTHREAD and for which values the shared references are owned by a dif-
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1 shared [ 4 ] i n t A[N] [N ] ;
2 shared [ 4 ] i n t B[N] [N ] ;
3 shared [ 4 ] i n t C[N] [N ] ;
4

5 i n t main ( ) {
6 i n t i , j ;
7 f o r ( i =0 ; i < N; i ++) {
8 u p c f o r a l l ( j =0 ; j < N−14; j ++; &A[ i ] [ j ] ) {
9 A[ i ] [ j ] = 0 ;

10 B[ i ] [ j +1] = j ∗2 ;
11 C[ i ] [ j +14] = j −3;
12 }
13 }
14 }

(a) UPC loop nest

T1 T1T1 T1T1 T2 T2 T2 T2 T3 T3

T1 T1T1 T1T1 T2 T2 T2 T2 T3 T3 T3 T3 T0 T0 T0

T0 T0T0 T1 T1 T1T1 T1T1 T2 T2 T2 T2 T3 T3 T3 T3 T0 T0 T0

C

B

A

...T0 T0 T0 T0 T1 T0T0T0T3T3

...T0 T0 T0 T0 T1

...0T

(b) Access patterns for shared arrays A, B, and C

Figure 5.4: UPC parallel loop containing 3 shared references

ferent thread. Relating these shared references to the properties of Section 5.1, the shared

reference in the affinity test (A[i ][ j ]) corresponds to As [i] and the shared references in the

upc forall loop body (A[i ][ j ], B[i ][ j+1], and C[i ][ j+14]) correspond to As [j].

Locality analysis is done on the n-dimensional blocks of the multiblocked arrays present

in the loop. For conventional UPC shared arrays declared with a single blocking factor b,

the analysis uses blocking factors of 1 in all dimensions except the inner-most dimension,

where b is used. For example, a shared array declared as:

shared [4] int A[N][N];

is implicitly translated into a shared array declared as:

shared [1][4] int A[N][N];

We start with the original loop nest as a single region. This region is analyzed and the

cuts are computed. The iteration space is then split according to the cuts generated. Each

time the iteration space is split, two new regions are created. The newly generated regions

are again analyzed and split recursively until no more cuts are required. As the iteration

space is being split, the compiler tracks the relative owner of each shared reference in each
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region. When all of the regions have been generated, we use the position of the region,

and the position of the shared reference within the region to determine the relative thread

that owns the shared reference. The shared reference map is then constructed, associating

each shared reference with the relative thread that owns it. The shared reference map is

implemented as a hash table where the owner of the shared reference is used as the index.

For each index, a list of shared references owned by the index is stored. Since a shared

reference can span at most two threads in each dimension, the shared reference map will

contain at most 2 ∗ |SharedRefList | ∗ D entries, where |SharedRefList | is the number of

shared references in the original upc forall loop that are candidates for locality analysis and

D is the number of dimensions of a shared reference.

LOCALITYANALYSIS(Procedure p)
1. NestSet ← GATHERFORALLLOOPNESTS(p)
2. foreach loop nest L in NestSet
Phase 1 - Gather Candidate Shared References
3. lforall ← upc forall loop found in loop nest L
4. nestDepth← depth of L
5. AffStmt ← Affinity statement used in lforall

6. SharedRefList ← COLLECTSHAREDREFERENCES(lforall ,AffStmt)
Phase 2 - Restructure Loop Nest
7. FirstRegion ← INITIALIZEREGION(L)
8. LR ← FirstRegion

9. Lfinal
R ← φ

10. while LR not empty
11. R← Pop head of LR
12. CutList ← GENERATECUTLIST(R,SharedRefList)
13. if R.nestLevel < nestDepth− 1
14. LR ← LR∪ GENERATENEWREGIONS(R,CutList)
15. else
16. Lfinal

R ← Lfinal
R ∪ GENERATENEWREGIONS(R,CutList)

17. end if
18. end while
Phase 3 - Build Shared Reference Map
19. Shared Reference MapM← φ

20. foreach R in Lfinal
R

21. foreach rs in SharedRefList
22. rowner

s ←COMPUTEOWNER(rs , R)
23. M[rowner

s ]←M[rowner
s ] ∪ rs

24. end for
25. end for
26. end for

Figure 5.5: Locality analysis for UPC shared references

The LOCALITYANALYSIS algorithm in Figure 5.5 begins by collecting all top-level

loop nests that contain a candidate upc forall loop. To be a candidate for locality analysis,

a upc forall loop must be normalized (lower bound begins at 0 and the increment is 1) and
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must use a pointer-to-shared or integer argument for the affinity test. A upc forall loop is

normalized in the same manner as defined in Chapter 4.1.1. The algorithm then proceeds

to analyze each loop nest independently (step 2).2 In Figure 5.4, the loop nest on line 7 is

collected by the GATHERFORALLLOOPNEST algorithm and placed into NestSet .

Phase 1 of the per-loop nest analysis algorithm finds the upc forall loop lforall in the

loop nest. A loop nest can only contain a single upc forall loop. If it contains multiple

upc forall loops, the outermost upc forall loop behaves as the upc forall loop and the inner

loops behave as for loops. The affinity statement, AffStmt , used in lforall is also obtained.

Finally the COLLECTSHAREDREFERENCES procedure collects all candidate shared refer-

ences, in lforall . In order to be a candidate for locality analysis, a shared reference must have

the same blocking factor as the shared reference used in the affinity test. The compiler must

also be able to compute the displacement vector k = rs − raff
s for the shared reference, the

vectorized difference between the indices of the shared reference in the loop body and of

the shared reference in the affinity statement.

In the example in Figure 5.4 the loop on line 8 is identified as the upc forall loop in

step 3. The shared references on lines 9, 10, and 11 are collected as candidates for locality

analysis; the computed displacement vectors are [0, 0], [0, 1], and [0, 14] respectively.

Phase 2 of the algorithm restructures the loop nest by splitting the iteration space of

each loop into regions where the locality of shared references remains constant. Each region

has a statement list associated with it, i.e. the lexicographically ordered list of statements

as they appear in the program. Each region is also associated with a position in the iteration

space of the loops containing the region.

In the example in Figure 5.4 the first region, R0, contains the statements on line 8 to

12. The position of R0 is [0], since the iteration space of the outermost loop contains the

location 0. Once initialized, the region is placed into a list of regions, LR (step 8).

The algorithm iterates through all regions in LR. For each region, a list of cuts is com-

puted based on the shared references collected in Phase 1. A cut represents a transition

between threads that own the shared reference in the given region. The GENERATECUT-

LIST algorithm first determines the loop-variant induction variable, iv, in R that is used in

rs . The use of iv identifies the dimension in which to obtain the blocking factor and dis-

placement when computing the cut. Equation 5.21 from Section 5.2.1 is used to compute

the cut.

The GENERATECUTLIST algorithm sorts all cuts in ascending order. Duplicate cuts

2We use the word step to refer to the lines presented in Figure 5.5.
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and cuts outside the iteration space of the region (Cut = 0 or Cut ≥ bi) are discarded.

Finally, the current region is cut into multiple iteration ranges, based on the cut list, using

the GENERATENEWREGION algorithm. New regions are formed using the body of the

outermost loop in the current region. That is, the first statement in the outer loop becomes

the first statement in the new region and the last statement in the outer loop becomes the

last statement in the new region. Newly created regions are cut using a branch statement

containing a cut expression of the form iv % bi < Cut (the modulo is necessary to ensure

that the cut always falls within a block). The body of the new region is replicated under

each cut expression. If the cut list is empty a new region is still created; however, it does

not contain any cut expressions and thus no branches are inserted and the statements in the

region are not replicated.

Step 13 determines if the region R is located in the innermost loop in the current loop

nest (i.e. there are no other loops inside of R). If R contains innermost statements, the

regions generated by GENERATENEWREGIONS are placed in a separate list of final regions.

Lfinal
R . This ensures that at the end of Phase 2, the loop nest has been refactored into several

iteration ranges and the final statement lists (representing the innermost loops) are collected

for use in Phase 3.

The second phase iterates through the example in Figure 5.4 twice. The first region

R0 and the CutList = φ, calculated by GENERATECUTLIST, are passed to the GENER-

ATENEWREGIONS algorithm in step 14. Since the cut list is empty, no cuts are created.

However, a new region, R1 is created and added to LR. R1 contains the statements on lines

9, 10, and 11 and has a position of [0] associated with it.

The new region R1 is popped from LR and passed to the GENERATECUTLIST algo-

rithm. The three statements in R1, A[i ][ j ], B[i ][ j+1], and C[i ][ j+14] generate three cuts:

0, 3, and 2 respectively. These three cuts are sorted in ascending order and then used by

GENERATENEWREGIONS to create regions R2, R3, and R4 as seen in Figure 5.6. Thus

region R3 is created by the cut 2, which was generated by the statement C[i ][ j+14]. The

position of the three new regions are [0, 0], [0, 2], and [0, 3] respectively. Since R1 is the

innermost region, the new regions R2, R3, and R4 are added to the final region list, Lfinal
R

(step 16).

Phase 3 of the algorithm uses the position information stored in each of the final regions

to compute the position of each shared reference in that region. This information is then

used to build the shared reference map. The COMPUTEOWNER algorithm computes the

position of the shared reference using the position of the region and the displacement vector
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1 shared [ 4 ] i n t A[N] [N ] ;
2 shared [ 4 ] i n t B[N] [N ] ;
3 shared [ 4 ] i n t C[N] [N ] ;
4

5 i n t main ( ) {
6 i n t i , j ;
7 f o r ( i =0 ; i < N; i ++) {
8 u p c f o r a l l ( j =0 ; j < N−14; j ++; &A[ i ] [ j ] ) {
9 i f ( j < 2) {

10 /∗ ∗∗ Begin Region 2 , p o s i t i o n [ 0 , 0 ] ∗∗ ∗ /
11 A[ i ] [ j ] = 0 ; / / sh ar ed r e f e r e n c e A1
12 B[ i ] [ j +1] = m∗2 ; / / sh ar ed r e f e r e n c e B1
13 C[ i ] [ j +14] = m−3; / / sh ar ed r e f e r e n c e C1
14 /∗ ∗∗∗∗∗∗∗∗∗∗ End Region 2 ∗∗∗∗∗∗∗∗∗∗ ∗ /
15 }
16 e l s e i f ( j < 3) {
17 /∗ ∗∗ Begin Region 3 , p o s i t i o n [ 0 , 2 ] ∗∗ ∗ /
18 A[ i ] [ j ] = 0 ; / / sh ar ed r e f e r e n c e A2
19 B[ i ] [ j +1] = m∗2 ; / / sh ar ed r e f e r e n c e B2
20 C[ i ] [ j +14] = m−3; / / sh ar ed r e f e r e n c e C2
21 /∗ ∗∗∗∗∗∗∗∗∗∗ End Region 3 ∗∗∗∗∗∗∗∗∗∗ ∗ /
22 }
23 e l s e {
24 /∗ ∗∗ Begin Region 4 , p o s i t i o n [ 0 , 3 ] ∗∗ ∗ /
25 A[ i ] [ j ] = 0 ; / / sh ar ed r e f e r e n c e A3
26 B[ i ] [ j +1] = m∗2 ; / / sh ar ed r e f e r e n c e B3
27 C[ i ] [ j +14] = m−3; / / sh ar ed r e f e r e n c e C3
28 /∗ ∗∗∗∗∗∗∗∗∗∗ End Region 4 ∗∗∗∗∗∗∗∗∗∗ ∗ /
29 }
30 }
31 }
32 }

Figure 5.6: UPC parallel loop after cuts
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of the shared reference (step 22). The linearized block index of the shared reference is

computed using this position. Finally, the owner is computed using the linearized block

index and the number of threads, as seen in Equation 5.23. Note that since the position

of the shared reference is relative to MYTHREAD, the owner is also relative to MYTHREAD.

The shared reference map is a data structure that associates relative thread IDs with shared

references that are owned by the ID. Thus, each shared reference is added to the shared

reference map using the shared reference owner as an index.

Shared Region Displacement Reference Linearized
Owner

Reference Position Vector Position Block Index
A1 [0, 0] [0, 0] [0, 0] 0 MYTHREAD
B1 [0, 0] [0, 1] [0, 1] 0 MYTHREAD
C1 [0, 0] [0, 14] [0, 14] 3 MYTHREAD+3
A2 [0, 2] [0, 0] [0, 2] 0 MYTHREAD
B2 [0, 2] [0, 1] [0, 3] 0 MYTHREAD
C2 [0, 2] [0, 14] [0, 16] 4 MYTHREAD
A3 [0, 3] [0, 0] [0, 3] 0 MYTHREAD
B3 [0, 3] [0, 1] [0, 4] 1 MYTHREAD+1
C3 [0, 3] [0, 14] [0, 17] 4 MYTHREAD

Table 5.1: Calculations to determine the owner of shared references

Table 5.1 shows the calculations the compiler performs to determine the relative owner

of the shared references in Figure 5.6. The shared references A1, B1, and C1 in region R2

are computed to have positions [0, 0], [0, 1] and [0, 14] based on the position of R2 ([0, 0])

and the displacement vectors for the shared references ([0, 0], [0, 1], and [0, 14]). The owner

of the shared references are then computed using the reference positions and Equation 5.23.

References A1 and B1 are determined to be owned by MYTHREAD while reference C1 is

owned by MYTHREAD+3. The shared reference map is then updated by adding A1 and B1 to

the shared reference list associated with MYTHREAD and adding C1 to the shared reference

list associated with MYTHREAD+3. The value of MYTHREAD is replaced with the numeric

value 0 when building the map. Thus, all shared references owned by MYTHREAD will be

associated with relative thread 0. Similarly, C1 will be associated with relative thread 3 in

the shared reference map. Note that the shared reference map does not indicate the absolute

owner of the shared reference but rather the relative owner from the executing thread. This

may be a subtle distinction, but the shared reference map cannot be used to determine the

thread that owns the shared reference at compile time. That is, the shared reference map

does not say that C1 is always owned by the UPC thread with ID 3. Figure 5.7 shows the
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shared reference map computed by the compiler for Figure 5.6.

Thread Shared References
0 → A1, A2, A3, B1, B2, C2, C3
1 → B3
2 → φ
3 → C1

Figure 5.7: Shared-reference map after locality analysis

5.2.3 Discussion

When an integer affinity test that contains only the loop induction variable is used in the

upc forall loop, we will assume that the blocking factor of the shared array is 1. Thus, any

shared-array reference in the loop with a blocking factor not equal to 1 is not analyzed by

the locality analysis algorithm. When the unmodified loop induction variable is used as the

affinity test, a thread Ti will execute iterations i, i + THREADS, i + (2 ∗ THREADS) and

so forth. Similarly, when a blocking factor of 1 is used on a shared array A, thread i will

own elements i, i + THREADS, i + (2 ∗ THREADS) and so forth. Thus, when the loop

induction variable is used as the affinity test, any access inside the loop to a shared array

with a blocking factor of one will be local, making this assumption safe. The loop induction

variable used in the affinity test corresponds to As [i] from the properties in Section 5.1 and

the shared references in the loop body still correspond to As [j].

The locality analysis uses the properties in Chapter 5.1 to determine the relative thread

ID of the shared objects. If the compiler cannot determine the difference between i and

j in these properties (i.e. the distance between the affinity test and the shared reference

is not known at compile time) the corresponding reference is not a candidate for locality

analysis. This situation occurs when a compile-time unknown value is used to create one

of the indices. For example, if the shared-array element is accessed with an index of i + k

where k is not known at compile time, the locality analysis cannot determine the relative

owner of the shared reference. It is possible to extend the locality analysis to perform

symbolic analysis on the difference between the references; however, this has been left as

future work.

The properties in Chapter 5.1 also assume that the blocking factor is known at compile

time (a requirement of the UPC language). However, the locality analysis is still applicable

if the blocking factor is not known at compile time. In this case, the compiler has to per-

form symbolic analysis, similar to the symbolic analysis required if the difference between
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the shared references is not known at compile time. Thus, this analysis is applicable to

other PGAS languages, even if they relax the constraint of specifying the blocking factor at

compile time.

Consider a single-blocked, two-dimensional shared array in the current UPC specifica-

tion declared as shared [BF] int A[ROWS][COLUMNS]. The blocking factor applies to

the elements of the innermost dimension of the array (the analysis assumes the blocking

factor for the outer dimensions is one). However, if BF is a multiple of one of the in-

ner dimension (i.e. BF = 2∗COLUMNS), the block will wrap around the outer dimension,

creating a multi-blocked array. In this situation, the compiler treats the shared array as a

multi-blocked shared array where the blocking factor of the outer dimension is computed as

BFouter = BFinner
COLUMNS . Note that the compiler only converts single-blocked arrays to multi-

blocked arrays for the purpose of locality analysis and only when the blocking factor is a

multiple of the inner dimension (i.e. BF % COLUMNS = 0).

On the other hand, if the blocking factor in the innermost dimension is greater than the

size of the innermost dimension, but is not a multiple of the size of the innermost dimension

(i.e. BF > COLUMNS and BF % COLUMNS 6= 0), the array is not considered for locality

analysis. This is a limitation in the current algorithm because cuts are computed and gener-

ated on each dimension (from outermost to innermost) independently. In the above example

it is necessary to cut the outer dimension in addition to the inner dimension, however that is

not discovered until the outer dimension has already been processed. One possible solution

for this is to change the algorithm to first compute all cuts and then generate the correspond-

ing code. This modification would allow the algorithm to handle this situation. However,

the need for this modification has not been found in any of the benchmarks at this point.

The shared reference map contains an additional entry, UNKNOWN, that represents all

shared references that could not be correctly sorted by the locality analysis. For example, if

the shared reference has a distance that cannot be computed at compile time (e.g., A[i+X])

the locality analysis cannot determine the relative thread that owns the shared reference and

thus it is associated with the UNKNOWN entry in the map.

5.3 Chapter Summary

This chapter presented a new compiler analysis that will identify the relative thread ID

that owns a specific shared reference given a shared reference with a known locality. The

affinity test in a upc forall loop provides a reference with known locality, thereby making
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this analysis applicable to parallel loop nests in UPC. After the analysis is complete, the

compiler has a shared reference map that maps shared references to the relative thread ID

that owns the reference. This information can be used by various locality optimizations to

optimize the code generated by the compiler, as discussed in the next chapter.
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Chapter 6

Shared-Object Locality
Optimizations

The Shared-Object Locality Analysis described in Chapter 5 builds a shared reference map

that associates shared references with the relative thread ID that owns them. This infor-

mation is used by the compiler to perform four different locality optimizations on shared

objects: (i) privatizing local shared objects accesses; (ii) coalescing remote shared-object

accesses owned by the same thread; (iii) scheduling remote shared-object accesses to over-

lap communication with computation; and (iv) updating remote shared-object accesses.

Each of these optimizations is new within the context of UPC and PGAS programming

models. While each optimization is presented for UPC specifically, they are all applicable

to any language that employs a PGAS programming model.

6.1 Shared-Object Access Privatization (SOAP)

Shared-object accesses that are owned by the accessing thread can be optimized to bypass

the RTS system. This is done by converting the handle used to describe the shared object

into a direct pointer access that uses the local address of the shared object.

Figure 6.1(a) shows the STREAM triad kernel written in UPC using an integer affinity

test. Since the default (cyclic) blocking factor is used to distribute the three shared arrays,

the integer affinity test is used to parallelize the kernel. Figure 6.1(b) shows the naive

transformation of shared accesses into calls to the RTS to access the shared arrays. This

transformation results in three function calls, two to read the values of the b and c shared

array and a third to write the computed value to a.

Figure 6.2 shows the rate of data transfer to memory (memory bandwidth) measured by

the STREAM triad kernel using the naive transformation on a 64-way POWER5 machine

63



# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
u p c f o r a l l ( i =0 ; i<N; i ++; i ) {

a [ i ] = b [ i ] + SCALAR∗c [ i ] ;
}

}

# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
u p c f o r a l l ( i =0 ; i<N; i ++; i ) {

x l u p c d e r e f a r r a y ( c h , tmp1 , i ) ;
x l u p c d e r e f a r r a y ( b h , tmp2 , i ) ;

tmp3 = tmp2 + 3 .0∗ tmp1 ;
x l u p c a s s i g n a r r a y ( a h , tmp3 , i ) ;

}
}

(a) Original UPC code (b) After transformations

Figure 6.1: UPC STREAM triad kernel

Figure 6.2: STREAM triad results using the naive transformations
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(1.6 GHz processors) with 512 GB of RAM running AIX 5.3. The memory bandwidth for

the sequential version of STREAM triad kernel is 3100 MB/s. While the benchmark does

scale nicely as the number of UPC threads increase, the overall results are significantly

lower than the sequential version.

6.1.1 Algorithm

To perform Shared-Object Access Privatization (SOAP) the compiler converts a fat pointer

into a traditional C pointer. This conversion requires support from the RTS to retrieve the

base address of the shared object in memory. A direct pointer access is then performed using

the base address and an offset computed using the original index into the shared array.

PRIVATIZESOA(ForallLoop Lforall ,SharedReferenceMapArray A)
1.foreach local thread T
2. MT ← A[T ]
3. foreach shared reference rs inMT

4. stmt← statement containing rs

5. rhandle ← SVD handle for rs

6. LPreheader .Add(raddress ← BaseAddress(rhandle))
7. lix← Linearized IVs used by rs

8. offset ← (courseof (r, lix) ∗ rblocking factor + phaseof (r, lix)) ∗ relt sz

9. if rs is a def then
10. data ← data to store to rs

11. if data.DataType is intrinsic then
12. newStmt ← storeind(raddress + offset , data)
13. else
14. newStmt← memcpy(raddress + offset , data, data.size)
15. end if
16. else
17. dst← location to store data from rs

18. if rs.DataType is intrinsic then
19. newStmt← loadind(raddress + offset , dst)
20. else
21. newStmt←memcpy(dst, raddress + offset , data.size)
22. end if
23. end if
24. stmt ← newStmt
25. end for
26.end for

Figure 6.3: Algorithm to privatize local shared-object accesses

The PRIVATIZESOA algorithm in Figure 6.3 uses the SharedReferenceMapArray A
generated by locality analysis to identify local shared references. For all architectures,

MYTHREAD will always be local and thus A[0] will always be evaluated. For hybrid archi-

tectures, threads 0 to TAP will be local and thus considered in step 1. For SMP architectures,

all threads map to the same address partition and thus step 1 will iterate through all threads.
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Step 5 obtains the handle (fat pointer) used by the RTS to identify the shared reference

rs. Step 6 inserts a call to a function in the RTS to obtain the base address of rs using the

SVD. The base-address initialization is placed in the loop preheader. The loop preheader

contains statements that should only be executed if the loop body executes but do not need

to be executed in every iteration of the loop. It is typically used to initialize loop invariant

variables.

