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Abstract

Modern graphics Application Programming Interfaces (APIs) provide first-

class support for ray tracing. Hardware vendors implement drivers for the

graphics API including a black-box compiler. The black-box compiler creates

architecture-specific binaries that leverage ray-tracing hardware acceleration.

Ray-tracing support in modern APIs allows all geometry and shaders to be

specified for a single execution. Thus, ray tracing is more complex and difficult

to reason about than rasterization, a traditional rendering method. Ray-tracing

developers must contend with the unknowns of an inscrutable GPU binary and

a monolithic execution model. The increase in complexity from rasterization

to ray tracing has not been accompanied by commensurate tooling.

This thesis first presents Vulkan Vision (V-Vision). V-Vision is a framework

for developing instrumentation passes for shaders in the Vulkan graphics API.

V-Vision handles the commonalities of generating, analyzing, and presenting in-

strumentation data. Specifically, V-Vision provides instrumentation primitives

to capture a complete inter-shader and intra-shader ray-tracing execution trace.

Instrumentation utilities implemented using V-Vision are operating-system,

vendor, and architecture agnostic. V-Vision does not require source-code modi-

fication or recompilation. V-Vision’s out-of-the-box instrumentation utilities

demonstrate the ability to gather fine-grained execution data. Moreover, V-

Vision’s utilities are capable of measuring microarchitectural effects, such as

independent thread scheduling. The execution data enables limit studies at

hardware, compiler, and application levels. V-Vision’s annotated shader and
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heatmap representations enable productive debugging and profiling. V-Vision

has been accepted into the MindInsight tool family.

Next, this thesis presents RayScope. RayScope automatically captures

application-agnostic ray-tracing execution data and geometry data from Vulkan

applications. RayScope provides an interactive visualizer, populated using the

ray tracing and geometry data. Therefore, RayScope can be understood as a

set of tools that enables understanding, debugging, profiling, and designing

through visualization of application execution data. RayScope implements

an instrumentation pass and analysis using V-Vision but also implements

Vulkan-API call instrumentation. RayScope’s outputs are human-readable to

encourage integration with other visualization and debugging tools. RayScope

assisted in identifying longstanding bugs in Vulkan ray-tracing applications.

RayScope further assisted in uncovering poorly defined minimum collision

distances causing wasted computations in multiple ray-tracing applications.

RayScope also helped identify geometry construction problems causing visual

artifacts and wasteful computation in the well-known model Sponza. Finally,

RayScope automatically identified a misconfiguration of Vulkan geometry flags

and recommended a solution for one ray-tracing application. Applying the

recommendation results in a reduction of 96.8% of any-hit shader executions.

The level of information provided to the developer has a large impact on

the quality of the application that they develop. Changes motivated by the

information provided by V-Vision and RayScope are often minimal but have

tangible implications for performance and correctness. The effectiveness of

V-Vision and RayScope indicates that tooling, and the knowledge it provides,

was lacking for real-time hardware-accelerated ray tracing in Vulkan. The work

presented in this thesis improves the tooling landscape by releasing V-Vision

and RayScope as open-source projects, and improves the body of knowledge

by sharing common pitfalls in real-time hardware-acceleration ray tracing.
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Preface

Chapter 3 of this thesis is published as D. Pankratz, T. Nowicki, A. ElTantawy,

J. N. Amaral, “Vulkan Vision: Ray Tracing Workload Characterization using

Automatic Graphics Instrumentation”, CGO 2021: Proceedings of the 19th

ACM/IEEE International Symposium on Code Generation and Optimization,

in February 2021. I presented this work virtually at CGO on March 1st,

2021. To develop V-Vision I devised, prototyped, implemented, and evaluated

the project. T. Nowicki and A. ElTantawy proposed many studies that were

made possible by V-Vision and I formulated others. For each study I devised,

prototyped, implemented, and evaluated an instrumentation utility. I planned

and drafted the manuscript under the guidance of A. ElTantawy. A. ElTantawy

characterized the interactions and features of V-Vision and created the main

architecture figure. T. Nowicki authored the background section discussing

details of Vulkan and ray tracing. All authors collaborated in editing and

polishing the writing of the final manuscript. J. Nelson Amaral ensured a

high-quality manuscript with his feedback and edits.