In steps 7 and 8 the compiler generates code to compute the offset from the base address

at runtime. First, the linearized index is computed based on all induction variables used

by rs (step 7). Next, code to compute the offset is generated using Equation 4.10 from

Section 4.3.4.

The algorithm then determines the type of reference that rs represents. If rs is a defini-

tion of (store to) a shared object, the data stored to rs is obtained (step 10). If the data type

of the reference (i.e. the type of the shared array) is an intrinsic, a new statement containing

an indirect store is generated to store the data to the memory location raddress + offset

(step 12). If the data type is not intrinsic, a new statement containing a call to memcpy is

used to copy the data to raddress + offset (step 14).

If rs is a use of (load from) a shared object, the destination of the load is obtained. If

the type of the shared data represented by rs is intrinsic, an indirect load is used to obtain

the data, which is stored to the destination (step 19). If the type is not intrinsic, memcpy

is used to copy the shared data from raddress + offset to the destination (step 21). Finally,

step 24 replaces the statement containing rs with the new statement.

1 # d e f i n e SCALAR 3 . 0
2 shared double a [N ] ;
3 shared double b [N ] ;
4 shared double c [N ] ;
5

6 void S t r e a m T r i a d ( ) {
7 i n t i ;
8 aBase = x l u p c b a s e a d d r e s s ( a h ) ;
9 bBase = x l u p c b a s e a d d r e s s ( b h ) ;

10 cBase = x l u p c b a s e a d d r e s s ( c h ) ;
11 u p c f o r a l l ( i =0 ; i<N; i ++;&a [ i ] ) {
12 a O f f s e t = ( ( ( ( i%THREADS)% t h r e a d s P e r N o d e )∗ l o c a l s i z e ) + ( i /THREADS) ) ∗ 8 ;
13 b O f f s e t = ( ( ( ( i%THREADS)% t h r e a d s P e r N o d e )∗ l o c a l s i z e ) + ( i /THREADS) ) ∗ 8 ;
14 c O f f s e t = ( ( ( ( i%THREADS)% t h r e a d s P e r N o d e )∗ l o c a l s i z e ) + ( i /THREADS) ) ∗ 8 ;
15 ∗ ( aBase+ a O f f s e t ) = ∗ ( bBase+ b O f f s e t ) + SCALAR∗ (∗ ( cBase+ c O f f s e t ) ) ;
16 }
17 }

Figure 6.4: UPC STREAM triad kernel after PRIVATIZESOA

Figure 6.4 shows the code generated when the PRIVATIZESOA algorithm is applied to
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the STREAM kernel in Figure 6.1(a). The shared reference map generated by the locality

analysis will show that all three references map to MYTHREAD. Each of these references is

then considered in turn. The base addresses for the three shared arrays, a, b, and c arrays

are obtain on lines 8, 9, and 10. The base addresses are loop invariant and thus the call

is placed outside of the loop. The offsets from the base are computed on lines 12, 13 and

14. The offsets are based on the induction variable i and thus must remain inside the loop.

However, the offset computations contain both division and modulo operations and thus are

later optimized by the division and modulo strength reduction optimization. The compiler

was able to simplify the offset computations, instead of generating the more general form

presented in Equation 4.10, because the blocking factor for the shared arrays is 1. Finally,

the local shared-memory is directly accessed using the base address and offsets on line 15.

Three offset computations are inserted (for aOffset , bOffset, and cOffset ) because the

algorithm is run on each shared reference independently. However, since the three shared

arrays have the same blocking factor and are accessed at the same index, these offsets will

always be the same. A subsequent pass of common sub-expression elimination will remove

the redundant computations of bOffset and cOffset .

6.1.2 Results

The STREAM benchmark was used to measure the impact of privatizing shared-object ac-

cesses. The benchmark was run on the same machine as used to collect the results presented

in Figure 6.2. In all experiments, all UPC-specific optimizations are disabled except for the

privatization optimization being tested. Thus, the upc forall loop in the STREAM triad ker-

nel is not optimized. The STREAM triad kernel using an integer affinity test was used in

these experiments because the unoptimized integer affinity test has a much lower overhead

than the unoptimized pointer-to-shared affinity test.

Figure 6.5 shows the memory bandwidth measured when the STREAM triad kernel is

compiled with and without the PRIVATIZESOA algorithm. These results demonstrate that

there is a significant benefit to privatizing local shared references.

The performance of the optimized UPC STREAM Triad kernel run with 1 thread is

approximately 11% worse than the sequential C performance. This is due to the extra

computations required to determine the offsets to use in the direct pointer access. While

the compiler is able to optimize these computations and reduce the overhead, it cannot

remove them completely. When the UPC version is increased to 2 threads, the measured

memory bandwidth increases to approximately 3085 MB/s resulting in roughly the same
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Figure 6.5: Transfer rate for the UPC STREAM triad kernel
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performance as the sequential version. Thus, the extra work required by the additional

offset computations is mitigated by the addition of a second thread. As more threads are

added, the performance improves.

6.1.3 Discussion

The results in Figure 6.5 demonstrate a significant performance improvement by privatizing

shared-object accesses. However, since the upc forall loop is not optimized, it contains a

branch that is executed by every thread in every iteration of the loop. Not only does this

branch add instructions that must be executed in every iteration of the loop, it hinders the

ability of other optimizations to further optimize the loop. Thus, in order to achieve good

performance, the compiler must be able to remove this branch in addition to privatizing the

shared-object accesses.

The implementation of the PRIVATIZESOA algorithm was designed to focus on shared

arrays. In principle it is possible to privatize accesses to dynamically allocated storage

represented using pointers to shared data. However, before the compiler can privatize such

accesses it must verify that the pointer points to shared data that is distributed across all

threads. The algorithm to privatize shared accesses will not compute the offset positions

correctly for shared objects that are allocated to a single node (e.g., structures).

The PRIVATIZESOA algorithm does not change the order of accesses to shared data

and thus is always safe to perform, even in the presence of aliasing. That is, if a shared

array As is aliased with other shared symbols, it is always safe to privatize accesses to As

because the privatization does not change the order of the accesses relative to other shared

accesses.

6.2 Shared-Object Access Coalescing (SOAC)

Every shared-object access is translated into a function call to the RTS. On distributed and

hybrid architectures, access to shared objects located on a different node (i.e. remote ac-

cesses) result in the exchange of messages between the accessing thread and the owner

thread. Thus, there is a direct correlation between the number of remote shared references

and the number of messages that are sent during the execution of a program on a distributed

or hybrid architecture. When two or more shared objects are owned by the same thread,

accesses to the shared objects can be combined into a single access. When the shared ob-

jects are members of the same shared array, this optimization is called message coalescing;

when the shared objects are members of different shared arrays, this optimization is called
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message aggregation [34]. This work focuses on message coalescing, thus requiring all

shared-objects to be members of the same shared array.

If the accesses are uses of the shared objects, a coalesce RTS function call retrieves the

shared objects from the owning thread and places them into a temporary buffer owned by

the accessing thread. The uses are then modified to access the temporary buffer. Similarly,

if the accesses are definitions, the accesses are modified to write to the temporary buffer

owned by the accessing thread. A single coalesce RTS function call then updates all of the

shared objects on the owning thread. The goal of SOAC is to reduce the number of accesses

to remote shared objects, thereby reducing the number of messages required during the

execution of the program on a distributed or hybrid architecture. The SOAC optimization

is responsible for (i) identifying opportunities for coalescing; (ii) managing the temporary

buffers, including modifications of shared references to read-from/write-to the buffers; and

(iii) inserting calls to the coalesce RTS functions.

1 shared [COLUMNS] BYTE o r i g [ROWS] [COLUMNS] ;
2 shared [COLUMNS] BYTE edge [ROWS] [COLUMNS] ;
3 i n t Sobe l ( ) {
4 i n t i , j , gx , gy ;
5 double g r a d i e n t ;
6 f o r ( i =1 ; i < ROWS−1; i ++) {
7 u p c f o r a l l ( j =1 ; j < COLUMNS−1; j ++; &o r i g [ i ] [ j ] ) {
8 gx = ( i n t ) o r i g [ i −1][ j +1] − o r i g [ i −1][ j −1];
9 gx += ( ( i n t ) o r i g [ i ] [ j +1] − o r i g [ i ] [ j −1]) ∗ 2 ;

10 gx += ( i n t ) o r i g [ i + 1 ] [ j +1] − o r i g [ i + 1 ] [ j −1];
11 gy = ( i n t ) o r i g [ i + 1 ] [ j −1] − o r i g [ i −1][ j −1];
12 gy += ( ( i n t ) o r i g [ i + 1 ] [ j ] − o r i g [ i −1][ j ] ) ∗ 2 ;
13 gy += ( i n t ) o r i g [ i + 1 ] [ j +1] − o r i g [ i −1][ j + 1 ] ;
14 g r a d i e n t = s q r t ( ( gx∗gx ) + ( gy∗gy ) ) ;
15 i f ( g r a d i e n t > 255) g r a d i e n t = 255 ;
16 edge [ i ] [ j ] = (BYTE) g r a d i e n t ;
17 }
18 }
19 }

Figure 6.6: UPC Sobel benchmark

Figure 6.6 shows the Sobel edge detection kernel in UPC. The two shared arrays rep-

resenting the image are blocked such that each row has affinity with a single UPC thread.

The kernel contains a total of 13 accesses to shared arrays (12 to orig and one to edge).

Figure 6.7 shows the resulting code generated by the compiler without coalescing.

Figure 6.8 shows the results of running the Sobel benchmark on a 4000x4000 image on

a hybrid system using up to 4 nodes and 1 thread-per-node (i.e. a purely distributed system).

The sequential time of a C implementation of Sobel for this image size is 1.217s.

Table 6.1 shows the number of local and remote accesses performed for the Sobel ker-
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1 shared [COLUMNS] BYTE o r i g [ROWS] [COLUMNS] ;
2 shared [COLUMNS] BYTE edge [ROWS] [COLUMNS] ;
3 i n t Sobe l ( ) {
4 i n t i , j , gx , gy ;
5 double g r a d i e n t ;
6 f o r ( i =1 ; i < ROWS−1; i ++) {
7 u p c f o r a l l ( j =1 ; j < COLUMNS−1; j ++; &o r i g [ i ] [ j ] ) {
8 x l u p c d e r e f a r r a y ( o r i g h , tmp1 , ( i −1)∗COLUMNS+ j + 1 ) ;
9 x l u p c d e r e f a r r a y ( o r i g h , tmp2 , ( i −1)∗COLUMNS+ j −1);

10 x l u p c d e r e f a r r a y ( o r i g h , tmp3 , i ∗COLUMNS+ j + 1 ) ;
11 x l u p c d e r e f a r r a y ( o r i g h , tmp4 , i ∗COLUMNS+j −1);
12 x l u p c d e r e f a r r a y ( o r i g h , tmp5 , ( i +1)∗COLUMNS+ j + 1 ) ;
13 x l u p c d e r e f a r r a y ( o r i g h , tmp6 , ( i +1)∗COLUMNS+ j −1);
14 x l u p c d e r e f a r r a y ( o r i g h , tmp7 , ( i +1)∗COLUMNS+ j −1);
15 x l u p c d e r e f a r r a y ( o r i g h , tmp8 , ( i −1)∗COLUMNS+ j −1);
16 x l u p c d e r e f a r r a y ( o r i g h , tmp9 , ( i +1)∗COLUMNS+ j ) ;
17 x l u p c d e r e f a r r a y ( o r i g h , tmp10 , ( i −1)∗COLUMNS+ j ) ;
18 x l u p c d e r e f a r r a y ( o r i g h , tmp11 , ( i +1)∗COLUMNS+ j + 1 ) ;
19 x l u p c d e r e f a r r a y ( o r i g h , tmp12 , ( i −1)∗COLUMNS+ j + 1 ) ;
20

21 gx = ( i n t ) tmp1 − tmp2 ] ;
22 gx += ( ( i n t ) tmp3 − tmp4 ) ∗ 2 ;
23 gx += ( i n t ) tmp5 − tmp6 ;
24 gy = ( i n t ) tmp7 − tmp8 ;
25 gy += ( ( i n t ) tmp9 − tmp10 ) ∗ 2 ;
26 gy += ( i n t ) tmp11 − tmp12 ;
27 g r a d i e n t = s q r t ( ( gx∗gx ) + ( gy∗gy ) ) ;
28 i f ( g r a d i e n t > 255) g r a d i e n t = 255 ;
29 tmp13 = (BYTE) g r a d i e n t ;
30 a s s i g n a r r a y ( edge h , tmp13 , i ∗COLUMNS+ j ) ;
31 }
32 }
33 }

Figure 6.7: Transformed Sobel benchmark
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Figure 6.8: Execution time for the Sobel kernel

nel with the same image. The accesses are broken down into assignments (writes) and

dereferences (reads). For a single thread, there are no remote accesses because all elements

of the shared arrays have affinity with thread 0. Thus, the difference in execution time

between the sequential version (1.217s) and the UPC version with 1 thread (111s) is not

caused by remote accesses. Instead, this difference is due to the overhead of the parallel

loops and the calls to the runtime system to access the shared arrays. These overheads are

discussed further in Chapter 7. As the number of nodes increases, the number of remote

accesses also increases because the shared arrays are now distributed across more threads.

Each of these remote accesses will result in a message being sent across the network in-

terconnect to access the remote data. This overhead is seen in Figure 6.8 as the time for

running the Sobel kernel with 2 threads is higher than the time when running on a single

thread. Even though the work is distributed among 2 threads, the overhead from accessing

remote shared-objects cause the benchmark to run slower. The increase in execution time

clearly demonstrates that the cost of communication in a distributed or hybrid system can

significantly impact performance.

The access measurements in Table 6.1 include the initialization of the original image

72



Nodes
Local Accesses Remote Accesses

Assign Deref Total Assign Deref total
1 31984004 143872032 175856036 0 0 0
2 23984004 39968008 63952012 8000000 103904024 111904024
3 21320004 37304008 58624012 10664000 106568024 117232024
4 19984004 35968008 55952012 12000000 107904024 119904024

Table 6.1: Remote assigns and derefs

and the serialization of the edge (final) image. Both of these operations must be performed

by a single thread and thus some of the accesses will be remote. On the other hand, the

execution times presented in Figure 6.8 only measure the time spent in the Sobel kernel

and does not include the initialization and serialization of the images. Thus, the number

of local and remote accesses in Table 6.1 do not correspond directly to the execution times

in Figure 6.8. However, the instrumentation results clearly show a large number of remote

accesses.

6.2.1 Algorithm

The interface for coalescing shared object accesses provided by the RTS allows the compiler

to specify a shared symbol, a stride to use when collecting shared references, the number

of shared references to collect and the temporary buffer to use. Separate calls are used

to differentiate between reads and writes. To use this interface, the compiler enforces the

following restrictions on coalescing candidates: (i) all candidates must have the same base

symbol; (ii) all candidates must be owned by the same thread. (iii) all candidates must

have the same type (read or write). Conditions (i) and (ii) ensure that a single (constant)

stride can be used to describe all shared references that are coalesced into a single access.

Requiring coalesced shared references to have the same symbol simplifies the coalescing

in two ways. First, in the function calls to the RTS only one shared symbol needs to be

specified. An extension to this algorithm would be to coalesce several shared symbols

and offsets into a single message. This extension is left as possible future work. The

second advantage is that all of the coalesced data will have the same type and length. This

restriction simplifies the conversion of the original shared accesses to correctly use the

temporary buffer. Condition (iii) is required because a single coalescing call cannot mix

read and write instructions.

Another requirement for coalescing is that two shared references cannot be separated

by a synchronization point (e.g., a upc barrier or a strict access). This is required to com-
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ply with the memory semantics specified by the UPC Language. As a result, upc forall

loops that contain synchronization points are not included in the analysis for shared-object

coalescing. This restriction is overly conservative because it is possible to have shared

references that can safely be coalesced in a upc forall loop that contains synchronization

points. However, coalescing such references would require additional data and control flow

analysis to ensure that the coalesced calls do not cross synchronization points.

The algorithm iterates through all remote threads, collecting shared references as can-

didates for coalescing. For each remote thread T , the map generated by locality analysis

is obtained (step 2). This map contains all of the shared references that the compiler can

prove that T owns. For each type of reference (use or def) and each shared symbol s, a

list of coalescing candidates is created using the COALESCECANDIDATES routine (step 5).

This routine collects all shared references with the same shared symbol and of the specified

type, eliminating conflicting and aliased references. If a loop contains a use and a definition

of the same shared variable, the corresponding shared references conflict. This algorithm

only considers non-conflicting shared references to simplify placement of the coalesced ac-

cess (conflicting shared references cause data dependencies that must be preserved when

placing the coalesced shared-object access). This restriction can be relaxed, however, co-

alescing conflicting shared references will require a context sensitive placement algorithm

that preserves data dependencies. If a shared reference is aliased to another shared reference

(through a pointer-to-shared) then it is not safe to perform coalescing because coalescing

can change the order of accesses to shared objects. Thus, all aliased shared references are

also eliminated by the COALESCECANDIDATES routine. This is also an overly restrictive

constraint and could be relaxed in the future using more detailed control flow and data flow

analysis.

After step 8, RefListref type
T contains two or more shared references that all have the

same type (def or use), all access the same base symbol and are all owned by the same

thread. It is not necessary for all shared references in RefListref type
T to have the same

stride between them. Thus the next step of the algorithm is to determine the best stride to

use when coalescing the shared references in RefListref type
T . This is done by performing

a pair-wise comparison between all shared references in RefListref type
T to determine the

stride between them (steps 10 to 13). StrideCounts is a hash table where the stride s

is used as a key and the hash value is the number of times s occurs. The MAXIMUM

function (step 14) returns the position containing the maximum value in strideCounts .

This maximum value corresponds to the stride that occurred the most among all the shared
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COALESCESOA(ForallLoop Lforall ,SharedReferenceMapArray A)
1.foreach remote thread T
2. MT ← A[T ]
3. foreach ref type ∈ def , use
4. foreach shared symbol s
5. RefListref type

T ← COALESCECANDIDATES(ref type, s,MT )

6. if || RefListref type
T || < 2 then

7. continue
8. end if
9. Initialize strideCounts to 0
10. foreach pair of unique references ri and rj in RefListref type

T

11. s← |ri − jj |
12. Increment strideCounts[s]
13. end for
14. stride← MAXIMUM(strideCounts)
15. initCands ← φ
16. CoalesceList ← initCands

17. foreach pair of shared references ri and rj in RefListref type
T

18. if |ri − rj | = stride then
19 foreach candList in CoalesceList
20. if ri ∈ candList then
21. candList← candList+ rj

22. elsif rj ∈ candList then
23. candList← candList+ ri

24. else
25. newList← ri

26. newList← newList+ rj

27. CoalesceList ← CoalesceList + newList
28. end if
29. end for
30. end if
31. end for
32. foreach candList ∈ CoalesceList
33. if ||candList|| < 2 then
34. continue
35. end if
36. candList← SORTCANDIDATES(candList, s)
37. Allocate tmpBuffer with ||candList|| elements
38. if ref type is def then
39. InitBuffer ← COALESCEDEF(tmpBuffer , candList)
40. InsertPos← BODYEND(Lforall)
41. Insert InitBuffer after InsertPos
42. else
43. InitBuffer ← COALESCEUSE(tmpBuffer , candList)
44. InsertPos← BODYBEGIN(Lforall)
45. Insert InitBuffer before InsertPos
46. end if
47. foreach shared reference rs in candList
48. rs.base← tmpBuffer
49. rs.offset← position of rs in candList
50. Mark rs as not shared
51. end for
52. end for
53. end for
54. end for
55. end for

Figure 6.9: Algorithm to coalesce remote shared-object accesses
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references in RefListT . Selecting the stride with the most occurrences ensures that the

maximum number of shared references in RefListref type
T will be coalesced.

The next phase of the algorithm is to sort all of the shared references into groups of

candidates that can be coalesced together. This is done using a union-find based algo-

rithm where two references ri and rj with the desired stride are placed into an existing list

(steps 21 and 23) or added to a new list (steps 24 to 27). A candList is a list of references

and CoalesceList is a list of candLists. It is not possible for a reference to appear in two

different candidate lists because RefListref type
T did not contain any duplicate references.

Similarly, every reference in RefListref type
T is guaranteed to be placed in one candidate list.

The final phase of the algorithm traverses each list of candidates, creating the coalesced

calls and remapping the shared references. No coalescing opportunities exist for lists of

size 1 and thus they are ignored (step 33).

Step 36 sorts the candidates in candList such that for every two adjacent candidates

candi and candi+1 in candList , the distance between candi and candi+1 is stride (i.e.

candi+1 − candi = stride). In principle it is possible to sort the candidate list as it is

being created (i.e. insert candidates so the list remains sorted) however for implementation

reasons this was added as an explicit step. This sorting is done to facilitate the remapping

of shared references into the temporary buffer since the position of the reference within the

group will determine the position of the data in the temporary buffer. Upon completion of

step 36, the candidates in candList are arranged in ascending order based on the distance

between the shared references.

Next, the temporary buffer is allocated based on the number of shared references in the

candidate list (step 37). The call to the coalesce RTS function is then created. The generated

call contains (i) the starting position used for coalescing (the first entry in candList), (ii)

the stride between candidates, (iii) the number of entries to retrieve, (iv) a temporary

buffer containing the results. When ref type is use , a GET call is generated and placed at

the beginning of the loop body; when ref type is def a PUT call is generated and placed at

the end of the loop body. All shared references in candList are then remapped to use this

temporary buffer. If ref type is use , the data will be loaded from tmpBuffer ; if ref type

is def , the data will be stored to tmpBuffer . Since the candidates in candList are sorted

in ascending order, the position of the candidate in candList corresponds to the position of

the data in the temporary buffer.

Consider again the Sobel kernel from Figure 6.6 compiled for 2 threads and 2 nodes

(hybrid architecture with 1 thread per node) and an image size of 4000x4000 (i.e. ROWS
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Thread Shared References
0 → origi,j−1, origi,j , origi,j+1, edgei,j
1 → origi−1,j−1, origi−1,j , origi−1,j+1, origi+1,j−1, origi+1,j , origi+1,j+1

Figure 6.10: SharedReferenceMapArray for the Sobel kernel

=4000, COLUMNS=4000). Figure 6.10 shows the SharedReferenceMapArray created

by the locality analysis. Since there is only one remote thread, the outer foreach loop of

the COALESCESOA algorithm will only execute once (step 1). The shared reference map

for thread 1, M1, will contain six shared references corresponding to the shared array

accesses: orig [ i−1][j−1], orig [ i−1][j], orig [ i−1][j+1], orig [ i+1][ j−1], orig [ i+1][ j ]

, and orig [ i+1][ j+1]. Since all shared references are uses and have the same base symbol

RefListref type
T will contain these six references after step 5.

stride count
1 4
2 2

7998 1
7999 2
8000 3
8001 2
8002 1

Figure 6.11: strideCounts array created by COALESCESOA

Figure 6.11 shows the stride counts array computed in steps 10 to 13. The stride cor-

responds to the distance, in number of array elements, between two shared references.

The stride is computed by flattening the indices in the shared references and subtracting

them. For example, consider the shared references orig [ i−1][j−1] and orig [ i+1][ j+1]

. The flattened indices for these two references are ( i−1)∗COLUMNS + j−1 and ( i+1)

∗COLUMNS + j+1 respectively. Subtracting these two indices results in a stride of 2∗
COLUMNS + 2, where COLUMNS = 4000. Thus, the stride between orig [ i−1][j−1] and

orig [ i+1][ j+1] is 8002.

Since strideCounts[1] contains the highest value, 1 is selected as the stride for coalesc-

ing. Two candidate lists are then created (steps 17 to 31) where candList1 = [ orig [ i−1][

j−1] orig [ i−1][j] orig [ i−1][j+1] ] and candList2 = [ orig [ i+1][ j−1] orig [ i+1][ j ]

orig [ i+1][ j+1] ]. The first candidate list is then sorted and a temporary buffer contain-

ing three elements is created. The data type and length of the elements in the temporary
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buffer are based on the data type and length of the shared references. Since the references

in candList1 are uses, a coalesced GET call is created and placed at the beginning of the

loop body. The uses of the references in candList1 are replaced with references to the

temporary buffer using their position in the candidate list to determine the offset into the

temporary buffer. For example, candList1[1] is orig [ i−1][j] so orig [ i−1][j] is replaced

with tmpBuffer[1].

1 shared [COLUMNS] BYTE o r i g [ROWS] [COLUMNS] ;
2 shared [COLUMNS] BYTE edge [ROWS] [COLUMNS] ;
3 i n t Sobe l ( ) {
4 i n t i , j , gx , gy ;
5 double g r a d i e n t ;
6 f o r ( i =1 ; i < ROWS−1; i ++) {
7 u p c f o r a l l ( j =1 ; j < COLUMNS−1; j ++; &o r i g [ i ] [ j ] ) {
8 x l u p c c o a l e s c e g e t ( tmp1 , o r i g , ( ( i −1)∗COLUMNS)+ j −1, 3 , 1 ) ;
9 x l u p c c o a l e s c e g e t ( tmp2 , o r i g , ( ( i +1)∗COLUMNS)+ j −1, 3 , 1 ) ;

10 gx = ( i n t ) tmp1 [ 2 ] − tmp1 [ 0 ] ;
11 gx += ( ( i n t ) o r i g [ i ] [ j +1] − o r i g [ i ] [ j −1]) ∗ 2 ;
12 gx += ( i n t ) tmp2 [ 2 ] − tmp2 [ 0 ] ;
13 gy = ( i n t ) tmp2 [ 0 ] − tmp1 [ 0 ] ;
14 gy += ( ( i n t ) tmp2 [ 1 ] − tmp1 [ 1 ] ) ∗ 2 ;
15 gy += ( i n t ) tmp2 [ 2 ] − tmp1 [ 2 ] ;
16 g r a d i e n t = s q r t ( ( gx∗gx ) + ( gy∗gy ) ) ;
17 i f ( g r a d i e n t > 255) g r a d i e n t = 255 ;
18 edge [ i ] [ j ] = (BYTE) g r a d i e n t ;
19 }
20 }
21 }

Figure 6.12: UPC Sobel edge detection kernel after COALESCESOA

Steps 19 to 53 are then repeated for candList2. Figure 6.12 shows the Sobel kernel

after coalescing the remote shared accesses. Note that the shared array accesses on lines 11

and 18 are not modified. These accesses are identified as local accesses by the locality

analysis and thus placed in the shared reference map for relative thread 0. As a result they

are not considered for coalescing.

6.2.2 Results

The impact of coalescing shared-object accesses was measured using the Sobel kernel. The

benchmark was compiled and run with one thread-per-node (distributed architecture) on a

4-node POWER5 cluster. Each node contains 16 POWER5 cores (1.9 GHz), 64GB of RAM

and runs AIX 5.3. All UPC-specific optimizations are disabled except for the coalescing

optimization being tested.

Figure 6.13 shows the execution times of the Sobel kernel when compiled with and

without the COALESCESOA algorithm. We observe a 33% decrease in execution time on
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Figure 6.13: UPC Sobel kernel with coalescing

2 threads and a 25% decrease in execution time on 4 when SOAC is applied. Figure 6.14

shows the decrease in the number of remote dereferences when SOAC is applied. These

results indicate that the COALESCESOA algorithm is able to reduce the number of remote

shared-object accesses thereby increasing the performance of the Sobel benchmark.
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Figure 6.14: Remote dereferences with coalescing
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6.2.3 Discussion

In principle, it is possible to create opportunities for coalescing by unrolling loops. How-

ever, the loop unrolling mechanism in TPO is currently disabled. Once the loop unrolling

mechanism has been tested with upc forall loops, work will be done to use it to create

additional coalescing opportunities.

There are 2 costs associated with coalescing that could potentially impact performance:

(i) allocation and management of temporary buffers; (ii) potential for creating large mes-

sages (which could impact performance of the network). Both of these costs will occur

if too many accesses are coalesced into a single access. At this point we have not found

any cases in existing benchmarks where coalescing all possible opportunities causes per-

formance to degrade. As such, no heuristics have been implemented to control the use of

coalescing. However, heuristics will become necessary once the compiler is able to unroll

loops to create coalescing opportunities. The heuristics to unroll loops and create coalesc-

ing opportunities will have to take into account the potentially negative costs associated

with coalescing in order to prevent a negative performance impact.

As mentioned previously, message coalescing requires the shared objects to be mem-

bers of the same shared array. When the shared objects are members of different arrays,

message aggregation can be used to combine multiple shared-object accesses that map to

the same thread into a single access. The shared reference map contains all of the necessary

information in order for the compiler to generate aggregated calls to the RTS. However, an

RTS interface to represent aggregated accesses has not been established at this point and is

being considered for future work.

6.3 Shared-Object Access Scheduling

The Shared-Object Access Scheduling (SOAS) optimization attempts to overlap the com-

munication required to move shared objects between address partitions with other (unre-

lated) computation. The motivation is to reduce the amount of time a processor spends idle

waiting for the communication to complete.

Consider the synthetic UPC benchmark in Figure 6.15. This benchmark performs a

sum on private data and then updates the sum based on the value of a remote shared object.

Finally, a local access is performed to write the sum to another shared object. Figure 6.16

shows the code that is generated by the existing UPC transformations. The local sum is

computed on lines 8 to 10 and then the value of the remote data is retrieved (line 11). The
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1 shared double MySharedData [ SHARED DATA SIZE ] ;
2 shared double RemoteData [ SHARED DATA SIZE ] ;
3 double MyPr iva t eDa ta [ PRIVATE DATA SIZE ] ;
4 void Compute ( ) {
5 i n t i , j , k ;
6 double sum = 0 . 0 ;
7 u p c f o r a l l ( i =0 ; i < SHARED DATA SIZE ; i ++; &MySharedData [ i ] ) {
8 f o r ( j =0 ; j < PRIVATE DATA SIZE ; j ++) {
9 sum += MyPr iva teDa ta [ j ] ;

10 }
11 MySharedData [ i ] = sum ∗ RemoteData [ ( i +1)%(SHARED DATA SIZE ) ] ;
12 }
13 }

Figure 6.15: Synthetic UPC benchmark to illustrate scheduling shared-object accesses

xlupc deref array call will return when the remote value has been retrieved, at which

point the execution continues. In this example, if the retrieval of the remote shared data

is initiated before the loop on line 8, then the time taken to retrieve the data could be

overlapped with the computation of the local sum.

1 shared double MySharedData [ SHARED DATA SIZE ] ;
2 shared double RemoteData [ SHARED DATA SIZE ] ;
3 double MyPr iva t eDa ta [ PRIVATE DATA SIZE ] ;
4 void Compute ( ) {
5 i n t i , j , k ;
6 double sum = 0 . 0 ;
7 u p c f o r a l l ( i =0 ; i < SHARED DATA SIZE ; i ++; &MySharedData [ i ] ) {
8 f o r ( j =0 ; j < PRIVATE DATA SIZE ; j ++) {
9 sum += MyPr iva teDa ta [ j ] ;

10 }
11 x l u p c d e r e f a r r a y ( RemoteData h , &tmp , ( i +1)%SHARED DATA SIZE ) ;
12 tmp2 = sum ∗ tmp ;
13 x l u p c a s s i g n a r r a y ( MySharedData h , &tmp2 , i ) ;
14 }
15 }

Figure 6.16: Naive transformation of a synthetic benchmark

There are three restrictions that must be obeyed when scheduling remote shared-object

accesses: (i) shared-object accesses cannot move past a synchronization point; (ii) tradi-

tional data dependencies must be preserved; (iii) the non-blocking call, the corresponding

wait statement and the shared reference must all be control-flow equivalent.

To ensure the first condition, remote shared-object accesses cannot be moved across

barriers, strict accesses, or any collective operation that implies synchronization. Similarly,

strict accesses are not candidates for remote shared-object scheduling. To ensure that this

criteria is met, the remote shared-object access scheduling algorithm works at the scope

of a loop nest that does not contain any synchronization points or strict accesses. A tra-
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ditional data dependence graph for the loop nest is used to ensure that no traditional data

dependencies are violated.

The third condition ensures that the scheduling of shared-object accesses does not cause

a shared-object access to occur when it would not have occurred in the original code. The

scheduler also ensures that the non-blocking call and the wait call inserted by the compiler

match correctly.

When scheduling remote shared-object accesses, the compiler uses non-blocking ver-

sions of the calls in the RTS. These calls are referred to as post calls because they simply

post the required message to the communication subsystem and return immediately. Each

post call returns a pointer to a handle that the compiler uses in the subsequent wait call that

it inserts before the data is used (in the case of a read) or before the data is re-written (in the

case of a write). The wait call halts execution until the post command has completed.

To maximize the amount of computation between the call and the wait statement, the

scheduler first attempts to insert prefetch non-blocking calls in the loop body such that the

current iteration executes a non-blocking call to retrieve the shared-object used in the next

iteration. If the scheduler is unable to prefetch the shared-object, it schedules the non-

blocking call within the basic block containing the shared reference.

6.3.1 Algorithm

The scheduling of remote shared-object accesses attempts to overlap the communication

required to move shared objects between address partitions with other (unrelated) computa-

tion. The motivation is to reduce the amount of time a processor spends idle waiting for the

communication to complete. Parallel loop nests that do not contain synchronization points

will provide the scope to which SOAS will be applied. That is, only parallel loop nests

that do not contain barriers, collectives that imply synchronization or shared references that

are marked as strict will be candidates for SOAS. In the future, these restrictions can be

relaxed, however, more analysis will be necessary to ensure that the scheduled accesses do

not cross any synchronization point. Traditional data dependences must also be preserved

when scheduling remote shared-object accesses.

The algorithm to schedule remote shared-object accesses is shown in Figure 6.17. The

algorithm takes a candidate upc forall loop and the shared reference map generated by

locality analysis. The algorithm begins by obtaining the affinity statement for the upc forall

loop (step 1). Next it iterates through all remote threads in the shared reference map and

for each remote thread T the algorithm obtains the list of shared references owned by T .
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SCHEDULESOA(ForallLoop Lforall ,SharedReferenceMapArray A)
1. Astmt ← Affinity statement used in Lforall

2. foreach remote thread T
3. MT ← A[T ]
4. foreach ref type ∈ def , use

5. RefListref type
T ← SCHEDULECANDIDATES(ref type,MT )

6. foreach shared reference symbol rs in RefListref type
T

7. waitsym ← φ
8. if Astmt dominates rs and rs postdominates Astmt and ref type = use then
9. indexfirst ← Generate first index expression
10. indexnext ← Generate next index expression
11. postfirst ← GENERATEPOST(indexfirst ,waitsym , rs)
12. postnext ← GENERATEPOST(indexnext ,waitsym , rs)

13. INSERTPOST(postfirst , ref type, Lheader
forall )

14. guard← INSERTPOSTGUARD(indexnext , rs)
15. INSERTPOST(postnext , ref type, guard)
16. INSERTWAIT(waitsym , rs)
17. else
18. block ← basic block containing rs

19. index ← rindex
s

20. post← GENERATEPOST(index,waitsym , rs)
21. wait← GENERATEWAIT(post)
22. INSERTPOST(post, ref type, block)
23. INSERTWAIT(wait, rs)
24. end if
25. end for
26. end for
27.end for

Figure 6.17: Algorithm to schedule remote shared-object accesses
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The SCHEDULECANDIDATES algorithm collects all shared references of the specified type

(use or def ) into a list. The SCHEDULECANDIDATES algorithm does not need to check for

strict shared references because loops containing such references are not candidates for the

SCHEDULESOA algorithm.

The algorithm proceeds by attempting to schedule each candidate shared reference.

The required condition for scheduling shared object accesses is that the post instruction,

the corresponding wait instruction and the original shared reference all must be control-

flow equivalent. Thus, in order to schedule the access such that the current iteration of

the upc forall loop prefetches the shared reference used in the next iteration, the shared

reference must be control-flow equivalent with the affinity statement. Step 8 checks for this

condition. IfAstmt and rs are control flow equivalent, then rs is a candidate for prefetching.

Steps 9 to 16 generate the code for prefetching the shared reference. The index of the first

iteration of the upc forall loop is computed (step 9) and used in the first post instruction,

placed in the loop header (step 13). The index of the shared reference in the next iteration

is computed based on the current index and the blocking factor of the shared reference used

in the affinity statement. If the upc forall loop uses an integer affinity test then a blocking

factor of 1 is assumed. If the blocking factor is 1 then indexnext is the index of the next

shared array element owned by the executing thread. This is computed using:

indexnext = indexcurrent + THREADS (6.1)

If the blocking factor is greater than one, then the next index must be determined at

runtime based on the position of the current index within the block. To determine this, the

compiler inserts the code seen in Figure 6.18.

1 o f f s e t = 1 ;
2 i f ( c u r r I n d e x % B l o c k i n g F a c t o r == B l o c k i n g F a c t o r − 1)
3 o f f s e t = o f f s e t + ( B l o c k i n g F a c t o r ∗ (THREADS−1) ) ;
4 n e x t I n d e x = c u r r I n d e x + o f f s e t ;

Figure 6.18: Code to compute the next index at runtime

Before prefetching the shared reference from the next iteration of the loop, the compiler

must ensure that the next iteration will be executed. This is done by inserting a guard branch

to compare the next index of the shared reference with the upper bound of the loop. The post

instruction is then placed under the guard branch (step 15). The GENERATEPOST algorithm

generates the post instruction for the given shared reference. It take as a parameter the
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symbol used by the wait statement. If this symbol is uninitialized, the algorithm creates

a new symbol and initializes it. If the symbol is already initialized, a new symbol is not

created. Therefore all post calls store the return value to the same symbol.

If the compiler was not able to prefetch the shared reference, the algorithm defaults to

scheduling the shared-object access within the basic block containing the shared reference

(Steps 17 to 24). These steps are similar to the ones used for prefetching, except that the

index used in the post call is from the current loop iteration and the generated instructions

are placed within the basic block containing rs. No guard branches are necessary before

the call because the index used in the post call is from the current iteration.

1 shared double MySharedData [ SHARED DATA SIZE ] ;
2 shared double RemoteData [ SHARED DATA SIZE ] ;
3 double MyPr iva t eDa ta [ PRIVATE DATA SIZE ] ;
4 void Compute ( ) {
5 i n t i , j , k ;
6 double sum = 0 . 0 ;
7 w a i t = x l u p c d e r e f a r r a y p o s t ( RemoteData h , MYTHREAD) ;
8 u p c f o r a l l ( i =0 ; i < SHARED DATA SIZE ; i ++; &MySharedData [ i ] ) {
9 f o r ( j =0 ; j < PRIVATE DATA SIZE ; j ++) {

10 sum += MyPr iva teDa ta [ j ] ;
11 }
12 o f f s e t =THREADS;
13 x l u p c w a i t ( w a i t ) ;
14 tmp2 = tmp ;
15 i f ( i +THREADS) < SHARED DATA SIZE )
16 w a i t = x l u p c d e r e f a r r a y p o s t ( RemoteData h ,&tmp ,
17 ( i +THREADS+1)%SHARED DATA SIZE ) ;
18 MySharedData [ i ] = sum ∗ tmp2 ;
19 }
20 }

Figure 6.19: Optimized synthetic UPC benchmark

Consider again the synthetic benchmark presented in Figure 6.15. The locality analysis

identifies the owner of shared reference RemoteData(i+1)%(SHARED DATA SIZE) as UN-

KNOWN and places it into the shared reference map accordingly. The owner is UNKNOWN

because the compiler cannot compute the modulo operation at compile time and therefore

the affinity distance is not a compile-time constant. This reference will be a candidate for

SCHEDULESOA because shared references with owners marked as UNKNOWN are treated

as remote. The affinity statement and the RemoteData(i+1)%(SHARED DATA SIZE) ref-

erence are control flow equivalent. Thus the compiler inserts a prefetech call into the

upc forall loop. The indexfirst is computed to be MYTHREAD and used in the post call

inserted in the loop header. Figure 6.19 shows the optimized synthetic UPC benchmark.

Figure 6.20 shows two shared references,Ai andBi that are not control-flow-equivalent
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shared i n t A[N ] ;
shared i n t B[N ] ;

i n t foo ( ) {
i n t i , x ;
u p c f o r a l l ( i =0 ; i<N; i ++;&A[ i ] ) {

i f ( i % M) {
x = A[ i ] ;

}
e l s e {

x = B[ i ] ;
}

}
. . .

}

shared i n t A[N ] ;
shared i n t B[N ] ;

i n t foo ( ) {
i n t i , x ;
u p c f o r a l l ( i =0 ; i<N; i ++;&A[ i ] ) {

i f ( i % M) {
waitSym =

x l u p c d e r e f a r r a y p o s t ( A h , i ) ;
x l u p c w a i t ( waitSym ) ;

x = A[ i ] ;
}
e l s e {

waitSym =
x l u p c d e r e f a r r a y p o s t ( B h , i ) ;

x l u p c w a i t ( waitSym ) ;
x = B[ i ] ;

}
}
. . .

}

(a) Original UPC code (b) After SCHEDULESOA

Figure 6.20: Non-control-flow-equivalent shared references

with the affinity statement in the upc forall loop. In this case, the compiler does not attempt

to prefetch shared references Ai+1 or Bi+1 because it cannot determine which will be used

next. In this situation, the compiler inserts the non-blocking calls at the beginning of the

basic block containing the shared reference, as seen in Figure 6.20(b). In this example,

there would be no gain from inserting the calls because the basic blocks containing the

shared references are small. Also, if the control-flow paths containing the shared references

are long, it may be beneficial to separate the non-blocking calls and the subsequent wait

statements by moving the non-blocking calls up the control flow path. While doing this, the

compiler must maintain the control-flow relationship between the non-blocking call and the

shared reference, i.e. the non-blocking call must remain control-flow equivalent with the

shared reference. Moving code to separate the non-blocking calls from wait statements, in

the presence of control flow, has been left for future investigation.

6.3.2 Results

Figure 6.21 shows the relative improvement obtained from using the SCHEDULESOA al-

gorithm on the synthetic benchmark in Figure 6.15. The benchmark used sizes of 2000,

200000, and 2000000 for the private and shared arrays in the benchmark (e.g., pd2ksd200k

represents a private array of 2000 and a shared array of 200000). These variations measure

the impact that the different data sizes have on performance. By adjusting the size of the
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Figure 6.21: Improvement over baseline from SCHEDULESOA algorithm

private array, the amount of computation between the prefetch call and the subsequent wait

is altered. Similarly, altering the size of the shared data determines the number of prefetch

calls that are issued in a given program execution.

The relative improvements shown in Figure 6.21 demonstrate that there is a benefit to

scheduling shared-object accesses to overlap the communication with the computation. In

this example, this benefit appears to be greatest for private array sizes of 2000 and 200000

elements. When the size is increased to 2000000, the cost of the private computation dom-

inates the execution and the communication becomes a secondary concern. For private

arrays sizes of 2000 and 200000 there is not as much benefit from scheduling shared-object

accesses for 2 threads as there is for 3 and 4 threads. We do not have an explanation for this

surprising result. 1 Similarly, we have no explanation for the slowdown for 2 and 4 threads

using a private array of 2000 and a shared array of 200000.

6.3.3 Discussion

Software prefetching is an optimization where the compiler inserts machine instructions

that begin to prefetch into the data cache. The compiler attempts to insert the prefetch

instructions such that the data will be available when it is first used [4, 6, 58]. The SCHED-

ULESOA algorithm is similar to software prefetching in that it attempts to hide the latency

of accessing remote shared data by overlapping it with unrelated computation. Despite the

1The speedups reported in Figure 6.21 are the average of 8 runs.
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advantages of software prefetching, Allen and Kennedy list three disadvantages: (i) it in-

creases the amount of instructions that must be executed; (ii) it can cause useful data cache

lines to be evicted; (iii) data brought into the cache can be evicted before use, or never

used. As a result of these disadvantages, the compiler must perform analysis to determine

when software prefetching is profitable and must try to reduce the occurences of these situ-

ations. The SCHEDULESOA algorithm does not have to deal with these disadvantages. The

blocking calls in the RTS to access shared data are implemented using a post call followed

immediately by a call to the corresponding wait function. Thus, there are no additional in-

structions executed by using the non-blocking calls to the RTS instead of the blocking calls.

When retrieving a shared object using non-blocking calls to the RTS, the calls will not over-

write (or otherwise destroy) existing data that may be used. Finally, the non-blocking calls

to the RTS to access shared objects are only executed if the original blocking calls would

have been executed. Thus, it is not possible to needlessly call the RTS and cause shared

data to be retrieved if it is not going to be used. As a result, the issues addressed by the

SCHEDULESOA algorithm are significantly different from existing techniques developed

for software prefetching.

The SCHEDULESOA algorithm currently only attempts to schedule shared reference

accesses across loop iterations when the shared references are uses (i.e. the algorithm only

attempts to prefetch data). In theory it is possible for the compiler to perform an analogous

optimization when the shared references are defs. In this case, the compiler would insert

a non-blocking post call immediately after the shared reference is written, and place the

corresponding wait command before the shared reference is written in the next iteration.

A final wait command would be placed in the loop prolog to be executed once after the

loop has finished execution. This final wait would ensure that the shared reference in the

last iteration of the loop is written correctly. This extension to remote shared-object access

scheduling has been left for future work.

The compiler currently does not support scheduling coalesced shared-object accesses.