Chapter 4 of this thesis has been submitted for review toward publication

as D. Pankratz, T. Nowicki, A. ElTantawy, J. N. Amaral, “RayScope: In-

teractive Visualizations of Vulkan Ray-Tracing Applications Using Automatic

and Application-Agnostic Instrumentation”. I conceptualized, prototyped,

implemented, and evaluated the tool. A. ElTantawy and T. Nowicki assisted

in determining an appropriate venue and drafting the manuscript. T. Nowicki

and A. ElTantawy provided valuable feedback on the visualizations and the

manuscript. T. Nowicki wrote the background section and part of the related

work section. J. Nelson Amaral guided the research evaluation methodology

and improved the cohesiveness of the writing.
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Chapter 1

Introduction

Performance and quality of real-time graphics applications—gaming, as well as

augmented and virtual reality—have a direct impact on end-user experience and

are therefore considered as a key differentiator in several markets, including

gaming consoles, mobile devices, and high-end desktops. To achieve high

performance, the process of translating a scene description into an image on

a screen has long been standardized in graphics Application Programming

Interfaces (APIs)—such as Direct3D and OpenGL [5], [61]—as a GPU kernel,

referred to as a graphics pipeline. Characterizing the performance bottlenecks

of a graphics pipeline is challenging because the graphics programming model

is hardware agnostic, making it more obscure than a low-level programming

model such as Compute Unified Device Architecture (CUDA) [45]. CUDA

application developers benefit from numerous program characterization tools

using profiling and instrumentation [46], [52], [59]. The infrastructure for

graphics applications is less developed, but the need to create high quality and

performant GPU code remains.

In comparison to traditional software, where call-graph traces reveal the

flow of execution, the implicit data and control flow in a graphics pipeline is

obscure to application and system developers. Inscrutability is compounded

by recent extensions, such as ray tracing, with more complex pipelines. Thus,

system developers have less support to improve performance in a graphics

pipeline. The programmable shaders significantly influence performance, yet

the run-time behaviour (e.g. execution trace, control flow, hotspots) of these
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shaders is not provided. There is a need for instrumentation tools to analyze

graphics pipelines. The efficacy of instrumentation has been recognized in the

compute domain of GPUs that use APIs such as CUDA [45] and OpenCL [38].

Rasterization, the traditional method for real-time rendering, renders each

object in the scene separately. In contrast, ray tracing renders scenes by

simulating the paths of millions of rays of light moving through a scene to

the eye or to the camera. In ray tracing, visual quality is directly related

to the number of rays traced by the application. The final pixel value is an

accumulation of indirect light that originated from multiple light sources and

was reflected or refracted, potentially many times, on surfaces in the scene. As

a consequence of this complex process, ray tracing is prone to hidden functional

and performance pitfalls.

Ray tracing as a rendering technique has been around for decades with

a wide range of applications, algorithms, and implementations. Ray-tracing

pitfalls can be identified by visual or automatic inspection of the ray paths.

However, until recently it was not practical to develop a standard approach for

ray-path collection that works across applications and hardware platforms. Over

time, ray-tracing visualizers adopted an approach requiring manually inserted

profiling calls [15], [28], [53]. These techniques are also only applicable to CPU-

based ray tracers. Therefore, a need exists to bring debugging capabilities to

GPU-based ray tracers to provide recommendations and insights to developers,

resulting in improved productivity and better applications.

The sophisticated software-hardware stack present in Vulkan applications

comes with many unknowns. Runtime behaviour varies by application, operat-

ing system, driver, vendor, and architecture. To contend with these challenges,

game studios and game engines create custom profiling and debugging solutions.