While the RTS does provide the functionality, the compiler is currently not able to gen-

erate the non-blocking coalesced calls and to insert the subsequent wait commands. This

implementation has been left for future work.
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6.4 Remote Shared-Object Updates

When the compiler can identify an update performed by a thread Ti to a remote shared

object Os owned by a thread Tj , i 6= j, it is not necessary for Ti to perform a remote shared

read of Os , update Os and then perform a remote shared write of Os .2 Instead, a special

update function defined in the RTS can be used. This update function sends a message

from Ti to Tj containing the update instructions. The update is applied by Tj . This update

mechanism reduces the number of messages that need to be sent, resulting in a performance

improvement [10].

6.5 Chapter Summary

This chapter introduced four locality-based optimizations that the compiler can perform to

improve performance of UPC programs. Each optimization requires the locality analysis

presented in Chapter 5 to create the shared reference map. Shared-object access privati-

zation allows the compiler to generate code that directly accesses shared objects located

on the same node as the accessing thread instead of generating calls to the RTS to access

the data. Shared-object access coalescing allows the compiler to combine two or more re-

mote shared-object accesses into a single call to the RTS, thereby reducing the amount of

communication required to access the remote data. Shared-object access scheduling allows

the compiler to overlap the calls to access remote shared objects with other computation

in an attempt to hide the cost of accessing remote shared objects. Finally, updating remote

shared objects allows the compiler to generate special calls to the RTS that cause the update

instructions to be performed on the remote node containing the shared-object. Chapter 8

evaluates the effects of each of these optimizations on a set of UPC benchmarks.

2A remote shared read followed by a remote shared write would require two messages from Ti to Tj and
one message from Tj to Ti.
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Chapter 7

Parallel Loop Nests

The upc forall statement distributes iterations of the loop among all UPC threads. Instead

of each thread executing all iterations of the loop, an iteration is conditionally executed

by a thread based on an affinity test. UPC supports two types of affinity test statements:

integer and pointer-to-shared. According to the semantics of an integer affinity test, a thread

executes the current iteration of the loop if the integer value used in the affinity statement

modulo the number of threads is equal to the thread ID. According to the semantics of a

pointer-to-shared affinity test a thread executes the current iteration of the loop if it owns

the shared object specified in the affinity statement.

# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
u p c f o r a l l ( i =0 ; i<N; i ++; i )

a [ i ] = b [ i ] + SCALAR∗c [ i ] ;
}

# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
u p c f o r a l l ( i =0 ; i<N; i ++; &a [ i ] )

a [ i ] = b [ i ] + SCALAR∗c [ i ] ;
}

(a) Integer affinity test (b) Pointer-to-shared affinity test

Figure 7.1: UPC STREAM triad kernel

Figure 7.1 shows the STREAM triad kernel written in UPC using integer and pointer-to-

shared affinity tests respectively [44]. For the integer affinity test, the loop body is executed

by T if and only if i%THREADS is equal to T ’s ID. For the pointer-to-shared affinity test,

the loop body is executed by a thread T if and only if T owns a[ i ]. Figure 7.2 shows the

naive transformation of upc forall loops to C for loops. In this example every thread will

execute the same iterations for both loops because the default (cyclic) blocking factor is

used to distribute the shared arrays.
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# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
f o r ( i =0 ; i < N; i ++) {

i f ( ( i % THREADS) == MYTHREAD )
a [ i ] = b [ i ] + SCALAR∗c [ i ] ;

}
}

# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
f o r ( i =0 ; i < N; i ++) {

i f ( upc threadof (&a [ i ] ) == MYTHREAD)
a [ i ] = b [ i ] + SCALAR∗c [ i ] ;

}
}

(a) Equivalent integer affinity test (b) Equivalent pointer-to-shared affinity test

Figure 7.2: UPC STREAM triad kernel with equivalent for loops

To determine the overhead of the naive transformation of parallel loops, we compare

the performance of the UPC STREAM triad kernels in Figure 7.1 to an equivalent C imple-

mentation using a for loop run on a single thread. All loops access shared arrays, allowing

us to isolate the overhead of the upc forall loop structure. Table 7.1 contains the memory

bandwidth, measured in MB/s, reported by the STREAM triad kernel run on a 1.6 GHz

POWER5 shared-memory machine with 64 (SMT-enabled) processors. All tests were com-

piled with UPC optimizations and loop optimizations enabled. All shared accesses were

privatized because the experiments were conducted on an SMP machine. For all experi-

ments, the number of UPC threads was specified at compile-time.

Threads C for loop
upc forall upc forall

(integer affinity) (pointer-to-shared affinity)
1 3253.2005 2690.7 102.2
2 2414.7 121.3
4 3425.3 151.7
8 2687.5 172.9
16 3739.7 180.0
32 4504.8 185.0
64 4964.4 183.6

Table 7.1: UPC STREAM benchmark using different types of loops (MB/s)

The memory bandwith measurements reported in Table 7.1 demonstrate that there is

overhead when using both integer affinity and pointer-to-shared affinity tests. However, the

overhead for integer affinity is much less severe then the overhead for pointer-to-shared.

When run with a single thread, the integer affinity test becomes if ( ( i%1) == 0 ) which
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is always true and thus the compiler is able to remove the branch.1 Even with the branch

removed the upc forall loop is still 17% slower than the C for loop. This is attributed to the

additional computations inserted, by the PRIVATISESOA code, to compute the offset used

in the direct pointer access. With 2 threads, the modulo operation in the integer affinity test

introduces some overhead, and reduces the overall performance by approximately 25%.

As more threads are added, each thread has less work to do and the performance in-

creases. When run with 4 threads there is a 5% improvement over sequential performance.

When run with 64 threads, the performance improves by 53% over the sequential C version.

An improvement of 53% is disappointing considering that the benchmark is running on 64

threads.

The cost of the pointer-to-shared affinity test is much higher and results in a perfor-

mance degradation of 97% on a single thread and almost 94% on 64 threads. The compiler

is not able to simplify the affinity branch in any way because this affinity test is not directly

related to the number of threads. Therefore, the branch is executed in every iteration of the

loop. Furthermore, the branch contains a function call to the RTS that has to consult the

layout of the shared array to determine which thread owns the shared array element.

An execution profile of the STREAM benchmark using the pointer-to-shared affinity

test reveals that for one thread approximately 88% of the execution time is spent in calls to

the RTS while only 5% of the execution is spent in the STREAM triad kernel. When run

with 32 threads, approximately 96% of the execution time is spent in calls to the RTS and

only 3% of the time is spent in the STREAM triad kernel. These measurements indicate

that the calls to the upc threadof function contributes significantly to the execution time of

the benchmark and must be eliminated to achieve reasonable performance.

The naive transformations described above divide the iteration space of the loop nest

among all threads by inserting guard branches into the loop body. In many cases the com-

piler can modify the lower bound, upper bound and increment of the upc forall loop to

achieve the same behaviour without the high overhead of the guard statement. However, to

preserve the original semantics of the program, the transformation of the upc forall loop

must ensure that the iteration space of the modified loop nest is identical to the iteration

space of the original loop.

1When compiling for a single UPC thread, the compiler replaces MYTHREAD with 0.
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7.1 Integer Affinity Tests

Consider again the STREAM triad kernel from Figure 7.1 written using an integer affinity

test. In this case a thread T will execute an iteration of the loop if the affinity test modulo

the number of threads is equal to T ’s ID. We only consider upc forall loops that use the

loop induction variable in the affinity test (the most common case). Consider a upc forall

loop Lforall with upper bound N . The iteration space for Lforall on thread T , IT is:

IT = {MYTHREAD,MYTHREAD+THREADS,MYTHREAD+(2∗THREADS), . . . , K}, K < N ≤ K +THREADS (7.1)

Thus, IT contains at most
⌈

N
THREADS

⌉
elements where the mth element is MYTHREAD +

((m − 1) ∗ THREADS). The last element, K, guarantees that iT falls within the original

loop bounds. The upc forall loop can be modified to execute this iteration space on each

thread by changing the lower bound of the loop to MYTHREAD and the increment of the

loop to THREADS. The upper bound of the loop remains the same.

# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
u p c f o r a l l ( i =0 ; i<N; i ++; i )

a [ i ] = b [ i ] + SCALAR∗c [ i ] ;
}

# d e f i n e SCALAR 3 . 0
shared double a [N ] ;
shared double b [N ] ;
shared double c [N ] ;

void S t r e a m T r i a d ( ) {
i n t i ;
f o r ( i =MYTHREAD; i<N; i +=THREADS)

a [ i ] = b [ i ] + SCALAR∗c [ i ] ;
}

(a) Original forall loop (b) Optimized for loop

Figure 7.3: UPC STREAM triad kernel with integer affinity test

Figure 7.3 shows the original STREAM benchmark with an integer affinity test and the

optimized for loop.

7.2 Pointer-to-Shared Affinity Tests

The algorithm to optimize upc forall loops with pointer-to-shared affinity is a strip-mining

type algorithm where the upc forall loop is replaced by a two-level loop nest. The outer

loop, Louter , iterates over blocks in the shared array and the inner loop, Linner , iterates

within the block. Let T be the UPC thread that is executing the new loop nest. The outer

and inner loops are combined to access all elements in the shared array used in the affinity

test that are owned by T and within the bounds of the original upc forall loop.
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shared [ 2 ] double A [ 6 ] [ 6 ] ;

void U p p e r T r i a n g u l a r L o o p ( ) {
i n t i , j ;
f o r ( i =0 ; i < 6 ; i ++) {

u p c f o r a l l ( j = i ; j < 6 ; j ++; &A[ i ] [ j ] ) {
A[ i ] [ j ] = ( double ) MYTHREAD;

}
}

}

0 0 1 1 0 0
-1 1 0 0 1 1
-1 -1 1 1 0 0
-1 -1 -1 0 1 1
-1 -1 -1 -1 0 0
-1 -1 -1 -1 -1 1

(a) UPC upper-triangular loop nest (b) Upper-triangular shared array
with 2 threads

Figure 7.4: Upper-triangle loop nest

Consider the upper-triangular loop nest in Figure 7.4. This loop nest initializes the

elements in the upper-triangular portion of a 2D array to the thread ID that owns the element.

The affinity test in the upc forall loop ensures that the initialization for each array element

A[i ][ j ] is performed by the thread that owns the element. The shared array A is distributed

so that each thread owns two consecutive elements in the shared array (blocking factor of 2).

Assume that the shared array A is initialized to contain -1 in every element. Figure 7.4(b)

shows the 6x6 shared array after the loop nest has run using 2 UPC threads.

shared [ 2 ] double A [ 6 ] [ 6 ] ;

void U p p e r T r i a n g u l a r L o o p ( ) {
i n t i , j ;
f o r ( i =0 ; i < 6 ; i ++) {

u p c f o r a l l ( j =0 ; j < 6− i ; j ++; &A[ i ] [ i + j ] ) {
A[ i ] [ i + j ] = ( double ) MYTHREAD;

}
}

}

Figure 7.5: Triangular loop nest after loop normalization

The pointer-to-shared optimization is designed to work with normalized upc forall

loops. A normalized loop is a countable loop that has been modified to start at 0 and to

iterate, by increments of 1, up to a specific upper bound. Figure 7.5 shows the normalized

UpperTriangular loop nest. The accesses to the shared arrays (in the affinity test as well as

the loop body) have been modified from A[i ][ j ] to A[i ][ i+j] as part of the normalization

process.
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7.2.1 New Loop-Nest Structure

0 0 1 1 0 0
1 1 0 0 1 1
0 0 1 1 0 0
1 1 0 0 1 1
0 0 1 1 0 0
1 1 0 0 1 1

B0 B0 B0 B0 B1 B1

B1 B1 B2 B2 B2 B2

B3 B3 B3 B3 B4 B4

B4 B4 B5 B5 B5 B5

B6 B6 B6 B6 B7 B7

B7 B7 B8 B8 B8 B8

(a) Shared array A (b) Block groups of A

Figure 7.6: Thread and block ownership of shared array A

Figure 7.6 shows the shared array A from the upper-triangle loop of Figure 7.4 and the

corresponding blocks of A. The element numbers in 7.6(a) correspond to the thread that

owns the shared array element. The element numbers in 7.6(b) correspond to the block

group that contains the shared array element. For every row of the shared array (every

invocation of the upc forall loop), different parts of a block group are modified. Thus, the

optimization cannot assume that every block group of a shared array will be modified by a

upc forall loop. Similarly, the optimization must also be able to handle cases where only

parts of a block group are modified. For example, the second iteration of the i loop (i = 1)

in Figure 7.4 starts at position A[1][1] and thus shared array element A[1][0] (located in

the end of block group B1) is not modified. The lower bound of Louter must start at the

index of the first block owned by thread T (within the iteration space of the original loop).

The bounds of Louter and Linner are computed at runtime to ensure that the iteration space

of the optimized loop nest is identical to the iteration space of the original loop nest.

The modified outer loop iterates over blocks owned by the thread T and the modified

inner loop iterates within blocks. Thus, the bounds of the outer loop are used to determine

the blocks that are traversed. The lower bound of the outer loop determines the first block

that is traversed by thread T , the increment determines the next block that is traversed, and

the upper bound determines the last block that is traversed. Similarly, since the inner loop

traverses within a block, the lower bound of the inner loop determines the position within

the block where thread T begins, the increment determines the next position and the upper

bound determines how many elements in the block are traversed. Prior to the execution

of the new loop nest, thread T must determine (i) the first block that the loop nest will

iterate over; and (ii) the offset within the block at which to begin iterating. The first block

over which the loop nest iterates determines the lower bound of Louter while the offset

within the block determines the lower bound of Linner . These bounds are computed by
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generating code to convert the affinity test into a linearized array offset. The position of the

linearized array offset in the block group is used to determine where thread T should begin

its execution.

STRIPMINEFORALLLOOP(ForallLoop Lforall)
1. raff ← shared reference used in affinity test
2. scurr ← statement before LGuardBranch

forall

3. B ← rBlockingFactor
aff

4. snew ← GENERATE(posnorm
first = LinearOffset(raff )% (B ×THREADS))

5. LINKANDADVANCE(snew , scurr )
6. snew ← GENERATE(BlockStartT = B × MYTHREAD)
7. LINKANDADVANCE(snew , scurr )
8. snew ← GENERATE(BlockEndT ← BlockStartT + B − 1)
9. LINKANDADVANCE(snew , scurr )

10. snew ← GENERATE(Gstart =
j

posnorm
first

B×THREADS

k
× B ×THREADS)

11. LINKANDADVANCE(snew , scurr )
12. snew ← GENERATE(if posnorm

first ≤ BlockStartT )
13. LINKANDADVANCE(snew , scurr )
14. snew ← GENERATE(outerLB = Gstart +BlockStartT )
15. LINKANDADVANCE(snew , scurr )
16. snew ← GENERATE(innerLB = 0)
17. LINKANDADVANCE(snew , scurr )
18. snew ← GENERATE(elseifBlockStartT < posnorm

first ≤ BlockEndT )
19. LINKANDADVANCE(snew , scurr )
20. snew ← GENERATE(outerLB = Gstart +BlockStartT )
21. LINKANDADVANCE(snew , scurr )
22. snew ← GENERATE(innerLB = LinearOffset(raff )% B)
23. LINKANDADVANCE(snew , scurr )
24. snew ← GENERATE(else)
25. LINKANDADVANCE(snew , scurr )
26. snew ← GENERATE(outerLB = Gstart + (B ×THREADS) +BlockStartT )
27. LINKANDADVANCE(snew , scurr )
28. snew ← GENERATE(innerLB = 0)
29. LINKANDADVANCE(snew , scurr )
30. Louter← new loop
31. LLowerBound

outer ← outerLB

32. LUpperBound
outer ← LUpperBound

forall + LinearOffset(raff )

33. LIncrement
outer ← B ×THREADS

34. Linner ← new loop
35. LLowerBound

inner ← innerLB

36. LBody
outer ←Linner

37. LBody
inner ← LBody

forall

38. Link Louter after scurr

39. Remove Lforall

Figure 7.7: Algorithm to strip-mine upc forall loops with pointer-to-shared affinity

Figure 7.7 shows the algorithm used to strip-mine a upc forall loop that contains a

pointer-to-shared affinity test. The algorithm uses two assist routines to perform the strip-

mining. The GENERATE routine generates a statement based on the input expression. The

LINKANDADVANCE routine takes two reference parameters snew and scurr representing
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pointers to statements. The statement referenced by snew is placed in the statement list

immediately following statement referenced by scurr . The statement pointer scurr is then

advanced to point to the statement referenced by snew .

LinearOffset(A[i][i+ j]) = [i i+ j]×
[

6
1

]
(7.2)

Let posfirst be the first position of the shared array accessed by the upc forall loop.

The first position is determined by computing (at runtime) the linearized offset of the array

element used in the affinity test using equation 7.2, where the column vector represents the

dimension sizes of the shared array A. The lower bound of the upc forall loop is used as

the value of the induction variables defined by the upc forall loop. Thus, equation 7.2 is

simplified to

LinearOffset(A[i][i+ j]) = [i i]×
[

6
1

]
, j = 0

For example, posfirst for the first iteration of the i loop (i = 0) is (0 × 6) + (0 × 1) = 0;

posfirst for the second iteration of the outer loop (i = 1) is (1× 6)+ (1× 1) = 7. Table 7.2

shows the posfirst values for the different values of iwhen executing the upper-triangle loop

in Figure 7.4.

i posfirst posnorm
first G Gstart

0 0 0 0 0
1 7 3 1 4
2 14 2 3 12
3 21 1 5 20
4 28 0 7 28
5 35 3 8 32

Table 7.2: Runtime values for various values of i

The bounds of the new loops are determined by computing the position of the next

block from posfirst owned by thread T . This is done by normalizing posfirst with respect

to the size of the block group to determine the relative position in the block group. The

normalized first position, posnorm
first , is then compared to BlockStartT . Table 7.2 shows the

normalized first positions and block group start positions for the different values of i. The

result of this comparison will fall into one of three categories:
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Case 1 posnorm
first ≤ BlockStartT

If the normalized first position is less than the first index in the block owned by

thread T , then the lower bound of Louter is set to the beginning of the block owned

by thread T in the current block group (Gstart +BlockStartT ). This means that the

shared array element accessed in the first iteration of the upc forall loop is located

before the block owned by thread T and thus thread T should begin its execution at

the beginning of its first block index in the current block group. An example of this

case is seen in Figure 7.4(b) when thread 1 is executing the first iteration of the i

loop (iteration vector [0 0]). From Table 7.2, posfirst = 0, posnorm
first = 0 and G = 0.

Because Blockstart
1 = 2, the lower bound of the outer loop will be set to 2. Thus, T

will begin its execution at the start of the first block. As such, the lower bound of the

inner loop is set to 0.

Case 2 BlockStartT < posnorm
first ≤ BlockEndT

If posnorm
first falls between BlockStartT and BlockEndT then the iteration vector of

the upc forall loop begins in the block owned by thread T . In this case, the lower

bound of the outer loop is also set to begin at the beginning of its first block (Gstart +

BlockStartT ). However, since the first position is located in the block owned by

thread T , not all iterations of the block will be executed. Thus, the lower bound

of the inner loop will be set to the correct offset within the block. An example of

this is seen in Figure 7.4(b) when thread 1 is executing the second iteration of the i

loop (iteration vector [1 1]). From Table 7.2, posfirst = 7 and posnorm
first = 3 while

BlockStartT = 2 and BlockEndT = 4. In this case, the lower bound of the outer

loop will be set to 4 + 2 = 6. Because the first iteration vector of thread T is located

within the thread’s first block, the entire first block will not be traversed. As a result,

the lower bound of the inner loop is set to the offset within the block where the

upc forall loop begins (posfirst % B = 1).

Case 3 BlockEndT < posnorm
first

Finally, if posnorm
first is greater than BlockEndT then the first block to be traversed by

thread T is in the next block group. Thus, the lower bound of the outer loop is set to

BlockStartT in the next block group (i.e. lower bound = G + |G|+BlockStartT ).

Because the execution will begin at the start of the block, the lower bound of the

inner loop is set to 0. This case occurs in Figure 7.4(b) when thread 0 is executing

the third iteration of the i loop (iteration vector [2 2]). In this case, posfirst = 14 and
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thus the forall loop begins execution in block group 3. However, posnorm
first = 2 and

BlockEndT = 1 indicating there are no blocks in the current block group for thread

0 to execute. Thus, the outer loop begins at block 4.

The upper bound of the outer loop is computed by adding the upper bound of the origi-

nal upc forall loop to posfirst . Because the original upc forall loop is normalized, its upper

bound represents the number of iterations that are executed by the loop. Adding that num-

ber to posfirst will ensure that the same number of iterations are executed by Louter . For

example, on the fifth iteration of the i loop (i = 4), posfirst = 28 and the upper bound of

the original upc forall loop is 2. Thus, the upper bound of Louter is set to 30. When thread

1 executes the fifth iteration of the i loop, the lower bound of Louter is set to 30 (using Case

1). As a result, thread 1 will not execute any iterations of Louter because the lower bound

is equal to the upper bound.

Because the outer loop traverses over blocks of shared array elements owned by thread

T , the increment of Louter must move the induction variable to the next block owned by

the executing thread. Thus, the increment is set to B × THREADS, where B is the blocking

factor of the shared array used in the affinity test of the original upc forall loop.

1 shared [ 2 ] double A [ 6 ] [ 6 ] ;
2

3 void U p p e r T r i a n g u l a r L o o p ( ) {
4 i n t i , j ;
5 f o r ( i =0 ; i < 6 ; i ++) {
6 outerUB = i ∗6 + 6 ;
7 i f ( ( ( i ∗6)+( i +0) % ( 2∗2 ) < (MYTHREAD∗2 ) ) {
8 outerLB = (MYTHREAD∗2) + ( ( ( i ∗6+ i + 0 ) / ( 2 ∗ 2 ) ) ∗ ( 2 ∗ 2 ) ) ;
9 innerLB = 0 ;

10 }
11 e l s e i f ( ( i ∗7) % ( 2∗2 ) < (MYTHREAD∗2 + 2) ) {
12 outerLB = (MYTHREAD∗2) + ( ( ( i ∗6+ i + 0 ) / ( 2 ∗ 2 ) ) ∗ ( 2 ∗ 2 ) ) ;
13 innerLB = ( i ∗7) % 2 ;
14 }
15 e l s e {
16 outerLB = (MYTHREAD∗2) + ( ( ( i ∗6+ i + 0 ) / ( 2 ∗ 2 ) ) ∗ ( 2∗ 2 ) ) + ( 2 ∗ 2 ) ;
17 innerLB = 0 ;
18 }
19 f o r ( k= outerLB ; k < outerUB ; k ++) {
20 innerUB = min ( i ∗6+6 , k + 2 ) ;
21 f o r ( l = innerLB ; l < innerUB−k ; l ++) {
22 A[ i ] [ ( ( k+ l ) % 36) % 6] = ( double ) MYTHREAD;
23 }
24 innerLB = 0 ;
25 }
26 }
27 }

Figure 7.8: Upper-triangle loop nest after pointer-to-shared optimization
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The indices used in the new loops are based on linearized offsets computed using the

linearized offset of the affinity test at the beginning of the forall loop execution. Thus, the

bounds of Louter and Linner are based on linearized offsets, not on array indices. There-

fore, the induction variables used in Louter and Linner must be converted back into array

indices before they are used. This conversion is done using modulo arithmetic, as seen on

line 22 of Figure 7.8. While this conversion adds additional overhead, it allows the accesses

to remain a traditional array access in the internal representation in the compiler. When a

loop contains multiple occurrences of this conversion, the compiler uses common subex-

pression elimination to compute the array index once for each iteration of the loop, thus

reducing the overhead. An alternative approach would be to convert the array accesses into

pointer arithmetic where A[i ][( k+l)%36%6] = (double)MYTHREAD would be replaced

with ∗(A + (k+l) ) = (double) MYTHREAD. However, doing this conversion transforms

the array access into a pointer dereference in the internal representation in the compiler and

can prevent certain optimizations. The ideal solution is to convert the bounds of Louter and

Linner from linearized offsets back to array indices resulting in the induction variables rep-

resenting array indices.

7.3 Experimental Evaluation

The results for the upc forall optimization were collected on a 64-way POWER5 (1.6 GHz)

machine running AIX 5.3 with 512GB of RAM.

Figure 7.9 shows the results for the STREAM triad kernel using an integer affinity test.

These graphs show the memory bandwidth (in MB/s) obtained based on the number of

UPC threads (higher number is better). The results in Figure 7.9(a) correspond to the naive

transformation, as described earlier (Table 7.1). Figure 7.9(b) shows the result of the integer

optimization described in Section 7.1. The results demonstrate a significant improvement

in the runtime performance of the STREAM triad benchmark when integer affinity is used.

Figure 7.10 shows the memory bandwidth measured by the STREAM triad kernel us-

ing a pointer-to-shared affinity test. The memory bandwidth shows a 38% degradation in

performance for 2 threads and a 23% degradation for 3 threads. However, when run with

4 threads, there is a 17% improvement in performance. The performance degradation on 2

and 3 threads is due to the extra branches that are inserted before the new loop to compute

the bounds as well as the conversion of the new induction variables from linearized array

offsets back into array indices.
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(a) Non-optimized (b) Optimized

Figure 7.9: STREAM triad (integer affinity)

(a) Non-optimized (b) Optimized

Figure 7.10: STREAM triad (pointer-to-shared affinity)
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(a) Non-optimized (b) Optimized

Figure 7.11: Upper-triangle matrix (pointer-to-shared affinity)

Figure 7.11 shows the execution times for running the upper-triangle initialization ker-

nel (Figure 7.4) on a 11000x11000 (968MB) shared array distributed with a blocking factor

of 2. The results measure the time taken to perform the upper-triangular access, and thus

a lower time indicates better performance. The relative performance of the non-optimized

UPC code is significantly worse than the sequential C code. The best performance is ob-

tained with 16 threads (7.412s) but this performance is still much worse than the sequential

performance (0.157s). Even with the improved code transformations 64 threads must be

running for the performance of the UPC version to compare with the performance of the

sequential version (0.145s and 0.155s respectively). These times demonstrate that there is

still a significant cost to executing the branch instructions created by the forall optimization

in some benchmarks.

Figures 7.12, 7.13, and 7.14 show the increase in the number of fixed-point instructions

completed and the number of branch instructions issued when running the non-optimized

and the optimized versions of the STREAM and upper-triangle benchmarks. These graphs

show the percentage increase of the two events over the sequential versions of the bench-

marks. The following observations can be made from these results:

1. There is a large increase in both the number of fixed-point instructions completed
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(a) Fixed-point instructions (b) Branches issued

Figure 7.12: Hardware performance counters for STREAM benchmark with integer affinity

(a) Fixed-point instructions (b) Branches issued

Figure 7.13: Hardware performance counters for STREAM benchmark with pointer-to-
shared affinity
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(a) Fixed-point instructions (b) Branches issued

Figure 7.14: Hardware performance counters for upper-triangle benchmark

and the number of branches issued between the sequential and the UPC versions of

the benchmark. This increase is due to the calculations that are used for addressing

the shared arrays and for computing the affinity of shared array elements. Both these

operations use integer division and modulo operations in the computations.

The increase in the number of branch instructions for the non-optimized versions

of the benchmarks (4.4X increase for the STREAM benchmark with integer affinity

test, 83X for STREAM benchmark with pointer-to-shared affinity test, and 154X for

upper-triangle benchmark) are partially due to the affinity tests and the conditional

execution of the loop bodies. The difference in increase for the STREAM benchmark

when integer affinity and pointer-to-shared affinity is used supports this explanation.

The integer affinity test involves fewer branches and thus results in a smaller percent

increase than the pointer-to-shared affinity test.

For the optimized versions of the benchmarks, there are fewer additional branch in-

structions executed: 2.8X increase for optimized STREAM benchmark with inte-

ger affinity, 29X increase for optimized STREAM benchmark with pointer-to-shared

affinity, and 16X increase in the optimized upper-triangle benchmark. The additional

increase for optimized benchmarks with integer affinity tests could not be associated
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with a single location in the program. The additional increase for optimized bench-

marks with pointer-to-shared affinity is partially a result of the extra branches added

while optimizing the affinity test.

2. The percent increase in both events for the non-optimized versions of the benchmarks

increases as the number of threads increases indicating that the same operations are

being performed on all threads. This repetition of needless operations results in poor

parallel performance because the same work is being done on all threads and is not

distributed among all threads. While the optimized version also has a significant in-

crease in the two events measured, this increase remains constant when more threads

are added. This trend indicates that the operations are being distributed across all

threads, resulting in increased parallel performance.

3. In the optimized versions of the benchmarks, there is an increase in the number of

fixed-point instructions completed when going from 1 to 2 threads (13X increase for

STREAM with integer affinity, 66% increase for STREAM with pointer-to-shared

affinity, and 30% increase for upper-triangle). Many of the index and affinity compu-

tations contain a division or modulo by the number of threads. When the number of

threads is 1, the compiler is able to simplify these computations, resulting in fewer

fixed-point instructions executed. However, when the number of threads is 2 or more,

these computations must be executed, resulting in an increase in fixed-point instruc-

tions completed.

7.4 Chapter Summary

This chapter described code transformations implemented in the compiler that can im-

prove the performance of parallel loop nests in UPC. Both types of affinity tests (integer

and pointer-to-shared) can be improved using different techniques. The results presented

demonstrate that the optimizations are successful in improving the performance of bench-

marks. However, these results include the SOAP optimization presented in Chapter 6.1.

The following chapter investigates the impact of improving the code for parallel loop nests

with and without SOAP on a variety of benchmarks.
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Chapter 8

Performance Analysis

This chapter uses several UPC benchmarks to investigate the performance impact of the

code transformations presented in Chapters 6 and 7. The benchmarks were selected based

on the requirements of the locality analysis. Thus, every benchmark uses shared arrays and

contains upc forall loops. Results for OpenMP and the Message Passing Interface (MPI)

are included for benchmarks for which such implementations are available.

Results are presented for SMP, distributed and hybrid environments. The SMP machine

used is a 64-way POWER5 machine (1.6 GHz processors) with 512 GB of RAM running

AIX 5.3. All experiments were run in exclusive mode on a quiet machine (i.e. the bench-

mark being tested was the only application running on the machine).

Three separate machines were used for the distributed and hybrid environments: c132,

v20, and bgl.

c132 is a 4 node IBM SquadronTMcluster. Each node is an 8-way POWER5 machine run-

ning at 1.9 GHz and 16 GBytes of memory. All results for c132 were previously

published in [9].

v20 is a 32-node cluster where each node is a 16-way POWER5 machine (1.9 GHz pro-

cessors) with 64 GB of RAM running AIX 5.3. The nodes are connected with 1GB

ethernet and a dual-plane HPS switch. The cluster is partitioned into 4 shared nodes

(general access) and 28 non-shared nodes (exclusive access). Due to limited access

to the full cluster, all initial experimental results were run using the 4 shared nodes.

Also, in certain cases the non-optimized benchmarks were only run on the 4 shared

nodes due to an extremely high execution time.

bgl is the BlueGene/L installation at Lawrence Livermore National Labs (LLNL). It con-

tains a total of 131072 processors. In these experiments one UPC thread is scheduled
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for each BlueGene/L processor. All results for bgl were previously published in [10].

For experiments in a distributed environment the benchmarks were run with one UPC

thread per node; for experiments in a hybrid environment the benchmarks were run with one

UPC thread for every processor in the node (e.g., on c132 the benchmarks were run with

8 threads-per-node and on v20 the benchmarks were run with 16 threads-per-node). The

Parallel Operating Environment (POE) was used to run the experiments in the distributed

and hybrid environments on all machines. The LoadLeveler batch scheduling software was

used to schedule the execution of each experiment.

All experiments used a development version of the UPC compiler and a performance

version of the UPC Runtime (debugging was disabled). The optimizations that are appli-

cable in an SMP environment are Shared-Object Access Privatization (privatization) and

optimizing parallel loop nests (forall opt); all combinations of these two optimizations are

performed and the results reported. All the optimizations presented in Chapters 6 and 7

have the potential to impact performance on distributed and hybrid architectures. Thus,

all of these optimizations were tested on these two architectures. However, due to limited

machine access, it was not possible to study the performance of all combinations of these

optimizations. Thus, the optimizations are applied successively, in the following order:

1. forall opt;

2. forall opt + privatization;

3. forall opt + privatization + coalescing;

4. forall opt + privatization + coalescing + scheduling;

5. forall opt + privatization + coalescing + scheduling + remote update;

The performance of other combinations of the optimizations was not studied on the

distributed and hybrid environments. Results using options that do not apply to the tested

environments have been omitted (i.e. results for shared-object access coalescing on SMP

architectures were not collected). However, any optimization that should benefit a given

architecture, but does not, will be discussed.

Unless stated otherwise, all experiments were designed to measure strong scaling. That

is, the problem size is fixed, the number of UPC threads is adjusted and the resulting per-

formance difference is reported. Unless stated otherwise, all results presented are from a

single run and not the average of several runs.
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8.1 The STREAM Benchmark

The STREAM benchmark uses 4 types of operations and 3 arrays to measure sustainable

memory bandwidth [44]. Each of the four operations is performed in a separate loop:

1. Copy: elements of one array are copied into a different array (c[ i ] = a[ i ])

2. Scale: elements of one array are multiplied by a scalar and assigned to a different

array (b[ i ] = SCALAR ∗ c[i])

3. Add: elements of two different arrays are added together and assigned to a third array

(c[ i ] = a[ i ] + b[ i ])

4. Triad: elements of one array are multiplied by a scalar value and added to a second

array element. The result is stored in a third array (a[ i ] = b[ i ] + SCALAR∗c[i])

The results are verified by performing a sum reduction on each of the three arrays. The

resulting values are compared with a pre-computed expected result based on the initial

values in the array and on the number of times each operation is performed.

In the UPC version of STREAM all three arrays are shared. Each shared array contains

20000000 double-precision floating point values, for a total memory footprint of 480MB.

Each of the operations is implemented using a upc forall loop. Since the benchmark is

designed to measure memory bandwidth, every access should be local. As such, the default

(cyclic) blocking factor is used, making both the pointer-to-shared affinity test and the in-

teger affinity test valid to use with the upc forall loops. The IntegerStream benchmark was

written using an integer affinity test for each upc forall loop and the PTSStream benchmark

was written using a pointer-to-shared affinity test.

Every thread uses the upc all reduce collective to perform the local sum reduction of

each shared array. These sums are then collected by thread 0 and combined to form a single

value for each shared array. The result of this sum is then compared to the expected value

to verify the results.

This benchmark is designed to measure the sustainable memory bandwidth and there-

fore is written such that all accesses to the shared arrays are local to the executing thread.

Thus, the only optimizations that should benefit STREAM are the forall optimization and

privatization. In addition, since all accesses are local to the executing thread, the perfor-

mance in a hybrid environment should be similar to the performance in a distributed envi-

ronment (for the same number of UPC threads).
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8.1.1 Shared-Memory Environment

(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.1: IntegerStream benchmark results in a shared-memory environment

Figure 8.1 shows the results for the four kernels from the IntegerStream benchmark run
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in a shared-memory environment. The graphs report the measured bandwidth for each of

the four kernels, reported in MB/s (higher numbers are better). These memory bandwidth

measurements demonstrate that both the forall optimization and the shared-object privati-

zation optimizations provide a performance improvement over the non-optimized version.

For example, for 64 threads, optimizing the upc forall loop results in an 83% improvement

and privatizing the shared references results in a 1.62X improvement. However, when both

of these optimizations are applied together, the performance improvement increases to more

than 104X.

Figure 8.2 shows the memory bandwidth measured by the 4 kernels from the PTSStream

benchmark. For 64 threads, optimizing the upc forall loop results in a 25X improvement

over the non-optimized version while privatizing the shared references only results in a 10%

improvement. This demonstrates that there is more advantage to optimizing the upc forall

loops than to privatizing shared references when a pointer-to-shared affinity test is used.

This is because the upc threadof function call that is used when the upc forall loop is not

optimized becomes the dominating factor in the execution of the upc forall loop. As the

number of threads increase, the body of the loop is divided among each of the threads while

the upc threadof call is executed by every thread in every iteration of the loop. The effects of

the pointer-to-shared affinity test are more pronounced than the integer affinity test because

the upc threadof call must query the data layout of the shared array used in the affinity

test.

However, optimizing the upc forall loop and privatizing the shared references when

using a pointer-to-shared affinity test also yields a significant performance improvement

(651X for 64 threads). While this improvement is much larger with a pointer-to-shared

affinity test than with the integer affinity test, the absolute performance of the STREAM

benchmark using a pointer-to-shared affinity test is actually worse. This is caused by two

factors. First, the baseline measurement when using the pointer-to-shared affinity test is

much lower than the baseline when using the integer affinity test (188MB/s for the pointer-

to-shared affinity test and 2040MB/s for the integer affinity test on 64 threads). This lower

baseline explains the high improvement for the pointer-to-shared affinity test. Second,

the absolute performance of the integer affinity test is higher because the optimized loop

contains fewer instructions that must be executed. The extra instructions required when

optimizing a upc forall loop with a pointer-to-shared affinity test yields the difference in

absolute performance.

Figure 8.3 shows the speedup of the IntegerStream benchmark compared with the se-
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.2: PTSStream benchmark results in a shared-memory environment
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(a) STREAM Copy Speedup (b) STREAM Scale Speedup

(c) STREAM Add Speedup (d) STREAM Triad Speedup

Figure 8.3: IntegerStream speedup over sequential in a shared-memory environment
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quential C implementation. The results for integer affinity demonstrate an almost perfect

speedup for 2, 4, and 8 threads and a super-linear speedup for 16, 32, and 64 threads on all

four kernels of the benchmark. The super linear speedup on 16, 32 and 64 threads is at-

tributed to improved cache behaviour as a result of dividing the shared arrays among more

threads. For example, the POWER5 processor contains one 36MB L3 cache per chip (2-

cores) [53]. When the STREAM Triad kernel is run with 16 UPC threads, each thread will

own 1,250,000 elements of each of the three shared arrays for a total memory footprint of

30MB per thread. Furthermore, each thread will be scheduled to run on a separate chip by

the operating system. Thus, the three shared arrays will fit into the L3 data cache for each

thread, which is not the case when run with 8 UPC threads.

Figure 8.4 shows the speedup of the PTSStream benchmark compared with the sequen-

tial C implementation. These results do not exhibit any super linear speedup but do demon-

strate reasonable scaling. There should be a performance increase due to improved cache

behaviour because, for a given number of threads, the memory footprint of the PTSStream

benchmark is the same as the IntegerStream benchmark. However, this performance in-

crease is offset by the additional instructions that are inserted by the forall code transforma-

tion for a pointer-to-shared affinity test.

Figure 8.5 compares the optimized IntegerStream and PTSStream benchmarks with the

OpenMP implementation. The OpenMP implementation was compiled using a develop-

ment version of IBM’s C compiler, xlc, with the same optimizations as the UPC versions

(-O3 -qhot). These results demonstrate that both UPC versions of STREAM perform well

compared with the OpenMP version. The performance of the OpenMP implementation

drops off when run with 64 threads while the IntegerStream benchmark continues to scale

nicely. This drop in performance of the OpenMP implementation is attributed to the cost

of the OpenMP loop scheduling mechanism and to an insufficient amount of work with 64

threads to cover these costs.

8.1.2 Distributed Environment

The next exprimental evaluation illustrates the effects of the optimizations for the STREAM

benchmark in a distributed environment. Only four nodes of the cluster were used be-

cause of the long time it takes to run the STREAM benchmark without all optimizations

enabled. Figures 8.6 and 8.7 show the IntegerStream and PTSStream benchmarks respec-

tively. Again, for the integer affinity test we see that shared-object access privatization has

a much larger benefit than optimizing the forall loop. We also observe that optimizing the
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(a) STREAM Copy Speedup (b) STREAM Scale Speedup

(c) STREAM Add Speedup (d) STREAM Triad Speedup

Figure 8.4: PTSStream speedup over sequential in a shared-memory environment
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.5: Optimized UPC and OpenMP STREAM benchmark results in a shared-memory
environment
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.6: IntegerStream benchmark results on distributed v20
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.7: PTSStream benchmark results on distributed v20
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upc forall loop and privatizing the shared-object accesses results in a significant perfor-

mance improvement.

In the distributed environment there is no communication because all computations are

performed on local shared data. Therefore no results were collected for the SOAC and

SOAS optimizations.

As in the shared-memory environment, the absolute performance of the STREAM

benchmark implemented using a pointer-to-shared affinity test is much lower than the per-

formance when using an integer affinity test. For example, the optimized STREAM triad

kernel using an integer affinity test delivers a memory bandwidth of 17500MB/s while the

same kernel using a pointer-to-shared affinity test delivers 8000MB/s. This difference in

performance is due to the additional code required when optimizing parallel loops using a

pointer-to-shared affinity test. While the compiler is able to simplify the conditional ex-

pressions that are inserted before the loop, to compute the lower and upper bounds of the

strip-mined loop, it cannot completely remove them and the performance is reduced as a

result.

Figure 8.8 compares the performance of the optimized STREAM benchmark with a

reference MPI implementation obtained from [36]. The MPI implementation was com-

piled using a development version of xlcwith the same optimizations as the UPC bench-

marks (-O3 -qhot). These results show that the IntegerStream benchmark outperforms the

PTSStream benchmark. In addition, the performance of the IntegerStream benchmark is

comparable to the performance of the MPI implementation.

Threads Performance Memory Efficiency
(GB/s) TBytes (%)

1 0.73 0.000128 100
2 1.46 0.000256 100
4 2.92 0.000512 100

64 46.72 0.008192 100
65536 47827.00 8.000000 100

131072 95660.77 8.000000 100

Table 8.1: STREAM triad performance results on bgl, from [10]

Table 8.1 shows the memory bandwidth measured for the Triad kernel from the opti-

mized IntegerStream benchmark run on bgl [10]. These measurements were done to demon-

strate the weak scaling of the UPC STREAM benchmark. Thus, the problem size and the

number of UPC threads is varied to keep the execution time the same. The array sizes were
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.8: Optimized UPC and MPI STREAM benchmark on distributed v20
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selected to use half of the available memory based on the number of UPC threads. These

results show that the IntegerStream benchmark is able to scale weakly up to a very large

number of threads with the help of the forall and SOAP optimizations.

8.1.3 Hybrid Environment

To test the effect of each optimization in a hybrid environment, the IntegerStream and

PTSStream benchmarks were run on 4 nodes of the cluster, with each node running 16

threads. Measurements were collected for 16, 32, 48 and 64 threads. Figures 8.9 and 8.10

present the memory bandwidth measured by IntegerStream and PTSStream respectively.

For the hybrid architecture we observe small benefits when running STREAM with each

individual optimization but a significant performance improvement when all optimizations

are combined.

Figure 8.11 shows the performance of the optimized IntegerStream and PTSStream

benchmarks in a hybrid environment. As with the distributed version, the absolute per-

formance of IntegerStream is much better than the performance of PTSStream because of

the additional instructions generated when optimizing a forall loop with a pointer-to-shared

affinity test.

8.1.4 Discussion

The memory bandwidth measured by the STREAM benchmark demonstrates the benefit of

the locality analysis and locality optimizations when operating on local shared-objects. The

compiler is able to identify all accesses as local in all environments and is able to correctly

privatize all accesses. These code transformations lead to significant performance improve-

ments over the non-optimized versions of the benchmark. Furthermore, the optimized UPC

version of STREAM outperforms the optimized OpenMP version in a shared-memory en-

vironment.

In a distributed memory environment, the performance of the optimized UPC version

is comparable to the performance of the optimized MPI implementation when the number

of threads is a power of two. When the number of threads is not a power of two, the

address computations required to locate the shared-objects in memory cannot be optimized

as efficiently, resulting in significantly lower performance than the MPI implementation.

These results demonstrate the importance of optimizing the address computations used to

determine the location of the shared-objects in memory.

We expected to see benefit from running the benchmark, with the same number of
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.9: IntegerStream benchmark results on hybrid v20
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.10: PTSStream benchmark results on hybrid v20
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(a) STREAM Copy Results (b) STREAM Scale Results

(c) STREAM Add Results (d) STREAM Triad Results

Figure 8.11: Optimized STREAM benchmark results on hybrid v20
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threads, in a hybrid environment as opposed to a distributed environment because all com-

putations are performed on local shared objects. In fact, we observe the opposite: the per-

formance for both IntegerStream and PTSStream is better in a distributed environment than

in a hybrid environment. For example, the memory bandwidth measured by running the

Triad kernel of the IntegerStream benchmark in a distributed environment with 16 threads

is 103356 MB/s while running the same kernel in a hybrid environment with 1 node (16

threads) is 28209 MB/s. Thus, the performance of the IntegerStream triad kernel run in

a hybrid environment is almost 27% of the performance when run in a distributed envi-

ronment. These differences are attributed to the cache performance of the machine. In a

distributed environment, each node is running a separate UPC thread and thus each thread

does not need to share the cache resources with other UPC threads. On the other hand,

in a hybrid environment multiple UPC threads must share the cache resources thereby de-

creasing the performance of the cache. The same effect is observed for the PTSStream

benchmark, although the performance difference is not as great.

The performance of the STREAM benchmark is dictated by the code generated during

the SOAP optimization because all of the computations performed by this benchmark are

local. As discussed in Chapters 4.3.3 and 6.1 the code generated by the SOAP algorithm

uses integer division and modulo instructions in the index-to-offset computations for each

privatized access. The backend component of the compiler (TOBEY) performs a strength

reduction optimization on these computations and replaces the division and modulo instruc-

tions by bit-shift instructions when divisors are a power of two. Because THREADS is used

as the divisor in many of these equations, TOBEY is able to generate more efficient code

when the number of threads is a power of two.