Further, hardware vendors develop custom solutions that are only compatible

with certain architectures. These approaches are admirable, but fragmented.

Standardized and open-source ecosystems like Vulkan have great potential for

unifying these efforts. Moreover, specialized tooling can be created based on

first-class features in Vulkan, such as ray tracing, to automatically provide

recommendations and insights to developers.
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The contributions of this thesis are as follows:

1. Vulkan Vision (V-Vision), a framework for shader instrumentation in

Vulkan applications. It extends Vulkan validation layer instrumentation

capabilities to enable meaningful performance and behaviour-centric

instrumentation. V-Vision is open source under MindInsight at https:

//gitee.com/mindspore/mindinsight.

2. A set of instrumentation utilities enabling automatic out-of-the-box in-

strumentation of pipelines in Vulkan applications. These utilities assist

Vulkan application developers in profiling and debugging their applica-

tions. The utilities also facilitate limit studies of applications, compilers,

and hardware to guide their design.

3. An analysis of ray-tracing applications using V-Vision. V-Vision’s data

collection and visualization provide an unprecedented view into the

runtime behaviour of GPU ray tracing that manifests as actionable

feedback for developers.

4. RayScope, an open-source platform-independent tool with a workflow

that automatically captures detailed ray-tracing information and features

an interactive visualizer to display this information. RayScope’s visual-

izer accurately represents procedural geometry using runtime execution

information that prior state-of-the-art tools approximate.

5. A characterization of application-independent geometry information, ray

information, and ray-geometry interaction information in the Vulkan API.

RayScope automatically collects this ray-tracing information using Vulkan

API and shader instrumentation. RayScope emits the ray and geometry

data as human-readable files to encourage use with other visualization

tools.

6. An automatic analysis of the ray-tracing information that enables Rayscope

to produce performance recommendations for common issues, such as

Vulkan API misuse and poor dynamic interactions of rays with geometry.

3
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For example, applying one of RayScope’s recommendations to fix Vulkan

API misuse results in a 15.71% FPS increase on a GTX 1660ti and a

3.15% FPS increase on a RTX 3080.

7. Case studies that demonstrate that RayScope is effective in assisting

debugging and supporting application-design tasks. These case studies

demonstrate that RayScope: produces visualizations that allow long-

standing bugs to be quickly identified; provides effective performance

recommendations resulting in tangible performance benefits; and allows

emergent issues with well-studied models, such as Sponza, to be identified.
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Chapter 2

Background

Rasterization is the preeminent real-time rendering technique. The reason for

rasterization’s popularity is that it is readily hardware accelerated and therefore

performant. However, rasterization approximates every pixel and requires

techniques like anti-aliasing to produce a high-quality image. Rasterization

does not account for indirect effects of light and often relies on precomputing

shadow maps based on a particular light position. Fundamentally, rasterization

operates in the screen space and discounts the effect of light on objects outside

the current view [9].

Ray tracing is a computationally expensive rendering technique that im-

proves the visual quality of graphics applications by implementing sophisticated

interactions of light. Ray tracing accounts for the effect of objects on light,

including objects that are culled by rasterization.

Figure 2.1 shows an image rendered using ray tracing and a visualization

of the ray paths to generate the image. The image in the right of Figure 2.1

shows a clear sphere rendered using ray tracing. The image in the left of

Figure 2.1 shows a visualization of a subset of ray paths proceeding through

the clear sphere. The orange rays collide with the sphere. At this point, the

ray-tracing application must determine the result of the collision. In this case,

the application determines the angle of refraction for each of the orange rays.