Distributed Hybrid
16 31 32 256 496 512

IntegerStream 103356 47300 227052 661171 253050 801140
PTSStream 35741 25578 73394 323884 210791 465602

Table 8.2: Results of the optimized STREAM triad kernel (MB/s)

When the number of threads is not a power of two, the performance of the STREAM

benchmark suffers. For example, in a distributed environment when run on 31 threads,

the performance of the optimized (forall opt + SOAP) IntegerStream Triad kernel is 47300

MB/s compared to 103356 MB/s when run on 16 threads and 227052 MB/s on 32 threads.

Similarly, in a hybrid environment, the optimized IntegerStream Triad kernel achieves
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253050 MB/s on 496 threads compared with 661171 MB/s on 256 threads and 801140 MB/s

on 512 threads. Table 8.2 shows the memory bandwidth measured by the optimized Inte-

gerStream and PTSStream Triad kernels using power-of-two and non-power-of-two threads.

These results demonstrate that running the IntegerStream and PTSStream benchmarks with

a higher number of threads does not always produce better results because the performance

is highly sensitive to the quality of the code generated by the compiler. These results under-

score the significance of the strength reduction optimization and illustrate that it is crucial

that the compiler be able to optimize the index-to-offset computations generated by the

SOAP optimization in order to achieve performance comparable with other implementa-

tions.

8.2 Sobel Edge Detection

The Sobel operator is a discrete differentiation operator used in image processing. It com-

putes an approximation of the gradient of the image intensity function. At each point in

an image, the result of the Sobel operator is either the corresponding gradient vector or the

norm of the vector [2]. The Sobel operator performs a 9-point stencil operation where the 9

adjacent elements to a given array location are used in the computation. Thus, the parallel

implementation of the Sobel operator can contain both local and remote operations.

In the UPC version the image is represented as a two-dimensional shared array. The

shared array is blocked by rows unless stated otherwise (each UPC thread is assigned a

row of the shared array). A parallel loop nest iterates over the shared array applying the

Sobel operator to each element in the array. The innermost loop is a upc forall loop using

a pointer-to-shared affinity test. The results presented here use an image size of 4000x4000

bytes for a total memory requirement of 16MB.

For small problems, test images are read from a file and used to test both the sequential

and the parallel implementations. The resulting image is written to a file and a file difference

on the outputs from the sequential and parallel implementations is performed to verify the

results. For large problems a random image is created using the rand function. In the

parallel implementation, this image is created by a single thread to ensure that the initial

image is identical to the image created in the sequential implementation. The timing of

the benchmark is restricted to the function that performs the Sobel operator and does not

include the time to initialize the image or to write the result to file.

Because the Sobel benchmark contains both local and remote accesses and because
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the remote accesses are to neighbouring threads, we expect to see a benefit from running

the benchmark in a hybrid environment compared to a distributed environment. This is

because some of the remote accesses for a given thread will be shared objects owned by an-

other thread on the same node. These cases should be identified by the SOAP optimization

resulting in more shared accesses being privatized and fewer remote shared-object accesses.

8.2.1 Shared-Memory Environment

Figure 8.12(a) shows results for the Sobel benchmark run in a shared-memory environment.

The graph reports runtime in seconds (lower is better). The execution times indicate that

there is no benefit from performing only the forall optimization while privatizing the shared-

object accesses results in a reasonable performance improvement. This is because the loop

nest contains 12 accesses to a shared array in every iteration and thus the computation

is dominated by the shared accesses. As seen with the STREAM benchmark, the best

performance is achieved by performing both the parallel loop optimization and the SOAP

optimization.

(a) Execution time (s) (b) Speedup over sequential

Figure 8.12: The Sobel benchmark in a shared-memory environment

Figure 8.12(b) shows the speedup of the optimized UPC implementation against the

sequential C implementation. With 64 threads the optimized UPC benchmark is able to
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achieve a 27X speedup over the sequential C version. As mentioned previously, the loop

nest contains 12 accesses to a shared array in every iteration. While the SOAP optimization

is able to significantly reduce the overhead of accessing local shared data, the accesses still

have a higher cost than a memory access in the sequential version. This higher cost is due

to the additional addressing computations required to convert a shared array index into an

offset value. These additional computations are the limiting factor in the speedup.

8.2.2 Distributed Environment

Figure 8.13: The Sobel benchmark on distributed v20

Figure 8.13 shows the execution time of the UPC Sobel benchmark run in a distributed

environment. These results were run on 31 nodes of the cluster (32 nodes were not avail-

able). These execution times demonstrate that both the parallel loop optimization and the

SOAP optimization have a limited impact on the performance of Sobel in a distributed

system. This benchmark performs a stencil computation, accessing the 9 immediate neigh-

bours of a given shared array element. The shared array is distributed by rows, causing 6 of

these 9 accesses to be remote. Thus, this benchmark has a high number of remote accesses.

The cost of these accesses contributes significantly to the execution time of the program and

thus optimizing the three local accesses and the overhead of the parallel loop makes little
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difference in the overall execution.

On the other hand, coalescing the remote shared accesses yields a significant perfor-

mance improvement – roughly 37% on all threads. This improvement is attributed to the

reduction in the number of accesses to retrieve remote shared data and hence a reduction in

the number of messages.

Because all remote shared-object accesses are coalesced by SOAC, there is no benefit

to performing SOAS in addition to SOAC. Instead, Sobel was compiled with forall opt +

privatization + scheduling to compare the benefits of SOAS with SOAC. The results show

no benefits from SOAS which indicates that there is not enough work in the loop body to

hide the cost of remote accesses.

8.2.3 Hybrid Environment

Figure 8.14: The Sobel benchmark on hybrid v20

Figure 8.14 shows the execution time of the UPC Sobel benchmark run in a hybrid en-

vironment. These results were also run on 31 nodes of the cluster, resulting in a total of 496

UPC threads. These execution times are a reasonable performance gain, between 25% and

30%, from the forall optimization on all threads except 32. For 32 threads, a performance

degradation of 30% was observed. We do not have an explanation for this performance
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degradation. Aside from 32 and 64 threads, there was no appreciable difference in the per-

formance when the SOAP optimization was applied in addition to the forall optimization.

We have no reasonable explanation for these performance fluctuations on 32 and 64 threads.

A plausible hypothesis is that these results could be due to LoadLeveler scheduling the jobs

on two of the shared nodes in the cluster, which may have had other workloads running on

them.

There is a significant performance improvement when the SOAC optimization is per-

formed in addition to the forall optimization and SOAP (94%, 32%, 67%, 66%, 67%, and

75% on 16, 32, 64, 128, 256 and 496 threads respectively). These results indicate that

SOAC is able to reduce the number of remote shared-object accesses, thereby improving

performance.

As with the distributed memory environment, there is no benefit from the SOAS opti-

mization.

As predicted, we observe that running the Sobel benchmark in a hybrid environment

yields better performance results than running the same number of threads in a distributed

environment. This is because a larger percentage of the accesses will be to the same node,

thereby reducing the number of messages required to access remote shared-objects.

8.3 RandomAccess

The RandomAccess benchmark is designed to measure the time to access random address

in memory. The benchmark issues a number of Read-Modify-Write (RMW) operations to

random locations in a shared array. A upc forall loop with integer affinity is used to dis-

tribute the update operations among all threads. The updates are exclusive-or operations,

which allows for easy verification of the result. By running the benchmark twice, the origi-

nal contents of the shared array are restored by the second execution. Verification is part of

the benchmark implementation. To keep the source code simple, the implementation uses

the simplest possible algorithm. The resulting UPC code has 111 lines.

8.3.1 Shared-Memory Environment

Figure 8.15 shows the results of performing the forall optimization and the SOAP optimiza-

tion on the RandomAccess benchmark. The benchmark uses a shared array containing 227

unsigned long long integers, for a total memory requirement of 1073MB. The graph re-

ports Millions of Updates Per Second (MUPS) as a function of the number of UPC threads

(higher number is better).
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Figure 8.15: RandomAccess results in a shared-memory environment

On shared memory, since all threads map to the same node the locality analysis is able

to determine that all accesses are local. Thus, the SOAP algorithm is able to optimize all

of the shared references. As a result, the performance increases as seen in Figure 8.15.

In addition, since the upc forall loop used in the benchmark uses an integer affinity test,

the forall optimization has an equal impact on the performance improvement. As seen

with previous benchmarks, performing both optimizations together results in a significant

performance improvement and represents more than the additive effects of performing each

optimization independently. For example, on 16 threads the forall optimization resulted in

a 21% improvement and the SOAP optimization resulted in a 41% improvement. However,

performing both optimizations together results in a 1.97X improvement.

Figure 8.16 shows the relative performance improvement over the non-optimized per-

formance that is obtained by applying the forall and SOAP optimizations. These results

show the importance of optimizing the upc forall loops and of removing the affinity test

as the number of threads increase. In fact, with 64 threads we observe that there is more

improvement from the forall optimization than from SOAP. Optimizing the forall loop re-

moves the execution of a branch statement from every iteration of the loop in every thread.

With 64 threads, the presence of this branch statement becomes more influential (in terms
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Figure 8.16: Relative performance improvement of optimizations

of execution time) than the call to the RTS to access the shared data.

8.3.2 Distributed Environment

Because of the random nature of the accesses in RandomAccess, the compiler is not able to

determine the locality of the shared references when the benchmark is run in a distributed

environment. Thus, all shared references are placed in the UNKNOWN entry in the shared

reference map. As a result, the SOAP, SOAC and SOAS optimizations are not applicable.

However, the compiler is able to identify the shared references as candidates for the Re-

mote Update optimization. In addition, the forall optimization is still able to optimize the

upc forall loop used to distribute the accesses across threads.

Figure 8.17(a) shows the impact of the forall and remote update optimizations on the

RandomAccess benchmark. Again, due to the long execution times of the non-optimized

version of RandomAccess, these results are collected using the 4 shared nodes of the v20

cluster. These results demonstrate that optimizing the forall loop provides no benefit to the

execution time of the program, while the remote update optimization yields approximately a

2X improvement. This improvement correlates to the reduction in the number of messages

sent when the remote update optimization is used.
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(a) Optimizations applied to RandomAccess (b) Optimized RandomAccess
(4-nodes) (32-nodes)

Figure 8.17: RandomAccess results on distributed v20

Figure 8.17(b) shows the performance, measured in MUPS, for the optimized Rando-

mAccess benchmark run on the full 32 nodes of the v20 cluster. The degradation is a result

of the messages required to update the remote shared-objects. When run with 8 threads,

this degradation is offset and the performance is similar to the single-thread performance.

The benchmark continues to scale nicely up to 32 nodes, reaching a maximum performance

of 5.46 MUPS.

To determine how the RandomAccess benchmark scales to a large number of proces-

sors, it was run on BlueGene/L [10]. We arranged for 50% of the memory to be used in

order to test weak scaling. With perfect scaling, a RandomAccess run should take about 300

seconds regardless of the number of processors in which it is running. Since performance

does not scale linearly (see the efficiency column in Table 8.3), the total runtime increases

on larger runs.

Table 8.3 show the absolute and scaling performance of RandomAccess measured on

up to 64 racks of BlueGene/L. The following definition of efficiency for N processors is

used to measure scaling performance:

Tsingle

Tparallel ×N .
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Threads Performance Memory TBytes efficiency
(GUPS) used total (%)

1 5.4E-4 0.000128 0.000512 100
2 7.8E-4 0.000256 0.000512 72
4 1.3E-3 0.000512 0.001 61

64 0.02 0.008192 0.016 61
2048 0.56 0.250000 0.500 51
4096 1.11 0.500000 1.000 50
8192 1.70 1.000000 2.000 38

16384 3.36 2.000000 4.000 38
32768 6.10 4.000000 8.000 34
65536 11.54 8.000000 16.000 33

131072 16.72 8.000000 16.000 23

Table 8.3: RandomAccess performance (in GUPS) and memory usage on bgl, from [10]

Where Tsingle is the time for the UPC version run with one thread and Tparallel is the

time for the UPC version run with multiple threads. The benchmark is affected by two

performance-limiting effects. At low numbers of processors the gating factor is commu-

nication latency. For large numbers of processors the gating factor becomes the torus net-

work’s cross-section bandwidth. The cross-section bandwidth of a booted BlueGene/L par-

tition is determined by its longest torus dimension; cubic partitions have the highest cross-

section bandwidth relative to the number of nodes that they contain.

The largest machine configuration on which we ran RandomAccess (128K processors),

has an effective cross section of 32×32×2×2 = 4096 network links. This results from the

32× 32 geometry of the cross-section and two doubling factors: each link is bi-directional

and the machine is a 3D torus, not a mesh.

Thus, cross-section bandwidth for the 128K processor machine configuration can be

determined as the product of the wire speed, 175 MBytes/s, and the number of links in the

cross-section, yielding approximately 716.6 GB/s.

Given that RandomAccess update packets end up as 75 bytes each on the wire, and

that only half of all RandomAccess updates have to travel through the cross section, the

maximum theoretical Giga Updates Per Second (GUPS) number for the benchmark on this

configuration can be calculated as:

2× 716.6
75

= 19.1 GUPS

As Table 8.3 shows, the actual measured benchmark performance is very close to this

theoretical peak. Furthermore, the measured performance of 16.72 GUPS on 131072 pro-
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cessors is approximately 50% of the performance of the best known implementation written

for the same machine (35.47 GUPS) [37].

8.3.3 Hybrid Environment

As with the distributed environment, the compiler is not able to determine the owner of the

shared references when RandomAccess is compiled for a hybrid environment. As a result,

no shared references are candidates for SOAP, SOAC, or SOAS.

(a) Optimizations applied to RandomAccess (b) Optimized RandomAccess
(4-nodes) (32-nodes)

Figure 8.18: RandomAccess results on hybrid v20

Figure 8.18(a) shows the performance, measured in MUPS, for the forall optimization

and for the remote update optimization using the 4 shared nodes of the v20 cluster. The

most striking observation here is the significant reduction in performance on 16 threads

when the remote update optimization is applied (85%). This is because the implementation

of remote update for a local shared-object access uses locks to ensure exclusive access

during the update operation. For a benchmark such as RandomAccess with a high number

of remote updates, these locks significantly impact performance.

As with the distributed environment, the remote update optimization results in approx-

imately a 2X performance improvement when run on 2 and 4 nodes (32 and 64 threads).
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Again, this is due to the reduction in messages that results from the remote update opti-

mization.

Figure 8.18(b) shows the MUPS measurement for the optimized RandomAccess bench-

mark run on 32-nodes of the v20 cluster. The drop in performance between 16 and 32

threads (1 node to 2 nodes) is due to the communication necessary to access remote shared-

objects. This difference is made up with 4 nodes (64 threads). As with the distributed

environment, the results continue to scale up to 512 threads.

There is a significant difference in the absolute performance between RandomAccess

run in a distributed environment and a hybrid environment (Figures 8.17(b) and 8.18(b)).

In a distributed environment with 32 threads the maximum performance of RandomAccess

is 5.46 MUPS while in the hybrid environment with 512 threads the maximum performance

is 2.12 MUPS. This difference is attributed to the overhead of the locks used to perform the

remote update on a local shared-object.

8.3.4 Discussion

The remote update optimization turned out to be an effective way to reduce the number of

messages required in the Random Access benchmark. However, since locks are used in the

implementation of a local remote update, the overhead when performing a remote update

on a local shared object can be quite high, as seen in the Random Access benchmark in

a hybrid environment. The RTS has to respect the remote update calls, even if the shared

object maps to the same node as the accessing thread. In other words, the RTS cannot

simply choose to change a remote update call into the corresponding deref, update, assign

sequence that would normally be generated. The compiler currently is not able to account

for this additional overhead and to be more conservative when generating remote update

calls for shared objects that may be local.

8.4 UPCFish

The UPCFish benchmark, developed at Michigan Tech, is a time step based predator/prey

simulation using fish and sharks in an ocean [54]. At each timestep fish can move around

the ocean. Sharks also move around, chasing and eating the fish. At each timestep fish

and sharks are born or die, based on their age and preset birth and death rates (i.e. after a

fish reaches a certain age it will die with probability FishDeathRate). The simulation

terminates when no more fish or sharks exist or after a specified number of time steps.
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Fish are represented by a data structure that contains their position, velocity, and age.

The data structure representing sharks also includes their hunger level. All fish are stored

together in a doubly-linked list which is iterated over in each timestep of the simulation.

Similarly, all sharks are stored together in a separate double-linked list. Each UPC thread

contains a private list of fish and sharks. In each timestep, each thread updates their list of

fish and sharks based on births, deaths and movement.

The ocean is represented as a 2D shared array of structures, blocked by row. Each

structure represents a position in the ocean and contains information including: the position

in the ocean (X and Y coordinates), the number of fish and sharks at that position, the fish

smell and shark smell at that position and the forces acting on the fish and sharks.

8.4.1 Shared-Memory Environment

Figure 8.19: UPCFish results in a shared-memory environment

Figure 8.19 shows the results of running the UPCFish benchmark in a shared-memory

environment. The graph reports time (in seconds) as a function of the number of threads

(lower is better). The execution times show a relatively small improvement from the forall

optimization but a fairly substantial improvement from the SOAP optimization. As with

other benchmarks, combining both the forall optimization and the SOAP optimization re-
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sults in the best performance.

The execution times in Figure 8.19 also demonstrate that the UPCFish benchmark does

not scale well. This observation is most obvious for the optimized version, where the best

performance is obtained with 8 threads (70s); adding more than 8 threads actually decreases

the performance (80s, 130s and 164s for 16, 32 and 64 threads respectively). This be-

haviour is also seen in the non-optimized case. The failure for this benchmark to scale is

due to a load-balancing problem caused by the distribution of fish and sharks among the

threads [54]. Each thread contains a private list of fish and sharks, which the thread updates

on each time step. When updating the fish and sharks in each timestep, if the lists become

large, the amount of work the thread has to do during the update step increases; similarly, if

the list becomes empty (all the fish and sharks die), the thread has no work to do during the

update step. Thus, in order for this benchmark to scale as more threads are added, the lists

of fish and sharks must be redistributed among all of the processors. Suenaga and Merkey

discuss the consequences of making these lists shared and the effect it will have on the affin-

ity of the fish and sharks data structure [54]. If the fish and sharks are made shared, then the

natural way to distribute the work is using the affinity of the ocean grid where the fish/shark

is located. For example, at timestep t if a fish f is located at positionOceanGrid[x, y] then

the thread that owns OceanGrid[x, y] should update f (decide whether the fish dies, gives

birth, where it moves, etc). However, this approach could lead to a high number of remote

accesses since the fish and sharks move around at random.

8.4.2 Distributed Environment

Figure 8.20 shows the execution times for the UPCFish benchmark run in a distributed

environment. In this environment the compiler is not able to determine the locality of the

shared-objects and thus the SOAP optimization provides little benefit. Similarly, the forall

optimization also provides little benefit because of the communication that is required. On

the other hand, the remote update is able to optimize several remote operations and thus

leads to a substantial performance improvement.

8.4.3 Hybrid Environment

Figure 8.21 shows the execution times for the UPCFish benchmark run in a hybrid environ-

ment. As with the distributed environment, the SOAP optimization provided only a small

benefit because the compiler is not able to determine the locality for most of the shared

references. However, in the hybrid environment the Remote Update optimization also pro-
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Figure 8.20: UPCFish results on distributed v20

Figure 8.21: UPCFish results on hybrid v20
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vides only a small benefit above the SOAP optimization. As seen in the Random Access

benchmark, this is due to the use of locks in the Remote Update optimization to guarantee

atomicity when performing an update on a shared object located on the same node as the

accessing thread.

8.4.4 Discussion

The first UPC benchmark we have seen that has problems with load balancing!

Again, we see that the use of locks in the runtime when performing RemoteUpdates on

shared-objects located on the same node as the accessing thread affects the performance.

Due to the relatively high running times of UPCFish, and the load-balancing issues

as the number of threads is increased, it was not run on the full v20 cluster in either the

distributed or the hybrid environment.

8.5 Cholesky Factorization and Matrix Multiplication

The Cholesky factorization and matrix multiplication benchmarks were written to show-

case multiblocked arrays [9]. The shared arrays are distributed using multiblocks so they

can be directly used with the Engineering Scientific Subroutine Library (ESSL) library [29].

The code is patterned after the Linear Algebra PACKage (LAPACK) dpotrf implemen-

tation [26]. To illustrate the compactness of the code, one of the two subroutines from

Cholesky factorization, distributed symmetric rank-k update, is presented in Figure 8.22.

void update mb ( shared double [B ] [ B] A[N] [N] , i n t co l0 , i n t c o l 1 ) {
double a l o c a l [B∗B] , b l o c a l [B∗B ] ;
u p c f o r a l l ( i n t i i = c o l 1 ; i i <N; i i +=B ; c o n t i nu e )

u p c f o r a l l ( i n t j j = c o l 1 ; j j < i i +B ; j j +=B ; &A[ i i ] [ j j ] ) {
upc memget ( a l o c a l , &A[ i i ] [ c o l 0 ] , s i z e o f ( double )∗B∗B ) ;
upc memget ( b l o c a l , &A[ j j ] [ c o l 0 ] , s i z e o f ( double )∗B∗B ) ;
dgemm ( ”T” , ”N” , &n , &m, &p , &alpha , b l o c a l , &B , a l o c a l ,

&B , &be ta , ( void ∗)&A[ i i ] [ j j ] , &B ) ;
}

}

Figure 8.22: Cholesky distributed symmetric rank-k update kernel

The matrix multiplication benchmark is written in a similar fashion. There is a (serial)

k loop around the update function in Figure 8.22 with slightly different loop bounds and

three shared array arguments: A, B, C, instead of only one.
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(a) Cholesky factorization (b) Matrix multiplication

Figure 8.23: Cholesky factorization and matrix multiplication on distributed c132, from [9]

8.5.1 Distributed Environment

The results for the optimized Cholesky factorization and for the matrix multiplication bench-

marks, run in a distributed environment, are presented in Figure 8.23. The graph shows

the number of Giga Floating-Point Operations Per Second (GFLOPS) as a function of the

number of threads (higher is better). Since the benchmarks were written to showcase multi-

blocked arrays in UPC and how they can be used to interface with existing high performance

libraries, the benchmarks contain explicit calls to the dgemm library function to perform the

multiplication of the matrices. As a result there are no opportunities for compiler optimiza-

tions. Nevertheless, the benchmarks exhibit significant performance improvement when

increasing from 1 to 4 UPC threads.

8.5.2 Hybrid Environment

The GFLOPS for the Cholesky factorization and matrix multiplication benchmarks run

on c132 in a hybrid environment are presented in Figure 8.24. Even though there are no

opportunities for the compiler to optimize shared-object accesses, the performance scales

adequately when the number of UPC threads is increased from 8 (1 node) to 32 (4 nodes)

threads.
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(a) Cholesky factorization (b) Matrix multiplication

Figure 8.24: Cholesky factorization and matrix multiplication on hybrid c132, from [9]

8.5.3 Discussion

The purpose of the Cholesky factorization and matrix multiplication benchmarks was to

illustrate the benefits of multiblocked shared arrays in UPC. The benchmarks illustrate the

ability to interface a multiblocked shared array with existing highly tuned library functions

(in this case dgemm) in order to obtain good performance and scaling.

8.6 Summary

The experimental evaluation in this chapter studies the benefit of the locality optimizations

and forall optimizations on several benchmarks. The results of this evaluation demonstrate

that the optimizations are able to handle all of the benchmarks in a shared-memory envi-

ronment quite well. In a shared-memory environment, the compiler is able to determine the

locality of every shared reference and the SOAP optimization is able to privatize all shared

references. The results are comparable to OpenMP (STREAM) and most benchmarks scale

nicely, with the exception of UPCFish which has a load balancing problem caused by the

implementation. Integer affinity tests have a lower overhead than pointer-to-shared affinity

tests and thus result in better performance, as seen with the STREAM benchmark.
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In the distributed and hybrid environments, the SOAP optimization is also important

when the compiler can prove locality (e.g., STREAM), but has no benefit when it cannot

(e.g., Random Access). In benchmarks that contain a mixture of local and remote accesses,

the SOAP optimization can have a relatively small impact (e.g., Sobel). On the other hand,

the SOAC optimization can substantially improve performance when opportunities exist,

as seen with the Sobel benchmark. There were no situations where SOAS provided any

benefit. This is because the loops (as currently written) do not contain enough work to

hide the cost of the communication. This situation may also be remedied by a combination

of unrolling (to increase loop body size and therefore the amount of work performed in

each iteration) as well as combining SOAC and SOAS algorithms so that the compiler

can generate non-blocking coalesced calls. Finally, the remote update optimization was

shown to have a significant impact on two benchmarks, Random Access and UPCFish,

when run in a distributed environment. These benefits, however, were diminished in the

hybrid environment because of the locks used in the RTS to ensure that the updates are

atomic.

Results from the STREAM benchmark demonstrate that even through the optimiza-

tions described here may dramatically improve performance, existing compiler optimiza-

tions (e.g., strength reduction) also play a vital role in achieving performance competitive

with alternate implementations.

All of the work presented here was implemented in IBM’s XL UPC compiler, based

on the XL family of commercial compilers. As such, all optimizations and transformations

presented here are subject to rigourous testing using several test suites. Thus, the imple-

mentations are not only tested on the benchmarks presented here, but also on a wide-range

of benchmarks.
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Chapter 9

Related Work

There has been extensive research in the area of parallel programming languages. Work

related to each of the objectives presented in Section 1.1 is detailed in Sections 9.1, 9.3, and

9.2 below. Section 9.4 presents a discussion of other parallel programming environments.

9.1 Shared Data Locality Analysis

The new shared-data locality analysis presented in Chapter 5 enables the compiler to dis-

tinguish between local and remote shared-data accesses. Previous work on data locality

analysis used a combination of compile-time and run-time analysis.

Zhu and Hendren present a technique to distinguish between local and remote shared-

data accesses on dynamically allocated data structures in parallel C programs [62]. Their

algorithm predicts when an indirect reference via a pointer can be safely assumed to be local

using information about the context of function calls and memory allocation statements.

Their analysis was run on 5 parallel benchmarks from the Olden benchmark suite [52]

that use dynamic data structures. Their technique resulted in up to a 99.99% reduction in

remote accesses and up to 93% speedup on 16 processors. They use type inferences and

intra- and inter-procedural analysis to identify shared-data accesses that are local. This type

of analysis is not required in UPC because the language allows the programmer to specify

the distribution of shared data. Thus, the compiler can determine if an access is local or

remote based on the user-specified data distribution. This distribution is not present in the

environment used by Zhu and Hendren and thus the compiler had to infer locality based on

the allocation and assignment of shared pointers.

Koelbel and Mehrota present Kali, a programming environment providing a software

layer that supports a global address space on distributed-memory machines [42]. The pro-

grammer identifies shared data and specifies how the shared data is distributed across the
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processors using language-specific notations. Shared data is used to perform computations

in parallel loops. The compiler analyzes the parallel loops and creates two communication

sets: send set and recv set, and two iteration sets: local iter and nonlocal iter for each

processor. The compiler determines what communication is necessary by performing set

intersections using these sets. When the compiler cannot determine the communication

sets, the sets need to be computed at runtime. The compiler creates an inspector loop that

runs before the parallel loop and adds all non-local shared-data accesses to the communi-

cation set. Once the inspector loop is complete, the executor loop is run. The executor loop

performs the actual execution of the parallel loop using the sets computed from the inspec-

tor. Their results show that when the compiler is able to determine the communication sets

they can achieve performance close to what is achieved through hand-written code. When

the compiler cannot compute the communication sets, the inspector loop can introduce very

large overheads (up to 100%) for some programs.

Koelbel and Mehrota’s approach differs from our approach because the Kali compiler

has the ability to identify non-local shared-data accesses and to insert the actual communi-

cation calls to the owner of the shared data. In our approach, the RTS calls are responsible

for determining the owner of the shared data and for performing the communication; the

compiler only distinguishes between local and remote data. Thus, the additional overhead

required for remote shared-data accesses is performed in the RTS and is not exposed to the

compiler. However, Koelbel and Mehrota’s approach does have the benefit of computing the

communication sets once for each parallel loop. In our approach, shared-object access coa-

lescing attempts to reduce the number of remote shared-object accesses in every iteration of

the loop. If this is unsuccessful, every remote shared-object access will incur the overhead

of the RTS in every iteration of the loop. This cost could be reduced by performing loop

unrolling, thereby decreasing the number of loop iterations and increasing the number of

remote shared-object accesses available for coalescing in each iteration.

The TreadMarks parallel programming environment provides a shared-address-space

programming model but is designed to run on distributed-memory architectures [5]. Tread-

Marks contains a runtime system that detects accesses to shared data and manages com-

munication between processors. Shared data is created using a special memory allocation

function Tmk malloc and replicated on all processors. The consistency of shared data is

managed at the page-level. By using a Lazy-Release-Consistency model, TreadMarks is

able to delay consistency-related communication until the end of a synchronization region.

When multiple processors change different shared data that are located in the same page, a
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multiple-writer protocol is used to merge all of the changes. If two processors change the

same shared data in a page, a data race has occurred and it is reported to the user.

In TreadMarks, shared arrays are replicated on every node in the system. Thus, Tread-

Marks makes no distinction between local and remote shared data. On the other hand, in

UPC shared arrays are distributed among all of the nodes in the system. This distribution

of shared objects enables the distinction between local and remote shared data, where ac-

cessing local shared data is generally faster then accessing remote shared data because no

communication is necessary. The distribution of shared objects allows UPC programs to

use very large arrays because the array size is based on the aggregated memory of all nodes

and is not limited to the address space of a single node. However, because shared data in

UPC is distributed among all processors, a management system must be used to determine

the location of each shared object. In our implementation, this management is handled by

the SVD. While this management system allows UPC programs to scale to a large number

of threads, it also incurs significant performance overhead.

Dwarkadas et al. modified the TreadMarks compiler and runtime system to allow

the compiler to communicate information about shared-data accesses to the runtime sys-

tem [27]. Their compiler uses regular section analysis to obtain information about array

accesses in loop nests. This information is then passed to the runtime system. When the

analysis is successful, runtime detection of accesses to shared data is not necessary. Instead,

the runtime system can prepare for the shared-data accesses ahead of time. With this infor-

mation, the runtime system is able to push shared data to the accessing processor, making

it available when needed.

Co-Array Fortran (CAF) and Titanium are two Partitioned Global Address Space lan-

guages that can benefit from shared-data locality analysis. Both CAF and Titanium require

the programmer to identify local accesses. This requirement increases performance because

accessing local shared objects is faster than accessing remote shared objects. However, it

also decreases programmer’s productivity because the identification of local shared data is

the responsibility of the programmer. Using the analysis presented here the compiler can

automatically detect local accesses, eliminating the need for programmer annotation.

9.2 Coalescing Shared-Object Accesses

The coalescing of several remote shared-object accesses into a single access is designed to

reduce the number of messages exchanged between processors in a distributed-memory ar-
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chitecture. The advantage is that the start-up cost associated with sending messages and the

network latency associated with messages is only incurred once for several data exchanges.

This technique is also known as communication coalescing, message coalescing or bulk

communication.

Coarfa et al. demonstrated that both UPC and CAF versions of the NAS Parallel Bench-

marks obtain scalable performance on a cluster platform when using bulk communica-

tion [23]. Currently, it is the responsibility of the programmer to implement the bulk com-

munication explicitly in the program. In CAF the programmer can access remote co-array

data using Fortran 90 array triplet notation to implement bulk communication. In UPC,

the programmer must explicitly use bulk communication routines such as upc memput.

This work has demonstrated several performance improvements that previously required

the programmer to explicitly use bulk communication: the compiler detects these oppor-

tunities and replaces several remote shared-object accesses with a single coalesced access,

resulting in a performance improvement.

By analyzing shared-data accesses, Dwarkadas et al. were able to pass information

about shared-data accesses to the TreadMarks runtime system [27]. This information al-

lowed the runtime to coalesce several remote data fetches into a single message. Communi-

cation coalescing resulted in speedups of between 2X and almost 8X for several benchmarks

run on an 8-processor system. These results also indicate that coalescing shared-object ac-

cesses result in significant performance improvements. Currently there is no mechanism

in the RTS to coalesce shared data accesses – all coalescing must be performed by the

compiler. Thus, the techniques used by Dwarkadas et al. are not directly applicable to

our system. Since there is no concept of local or remote shared data in TreadMarks, their

technique would also coalesce local shared accesses, which we do not do.

Following split-phase communication analysis, the Berkeley UPC compiler performs

message coalescing to combine small GET and PUT operations into larger messages [21].

Consider two shared objects Os1 and Os2 and their corresponding addresses addr1 and

addr2. If the communication points to retrieve Os1 and Os2 are adjacent in the statement

list, then Os1 and Os2 are considered for message coalescing. Their message coalescing

uses a bounding box method where all data from addr1 to addr2 (inclusive) is contained in

the message. As a result, before performing message coalescing a profitability analysis is

performed. If addr1 and addr2 are adjacent then the two messages are combined into a sin-

gle message. If addr1 and addr2 are not adjacent, the distance between them is computed

and, if the distance is less than a predetermined threshold, message coalescing is performed.
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When the accesses toOs1 andOs2 are writes, addr1 and addr2 must be adjacent to prevent

data corruption. Chen et al. did not present any results specific to message coalescing to

indicate the number of messages that were coalesced or the benefit of performing only mes-

sage coalescing. However, when combined with redundancy elimination for shared-pointer

arithmetic and split-phase communication, only one benchmark (Barnes) benefited from

message coalescing. This result can be attributed to message coalescing failing to coalesce

messages in the other benchmarks and does not necessarily indicate that successful message

coalescing has no benefit.

If the compiler is unable to determine the locations of the shared objects, the decision

of whether to coalesce is delayed until runtime. A new function has been added to their

runtime system which allows the compiler to specify an array of the source and destina-

tion addresses of the GET operations. The runtime uses the same profitability analysis as

the compiler to determine whether messages should be coalesced. If messages are coa-

lesced, the runtime is responsible for temporary-buffer management and for inserting the

corresponding SYNC calls to ensure that the communication completes before the data is

used.

The message-coalescing technique described by Chen et al. has two limitations that

our shared-object access coalescing optimizations address. First, in order to be considered

for coalescing, the communication points must be adjacent in the statement list. In our

technique, the only restrictions are that the accesses must occur in the same loop (to preserve

the original program semantics) and there cannot be conflicting accesses (i.e. a use and a

definition of the same shared object) within the loop. Of these two restrictions, the latter

can be relaxed in the future if we find evidence that doing so will be beneficial. The second

limitation is the use of a bounding box method for collecting the shared data. This limitation

has two implications: (i) the success of message coalescing is partially determined by the

shared-object layout in memory; and (ii) definitions of non-contiguous shared-data items

cannot be coalesced because data corruption may occur. Our approach does not suffer

from these limitations because the information provided in the request allows the RTS to

determine the specific shared data items and only the specific shared data items are included

in the messages.

Later Chen et al. expanded the communication coalescing in the Berkeley compiler to

use strided functions provided by the GASNet communication layer and to allow the coa-

lescing of non-contiguous reads and writes [20, 39]. In this implementation of coalescing a

translator inserts special markers in the code to signal the begin and the end of a coalescing
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region. The compiler also generates a representation of the structure of communication op-

erations based on descriptors proposed by Paek et al. [49]. Accesses within this region are

managed by the runtime system through queues. The runtime is also responsible for check-

ing for conflicts. This approach has significant runtime overhead when compared with our

compile-time only implementation of strided coalescing.

Unlike the Berkeley UPC runtime system, our RTS does not have the ability to decide if

messages should be coalesced. Communication is performed for each remote shared-object

accesses. Thus, situations when the compiler is unable to identify remote shared-object

accesses may still be candidates for message coalescing using the Berkeley UPC runtime

system, but will not be candidates for remote shared-object access coalescing using our

current RTS.

Coalescing in the Rice dHPF compiler is done after communication vectorization and

is restricted to overlapping vectors. Chavarrı́a-Miranda and Mellor-Crummey report up to

55% reduction in communication volume for NAS benchmarks after this vectorized coa-

lescing [18]. Kandemir et al. uses a combination of data-flow analysis and linear algebra

to create a communication optimization technique that supports both message vectorization

and message coalescing [41].

9.3 Shared-Object Access Scheduling

The basic principle behind remote shared-object access scheduling is to overlap the commu-

nication required to move remote shared data with unrelated computation. This technique

is also known as split-phase transactions or split-phase communication.

Zhu and Hendren present a technique to overlap communication and computation in

parallel C programs [61]. Their technique uses a possible-placement analysis to find all pos-

sible points to place communication. This analysis collects sets of remote-communication

expressions and separates the expressions into remote read operations and remote write op-

erations. Remote read operations are propagated upwards while remote write operations

are propagated downwards. Their communication selection transformation selects where

the communication is inserted and determines if blocking or pipelining of communication

should be performed. Their work was implemented in the EARTH-McCAT optimizing/par-

allelizing C compiler. Their results demonstrated that the communication optimization can

result in performance improvements of up to 16%.

Chen et al. have implemented split-phase communication in the Berkeley UPC com-
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piler to overlap the communication of shared accesses with other computation in UPC pro-

grams [21]. The split-phase communication is handled differently for definitions and uses

of shared variables. For a given shared variable vs, every use of vs is identified. A communi-

cation point, representing the necessary GET operation, is inserted in every basic block that

contains a use of vs. If the basic block contains a definition of vs, the communication point

is placed immediately after the definition, otherwise the communication point is placed at

the beginning of the basic block. To reduce the number of communication points to get a

given shared variable cpvs , a breadth-first postorder traversal of the control flow graph is

used to propagate communication points upwards. If all of the successors of a basic block b

contain cpvs (i.e. all successors contain a use of vs), the communication points are merged

into a single communication point and moved into b. Once the breadth-first search is com-

plete, the communication points represent the locations where a GET operation is necessary.

The corresponding sync operations are inserted immediately before every use of vs.

For definitions of shared variables, Chen et al.’s analysis attempts to minimize the num-

ber of syncs inserted. A PUT call is placed after every definition of a shared variable. A

path-sensitive analysis then examines all paths from the PUT call to the function exit. If

a statement that may reference or modify the shared location is discovered, a sync call is

placed before the statement and the analysis terminates for the current path. Thus, the al-

gorithm will attempt to push the corresponding sync instructions as far away from the PUT

instruction as possible. If a loop is encountered during the path traversal, the analysis ter-

minates to avoid placing the SYNC instruction inside the loop. If the definition is located

inside a loop body, the corresponding SYNC is placed at the end of the loop body (i.e. the

path traversal does not traverse a loop back edge). This placement ensures that the SYNC

operation will be executed after its corresponding put operation.

Chen et al.’s implementation of split-phase communication has two limitations that are

addressed in this work. First, Chen et al.’s analysis does not distinguish between local

shared accesses and remote shared accesses. As a result, all shared accesses are imple-

mented as split-phase transactions. In programs that contain a lot of shared data, scheduling

all accesses using split-phase communication can create many unnecessary communication

calls and SYNC operations. Not only are these communication calls and SYNC operations

not necessary for local data, their presence could negatively affect the performance of other

optimizations. Our work, however, is able to distinguish between local shared accesses and

remote shared accesses and uses split-phase transactions only for accesses to remote shared

objects.

151



The second limitation in Chen et al.’s approach is when the definition of a shared vari-

able is found inside a loop body, the SYNC instruction is placed at the end of the loop body.

Consider the situation where each iteration of a loop performs many computations and at

the end of the iteration writes the result to a remote shared variable. In this situation, their

analysis will fail to overlap the computation in the loop with the communication at the end

of the loop. A more general approach would pipeline the two phases of the split-phase

transaction. Pipelining can be achieved by peeling the first iteration of the loop upwards

to create a pre-computation block. In the pre-computation block, the remote shared-object

access is scheduled immediately after the definition of the shared data. A SYNC instruc-

tion is then placed inside the loop body before the write to the shared object. This SYNC

instruction will ensure that the write from the pre-computation block (or the write from

the previous iteration) has completed. A final SYNC call would be placed after the loop to

ensure that the write on the final iteration completes.

Iancu et al. implemented HUNT, a runtime system to exploit some of the available

overlap between communication and computation in UPC programs. HUNT ignores the

explicit calls to retire communication (i.e. the wait calls) and uses virtual-memory support

to identify the point at which the shared data is actually used. This way, the communi-

cation is retired at the point in the program where the shared data is used. Their findings

demonstrate that HUNT is able to find and exploit overlap in the FP, IS, and MG NASA Ad-

vanced Supercomputing (NAS) Parallel Benchmarks. This approach compliments the work

proposed here since it only applies to UPC programs at runtime. Cases where our trans-

formations fail to identify opportunities for remote shared-object access scheduling such as

indirect accesses (e.g., a[b[ i ]] , where a is a shared array) may be detected and successfully

optimized with this system. However, opportunities that can be identified by the compiler

can be transformed without incurring the additional overhead of the runtime support.

Koelbel and Mehrotra also overlap communication with computation to improve per-

formance [42]. Once the inspector loop has finished executing, the communication sets are

known. At the beginning of the executor loop, the communication to retrieve the remote

shared data is initiated. While waiting for the data to arrive, any local computations (that

do not rely on the shared data) are performed. Unfortunately, Koelbel and Mehrotra were

unable to measure the overlap between communication and computation due to the program

timing methodology they used [42].
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9.4 Alternative Parallel-Programming Environments

There are many parallel programming paradigms that are currently available for program-

mers. These can be separated into two basic categories: (i) parallel programming environ-

ments (compiler and runtime system) and (ii) parallel extensions to existing languages.

Cilk is a task-parallel programming environment where the programmer specifies pro-

cedures that are run in parallel. Shared data in Cilk is not explicitly marked by the pro-

grammer. Instead, data is shared using global variables and references (passing pointers).

OpenMP is similar to Cilk in that the program is run sequentially but regions are executed in

parallel [48]. The programmer marks parallel regions using pragmas recognized by compil-

ers that support OpenMP. OpenMP will work with C, C++ and Fortran programs on shared

memory systems. Like Cilk, data is shared in OpenMP using global variables and refer-

ences and the programmer is required to introduce synchronization to prevent data races

and deadlock situations.

High Performance Fortran (HPF) is a version of Fortran that has been extended with

data decomposition specifications. The programmer is responsible for specifying the data

distribution for each array and the compiler must: (i) determine how to distribute the loop

iterations across processors; (ii) ensure that remote data is available on the executing pro-

cessor.

The Fortran D compiler project from Rice University is an example of a Fortran com-

piler that supports HPF features [4]. The compiler uses the owner computes rule to identify

a partitioning reference such that the loop iterations will be executed by the processor that

owns the data item on the left-hand side of the reference. For loops that contain accesses

to multiple arrays, heuristics are used to determine the best partitioning reference. The it-

eration space of loops is distributed by converting the global iteration space of the entire

loop into local iteration sets that are run on each processor [34, 34]. Once the partitioning

reference has been identified, communication analysis is used to build a communication

set by determining which references cause remote accesses. The communication analysis

examines all right-hand-side references and for each reference the compiler constructs the

index set accessed by each processor by mapping the global index into the local index set.

The difference between the local index set and the index set owned by a given processor

represents the remote accesses [32, 33].

Chatterjee et al. provide an alternative method of computing local index sets and com-

munication sets using a finite state machine to traverse the local index space of each proces-
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sor [17]. This approach is limited to arrays that are distributed using the same block-cyclic

distribution and accesses that use the same stride as the partitioning reference.

Gupta et al. present techniques for computing local index sets and communication sets

for arrays with different distributions and strides than the partitioning reference [31]. The

communication sets for a given loop are based on closed form regular sections of the arrays.

The closed form regular sections are also used to generate indexing code for the distributed

arrays. This approach allows the compiler to analyze arrays with different distributions

and determine the local and remote accesses and thus is more general than the approaches

presented here which require the same blocking factor (distribution) to be used in the affinity

test and the shared-object accesses in the upc forall loop. However, since the indexing is

computed at runtime, this approach adds a significant amount of overhead to accessing the

local portions of the array.

The Message Passing Interface is a library that provides functions to efficiently move

data between processors in a distributed-memory environment. Shared data is explicitly

managed by the programmer — including allocation and data movement between proces-

sors. Since the programmer is required to explicitly manage the shared data, well-written

MPI programs exhibit very good performance across a wide range of applications and

distributed-memory architectures and are frequently used as a comparison when testing

alternative parallel-programming environments. However, requiring the programmer to ex-

plicitly manage shared data decreases programmer productivity. One of the goals of this

research is to use the compiler to manage shared-data movement between processors and

obtain performance comparable to MPI programs.

Parallel languages that follow the Multiple-Program, Multiple-Data programming model

include Chapel, Fortress and X10 [14, 3, 16]. These programs allow each thread to execute

a different sequence of instructions. This task-parallel programming model is much more

complicated to work with and to optimize, however it also allows much more flexibility in

the types of parallel programs that can be implemented. In general, any MPMD program-

ming language that employs a PGAS memory model, where the programmer indicates how

the data is distributed, should be able to use the shared-data locality analysis presented here.

The techniques to reduce the overhead of accessing local and remote shared-memory may

also be applicable, depending on the underlying implementation.

X10 is an object-oriented programming language designed for high-performance and

high-productivity programming. X10 is a member of the PGAS family of languages and

employs the Multiple Instruction Multiple Data (MIMD) programming paradigm using
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lightweight activities to execute instructions. X10 introduces the concept of places that

represent a collection of mutable data objects and activities that run in a place [16]. Arrays

are represented using a multidimensional set of index points called a region. Since it is

a member of the PGAS family of languages, the programmer can create regions using a

specified distribution. This distribution distributes elements of the array across all places,

similar (in concept) to the way shared objects are created in UPC (scalars are owned by one

place while array elements can be distributed across multiple places). To manipulate a part

of a region located in a place p1, the programmer creates an activity in place p1 and specifies

the instructions to be executed. If the activity in place p1 requires data located in another

place, p2, it will create an activity at p2 to manipulate the remote data (either read or write).

X10 also contains the work-sharing constructs foreach and ateach. The foreach construct

performs a parallel iteration over all points in a region. The ateach construct performs a

parallel iteration over all points in a data distribution. The ateach construct is similar to

the upc forall loop using a pointer-to-shared affinity test to indicate that the owner of the

shared data will execute the loop iteration.

In principle, an X10 compiler should be able to use techniques similar to the local-

ity analysis presented here to determine whether each activity is going to access local or

remote shared data. For local shared data, the activity can directly access the data. In a

distributed-memory environment, for remote shared data, similar optimizations can be ap-

plied to coalesce activities on the same place (similar to SOAC) and to schedule activities

that access remote date in order to overlap the necessary communication with other com-

putation. In practice, some of this will prove to be more challenging because X10 has a

very robust mechanism to distribute data among places compared with the relatively simple

method of blocking data available in UPC.
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Chapter 10

Conclusions

One approach to create compiler optimizations is to identify hotspots — places in the code

where the majority of the execution time is spent — and to develop code transformations

to reduce this time. Section 4.3.5 shows that in UPC programs, calls to the RTS to access

shared objects have an extremely high overhead compared with traditional memory accesses

(i.e. a C-pointer access). Thus, one focus of this work is to reduce this time as much as

possible.

In order to optimize shared-object accesses, the compiler must first determine the lo-

cality of the shared object being accessed. Chapter 5 presents a compiler analysis that de-

termines the locality of shared references located in a upc forall loop based on the affinity

test used by the upc forall loop. Using this analysis, the compiler builds a shared reference

map that tracks the relative thread ID of the owner of each shared reference.

Four optimizations that use the locality information in the shared reference map are

presented in Chapter 6. These optimizations can be broken into two categories based on the

locality of the accesses: (i) accessing local shared objects and (ii) accessing remote shared

objects. Accesses to local shared objects are optimized using the PRIVATIZESOA algorithm

presented in Chapter 6.1. This optimization works by transforming accesses to local shared-

objects into traditional memory accesses by converting the UPC global index used to access

the shared-object into a thread-specific local offset used to access the underlying memory.

Accesses to remote shared-objects are optimized using the COALESCESOA, SCHED-

ULESOA and and Remote Update algorithms. The COALESCESOA algorithm coalesces

multiple accesses to the same shared-object into a single access, thereby reducing the num-

ber of messages required to manipulate (read or write) the remote shared data. The SCHED-

ULESOA algorithm overlaps the communication necessary to access a remote shared-object

with other computation. The Remote Update optimization sends a message to the thread
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that owns the shared object to be updated, specifying the type of operation to perform and

the data to use. This removes the intermediate communication originally required because

the update is performed on the remote thread.

A second goal of this work was to reduce the cost of executing parallel loops in UPC.

Chapter 7 demonstrates the overhead of the integer and pointer-to-shared affinity tests that

are used in upc forall loops. It also describes optimizations that can reduce the overhead of

the two different affinity tests.

We identified three different environments of interest when running UPC programs:

shared-memory, distributed, and hybrid. In a shared-memory environment, all threads share

the same global memory space. In a distributed environment, each thread has its own ad-

dress space and the only way for one thread to access the address space of another thread is

to use explicit communication. Finally, the hybrid environment is a combination of shared-

memory and distributed environments where multiple threads share the same address space.

Thus, a thread can access the address space of some other threads, but not of all threads.

The locality optimizations presented in Chapter 6 have different impacts in the different

environments tested. For example, the SOAP optimization proves to be extremely beneficial

to all UPC benchmarks in a shared-memory environment because the compiler is able to

convert all shared-object accesses into direct memory accesses. In the distributed and hybrid

environments, the benefits of SOAP varies from extremely high in cases where the locality

analysis is able to identify most or all shared-object accesses as local (e.g., STREAM),

to none at all when the locality analysis is not able to classify the shared references (e.g.,

Random Access). For benchmarks that have a mixture of local and remote shared-object

accesses, the SOAP optimization provides a small benefit because the resulting remote

accesses dominate the execution time (e.g., Sobel). In cases where SOAP provides little

benefit, SOAC or Remote Update may improve the performance by reducing the number of

messages (e.g., Sobel and UPCFish).

Unfortunately, the only benefit from the SOAS optimization is observed in the syn-

thetic benchmarks used for testing. None of the benchmarks tested in Chapter 8 shows any

improvement as a result of the SOAS optimization. The kernels in these benchmarks are

relatively small and thus the computations run much faster than the time required for com-

munication, providing only a small overlap between the computation and communication.

Based on these results, we can draw the following conclusions

1. Individual optimizations can improve performance moderately but all optimizations

together can improve performance significantly. The elimination of a single overhead
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may improve performance slightly, but the execution time is still dominated by other

overheads. This observation was most evident in the STREAM benchmark when

using pointer-to-shared affinity.

The combination of all optimizations deliver dramatic performance improvements.

In many cases, the resulting performance is competative with OpenMP performance.

Thus, it is important for the compiler to be able to identify opportunities for all of

these optimizations in order to achieve good performance.

2. To achieve scalable performance that is competitive with existing programming mod-

els, it is essential to combine compiler optimizations and runtime optimizations. For

instance, when the compiler can prove the locality of objects, the RTS can be by-

passed and the shared data can be accessed directly. However, when the compiler

cannot prove the locality of a shared-object it can perform additional analysis and

generate calls to optimized RTS functions. This synergy between the compiler and

the RTS was demonstrated by the SOAC, SOAS and Remote-Update optimizations,

all of which used optimized routines in the RTS to reduce the amount of communi-

cation between UPC threads, resulting in improved performance.
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Chapter 11

Future Work

The current locality analysis requires the number of threads, the number of nodes, and the

blocking factor to be known at compile time. This information allows the compiler to com-

pute the relative locality of each shared reference. Strictly speaking, this is not necessary.

The compiler can compute the locality information symbolically by generating expressions

to compute the information at runtime. When some (or all) of the values are known at

compile time, these equations can be simplified and possibly removed (i.e. computed at

compile time by the compiler). Thus, the locality analysis can be performed even when

all of the information is not known at compile time at the expense of additional runtime

computations.

Another limitation of the current locality analysis is that it only analyzes shared refer-

ences that have the same layout (blocking factor) as the shared reference used in the affinity

test. In order to compute the locality for shared references that have different layouts, the

compiler would need to compute the ranges where the affinity of the two shared references

overlap. The use of ranges may cause more conditions to be generated in the loop and

further divide the iteration space, which can have negative side effects (e.g., excessive code

growth can reduce instruction-cache performance). At this point we have not seen situations

where shared arrays with different layouts have been used in the same benchmark. How-

ever, if such situations are identified, this extension may enable the compiler to improve the

locality analysis, thereby exposing more opportunities for the locality optimizations.

As discussed in Chapter 6.2.3, loop unrolling is a well-known compiler optimization

that replicates the body of a loop several times in order to increase the number of instruc-

tions in the loop body. When performed in conjunction with the SOAC optimization, loop

unrolling can be used to create additional opportunities for the COALESCESOA algorithm.

For example, when the inner loop in the Sobel benchmark is unrolled by 2 (the loop body
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is replicated once), the compiler is able to coalesce the accesses from the current iteration

and the next iteration, resulting in another 50% reduction in the number of messages sent.

Figure 11.1: Manually unrolled Sobel kernel

Figure 11.1 shows preliminary results of combining loop unrolling with the COA-

LESCESOAalgorithm (from [8]). The results were obtained by manually unrolling the

inner loop in the Sobel kernel and then applying the SOAC algorithm. The results in Fig-

ure 11.1 demonstrate that unrolling can provide a significant increase in performance when

used in conjunction with the SOAC optimization. There are two main tradeoffs to consider

when performing loop unrolling for coalescing: (i) increase in message size; (ii) decrease

in the number of messages. An increase in the size of individual messages could lead to

performance degradation in the network depending on the available network bandwidth and

the number of messages that are being sent. On the other hand, decreasing the number of

messages can improve program performance (as seen in Figure 11.1) because less time is

spent waiting for messages to complete. We are currently investigating techniques for the

compiler to identify and manage these tradeoffs.

The UPC runtime currently uses a naive mapping of threads to nodes where given N

threads-per-node, threads 0 . . . N−1 are located on node 0, threadsN . . . 2N−1 are located

on node 1, etc. It is possible that an alternate mapping of threads to nodes could reduce the

number of remote shared-object accesses, thereby increasing the program’s performance.

The shared reference map can be used by the compiler to create an alternate mapping of
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threads to nodes. This remapping will not impact the memory layout of the shared data

within a node, but will change how threads are mapped to nodes (which is currently not

specified in the UPC Language Specification).

shared double A[N ] ;
shared double B[N ] ;

void foo ( ) {
i n t i ;
u p c f o r a l l ( i =0 ; i < N; i ++; &A[ i ] ) {

A[ i ] = B[ i + 2 ] ;
}

}

Thread Shared References
0 → Ai

1 → φ
2 → Bi+2

3 → φ

(a) Sample upc forall loop (b) Shared Reference Map

Figure 11.2: Example upc forall loop and corresponding shared reference map

Consider the example upc forall loop in Figure 11.2(a). Figure 11.2(b) shows the

shared reference map created by the compiler when compiling for 4 threads. If this program

is run in a hybrid environment with 2 threads-per-node, the current mapping of threads to

nodes used by the RTS will place threads 0 and 1 on the first node and threads 2 and 3

together on the second node. Thus, every iteration of the upc forall loop will contain one

local access (A[i]) and one remote access (B[i]). However, using the shared reference map

the compiler can determine that placing threads 0 and 2 together on the same node will

result in two local accesses and no remote accesses in every iteration of the upc forall loop.

When a UPC program contains simple, non-conflicting, cases such as the one shown in

Figure 11.2 no additional analysis is required to determine the ideal thread-to-node map-

ping. However, it is possible that benchmarks will produce different shared reference maps

in different loop nests, depending on how the shared arrays are accessed in each nest. Thus,

a profitability analysis will also be necessary in order to choose which maps to use when

creating the thread-to-node mapping. For example, the estimated execution frequency of

different loop nests can be used to prioritize the shared reference maps that are used to

determine the thread-to-node mapping.
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Appendix A

General Compiler Terminology

This chapter provides definitions for general compiler terminology that is used throughout

the document. Additional descriptions of these terms can be found in [4], [58].

Basic Block A basic block is a sequence of executable statements that has the following

attributes:

• There is a single entry point at the first statement in the block

• There is a single exit point at the last statement in the block

Thus, if one statement in a basic block is executed, all statements in the block must

be executed.

Common-subexpression elimination Common subexpression elimination identifies ex-

pressions that evaluate to the same value and replaces the expression with a variable

holding the value.

x = a∗b + c ;
y = a∗b∗d ;

tmp = a∗b ;
x = tmp + c ;
y = tmp ∗ d ;

Two expressions After common subexpression elimination

Figure A.1: Common subexpression elimination example

Control Flow Graph A Control Flow Graph (CFG) is a directed multigraph. Nodes in

the CFG correspond to basic blocks, and edges in the CFG correspond to transfer of

control between basic blocks.

Figure A.2 shows a simple control flow graph. The CFG contains four basic blocks

(B1, B2, B3, andB4), a distinguished Entry Node (S) and a distinguished Exit Node
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Figure A.2: Simple control flow graph

(E). Every CFG must have exactly one entry node and exactly one exit node. If the

CFG has multiple entry or multiple exit nodes, a simple graph transformation inserts

a new entry and/or exit node along with the necessary new edges.

Block B1 has two successors. For a given execution of this graph, either B2 or B3

is executed, but not both. The last statement in B1 is a test (e.g., an if statement).

Based on the outcome of the test, one of the two paths is selected and the subsequent

code executed. This test is called a decision point.

Block B4 has two predecessors, meaning that the entry point into B4 can be from

either B2 or B3. B4 is called a join node because it joins two (or possibly more)

different paths.

Countable loop A loop is countable when the upper bound and increment of the loop do

not depend on values that are computed in the loop body.

Data Dependencies Two statements Si and Sj that access the same variable (or memory

location) have a data dependence between them.

There are four kinds of data dependencies that can occur, based on the type of ac-

cess that the statements are performing. Figure A.3 illustrates the four types of data

dependencies between two statements.

1. Input dependence occurs when Si and Sj both read from the same location

(Figure A.3(a)).

2. Output dependence occurs when two statements both write to the same location

(Figure A.3(b)). An output dependence from statement Si to Sj is written as

Siδ
oSj .
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Sj : = X

Si: X =
.
.
.

Sj : X =

Si: X =
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.

Sj : = X

Si: = X
.
.
.

Sj : X =

(a) (b) (c) (d)

Figure A.3: Types of data dependencies

3. Flow dependence occurs when Si writes to a location and a subsequent state-

ment Sj reads from the same location (Figure A.3(c)). A flow dependence from

statement Si to Sj is written as Siδ
fSj .

4. Anti-dependence occurs when Si reads from a location and a subsequent state-

ment Sj writes to the same location (Figure A.3(d)). An anti-dependence from

statement Si to Sj is written as Siδ
aSj .

Data Dependence Graph A Data Dependence Graph (DDG) is a directed multigraph that

represents data dependencies between statements. A node in a DDG corresponds to

either a single statement or a group of statements. Edges in the DDG represent data

dependencies between nodes. A directed edge from node Ni to Nj represents a data

dependence from Ni to Nj . Edges in the DDG can have attributes that represent the

type of data dependence the edge represents and a distance/direction vector.

Data Dependence in a loop When data dependencies occur between two statements in a

loop, they are generally discussed in terms of the distance of the iteration space con-

taining the statements. That is, when we refer to the distance of a data dependence in

a loop, we are referring to the number of loop iterations that the dependence crosses.

Dominance A CFG node Ni dominates a node Nj if every path from the entry node to

Nj goes through Ni. When Ni dominates Nj , the relationship is described using the

notation Ni ≺d Nj .

In Figure A.4(a), B1 dominates B2, B3, B4, B5, and B6 because the only way to

get to each of those nodes is through B1. On the other hand, B3 does not dominate

B5, because there is a path from B2 to B5 that does not contain B3. Similarly, B4

does not dominate B5.

A node Ni strictly dominates a node Nj if Ni dominates Nj and Ni 6= Nj . A node
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Ni immediately dominates a node Nj if Ni strictly dominates Nj and there is no

other node Nk such that Ni dominates Nk and Nk dominates Nj .

Dominator Tree A dominator tree represents dominance relationships. The root of the

dominator tree is the entry node. There is an edge from a node Ni to a node Nj in

the dominator tree if and only if Ni immediately dominates Nj . Every node in the

dominator tree only dominates its decedents in the tree.

Figure A.4(b) presents the dominator tree for the Control Flow Graph of Figure A.4(a).

B1

B2

B3 B4

B5

B6

B1

B2 B6

B3 B5 B4

(a) Control flow graph (b) Associated dominator tree

Figure A.4: Example control flow graph and dominator tree

We refer to the sub-tree rooted at a node Ni as the dominator tree of node Ni. The

dominator tree for each CFG node can be efficiently represented using bit vectors.

Every node in the CFG has an associated bit in the bit vector. Consider the bit vector

that represents the dominator tree for a node Ni. The number of the CFG node

provides the index for the associated bit in the bit vector. A 0 bit means that the

corresponding node in the vector is not dominated by Ni. A 1 bit means that the

corresponding node is dominated by Ni.

For example, the dominator tree for B2 in Figure A.4(a) is 011110. The dominator

tree for B6 is 000001 because B6 only dominates itself.

Induction Variable An induction variable is any scalar variable for which the value of

the variable on a given iteration of the loop is a function of loop invariants and the

iteration number (0, . . . , n) [58].

During loop normalization in TPO, two types of induction variables are created: con-

trolling induction variable and derived induction variable. The controlling induction

variable is the variable that controls the execution of the loop. The derived induc-
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tion variable is any variable whose value is a function of the controlling induction

variable.

Iteration count The iteration count of a loop is the number of times that the loop body

executes. For instance, a countable loop in the C language, with an upper bound U , a

lower bound L and an induction variable that is incremented by 1 every iteration has

an iteration count of U − L+ 1.

Loop Invariant Expression A loop invariant expression is an expression whose result is

not based on the iteration of a loop. That is, the value of the expression does not

change throughout the execution of the loop.

Loop Invariant Code Motion Any expression that is loop invariant can move from inside

the loop body to outside the loop body. The benefit of this is that the expression will

only be evaluated once as opposed to being evaluated in every iteration of the loop.

Lower bound The lower bound of a normalized loop is the minimum value that the con-

trolling induction variable can be assigned to during loop execution. If the controlling

induction variable is less than the lower bound, the loop body does not execute.

Nesting level The nesting level of a loop is equal to the number of loops that enclose it.

Loops are numbered from the outermost to the innermost nesting level, starting at 0.

Given two loops, Li and Lj , if Li dominates Lj , or if Lj postdominates Li, then Li

and Lj must be at the same nesting level. That is, dominance relationships are only

reported between loops that are at the same nesting level.

Normalized Loop A normalized loop is a countable loop that has been modified to start at

a specific lower bound and iterate, by increments of 1, to a specific upper bound.

Postdominance A CFG node Nj postdominates a node Ni if and only if every path from

Ni to the exit node goes through Nj . When Nj postdominates Ni, the relationship is

described using the notation Nj ≺pd Ni.

In Figure A.4(a), B6 postdominates B1, B2, B3, B4 and B5 because the only way

to get from each of those nodes to the exit node is through B6. On the other hand,

B3 does not postdominate B2 because there is a path from B2 to B5 that does not

contain B3. Similarly, B4 does not postdominate B2.

The postdominance relationship can also be represented in a tree structure. The root

of the tree is the exit node. Every node in the tree only post dominates its decedents
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in the tree. Postdominator trees for specific CFG nodes can also be represented using

bit vectors. The representation is exactly the same as for dominator trees, except that

the postdominance relationship is represented instead.

The postdominator tree for B6 in Figure A.4(a) is 111111. The postdominator tree

for B5 is 011110. Likewise, the postdominator tree for B1 is 100000 because B1

only postdominates itself.

Regions A region is a collection of basic blocks B, in which a header node dominates all

the other nodes in the region. A consequence of this definition is that any edge from

a node not in the region to a node in the region must be incident in the header.

A Single Entry, Single Exit(SESE) region (also known as a Contiguous region) is a

region in which control can only enter through a single entry node and leave through

a single exit node. Thus, when traversing the nodes in a SESE region, the following

two conditions must be met: (i) from the entry node, all nodes in the region can be

reached, (ii) during the traversal, no node not in the region is reached before the exit

node.

Strength reduction Strength reduction attempts to replace a computationally expensive

instruction with a less-expensive instruction. For example, an integer division opera-

tion where the divisor is a power of two is replaced with a bit-shift operation.

Strip-Mining Strip-mining is an optimization that divides the iteration space of a loop into

strips. This is done by replacing the loop with a two-level loop nest. The outer loop

iterates over the strips while the inner loop iterates within the strips. Figure A.5 shows

an example loop before and after strip-mining.

f o r ( i =0 ; i < N; i ++) {
A[ i ] = i /N;

}

f o r ( j =0 ; j < N; j += STRIP ) {
f o r ( k =0; k < STRIP ; k ++) {

A[ j +k ] = ( j +k ) / N;
}

}

(a) Original loop Loop after strip-mining

Figure A.5: Strip-mining example

Upper bound The upper bound of a normalized loop is the maximum value that the con-

trolling induction variable can be assigned to during the execution of the loop body.
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Whenever the controlling induction variable is greater than the upper bound, the loop

body does not execute.

177


	Introduction
	Objectives
	Optimizing Shared-Object Accesses
	Shared-Object Access Coalescing
	Shared-Object Access Scheduling
	Optimizing Parallel Loops in UPC

	Contributions
	Organization of this Document

	Unified Parallel C
	Shared Objects in UPC
	Shared and Private Pointers
	UPC Built-in Functions
	Parallel Loops
	Synchronization
	UPC Memory Model
	Collectives
	Limitations of UPC
	Chapter Summary

	Definitions
	UPC Shared Array Layout
	Global Shared Array Layout
	Local Shared Array Layout

	UPC Terminology
	Chapter Summary

	The IBM UPC Compiler and Runtime System
	Overview of TPO
	Loop Optimizations in TPO
	Internal Representations in TPO

	Multidimensional Blocking of UPC Arrays in the XL UPC Compiler
	Multiblocked Arrays and UPC Pointer Arithmetic
	Implementation Issues

	The IBM UPC Runtime System
	The Shared Variable Directory
	Allocating a Shared-Object
	Accessing a Shared-Object
	Index-to-Offset Conversion
	Shared-Object Access Timing

	Chapter Summary

	Locality Analysis
	Shared Object Properties
	Shared-Object Locality Analysis
	Cuts
	Algorithm
	Discussion

	Chapter Summary

	Shared-Object Locality Optimizations
	Shared-Object Access Privatization (SOAP)
	Algorithm
	Results
	Discussion

	Shared-Object Access Coalescing (SOAC)
	Algorithm
	Results
	Discussion

	Shared-Object Access Scheduling
	Algorithm
	Results
	Discussion

	Remote Shared-Object Updates
	Chapter Summary

	Parallel Loop Nests
	Integer Affinity Tests
	Pointer-to-Shared Affinity Tests
	New Loop-Nest Structure

	Experimental Evaluation
	Chapter Summary

	Performance Analysis
	The STREAM Benchmark
	Shared-Memory Environment
	Distributed Environment
	Hybrid Environment
	Discussion

	Sobel Edge Detection
	Shared-Memory Environment
	Distributed Environment
	Hybrid Environment

	RandomAccess
	Shared-Memory Environment
	Distributed Environment
	Hybrid Environment
	Discussion

	UPCFish
	Shared-Memory Environment
	Distributed Environment
	Hybrid Environment
	Discussion

	Cholesky Factorization and Matrix Multiplication
	Distributed Environment
	Hybrid Environment
	Discussion

	Summary

	Related Work
	Shared Data Locality Analysis
	Coalescing Shared-Object Accesses
	Shared-Object Access Scheduling
	Alternative Parallel-Programming Environments

	Conclusions
	Future Work
	Bibliography
	General Compiler Terminology