The application continues the ray paths by launching the pink rays through

the inside of the sphere. The pink rays collide with the back of the sphere,

and the application again determines the angle of refraction to produce the

5



Figure 2.1: Left: Ray paths of backwards ray-tracing implementation. Rays
are travelling left-to-right, and each colour represents a distinct segment in the
ray path. The ray-tracing implementation determines ray behaviour at each
collision site based on type of material and the desired visual effect. In this
example, the rays are refracted after each collision because they are colliding
with a clear sphere. Right: Image of a clear sphere rendered using backwards
ray tracing. Note that the sphere inverts the image because rays that enter
at the top of the sphere are directed to the bottom and rays that enter at
the bottom are directed to the top. The effect of the sphere on the rays is
analogous to the human eye’s effect on light.
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purple rays. This example illustrates how ray tracing emulates the physical

behaviour of light. More generally, ray-tracing applications decide on the set

of materials and visual effects that they will support. Each effect or material

may be modelled differently in terms of ray behaviour. For example, the green

sphere shown in the background of the image in the right of Figure 2.1 has a

different material than the clear sphere in the foreground. The implementation

may decide that rays that collide with the green sphere bounce off the sphere

for indirect lighting or alternatively terminate the ray.

Ray-tracing applications use acceleration structures to elide unnecessary

ray-intersection tests. Acceleration structures are recursive trees that partition

space. Acceleration structure nodes have the property that if a ray misses the

parent volume, the ray must also miss all of the childrens’ volumes. For the

purposes of this thesis, the acceleration structure1 refers to a Bounding Volume

Hierarchy (BVH), as that is the current industry standard [54].

Ray tracing can be performed online or offline. In offline ray tracing,

indirect lighting is achieved using Monte-Carlo sampling of ray paths [53]. This

approach has considerable latency and thus is not applicable to real-time ray

tracing. Advances in machine-learning-based denoising have enabled indirect

lighting in real-time ray tracing [8].

In anticipation of Graphics Processing Unit (GPU) vendors supporting

real-time ray tracing, ray-tracing interfaces have been standardized in modern

graphics APIs [5], [19]. Real-time ray tracing in modern applications is based

on backwards ray tracing [6]. In this formulation of ray tracing, rays begin at

the camera and are shot through all the pixels of the screen. Conceptually,

shooting rays through each pixel determines what the pixels see and thus

renders a complete image. Rays mimic the behaviour of physical light, and

because of this, ray tracing can generate photorealistic images.

1Acceleration structure in Vulkan parlance actually refers to a two-level scene graph
describing geometry and its instances. BVHs are constructed in a vendor-specific black-box
driver based on the two-level scene graph.
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2.1 Instrumentation

Ray-tracing applications’ visual quality depends on the number of rays that

are traced and therefore the performance of the implementation. However,

implementing and optimizing ray-tracing application is a challenging process.

Instrumentation of ray-tracing applications has been shown to be effective in

assisting the developer in understanding the ray-tracing implementation and

detecting issues [15], [28], [53].

Instrumentation is the process of inserting code into an existing program,

typically to gain meta-information about the program’s execution. Meta-

information about program execution is valuable because it informs developer

decisions. Developers may use instrumentation outputs to assist in debugging,

profiling, or to understand the dynamic behaviour of their program. Instrumen-

tation may be performed manually [30], ahead of time [34], or dynamically [59].

Instrumentation can be added to the source code [30], to library procedure

calls [55], in the compiler [52], or in the executable binary [59]. Instrumentation

that is automatically inserted can study aspects of program execution that

would be prohibitively time consuming to study with manual instrumentation.

For example, determining the runtime instruction mix of a binary execution

requires, at the very least, inserting sophisticated assembly in every basic

block [59].

Figure 2.2 shows an example of instrumentation affecting the performance

of a program. In the first copy of the loop, the number of iterations is known

at compile time. The compiler deduces that j will equal 100 following the loop

and that running the loop is unnecessary. The second copy of the loop shows

the instrumented version of the program. The function call Instrument has

side effects, and the compiler can no longer safely remove the loop. Executing

the instrumented version of the program will take significantly longer since the

loop must be fully evaluated. Therefore, adding instrumentation may have

non-trivial effects on the program’s performance. Note that program semantics

are not changed, so the variable j will be set correctly in both loops.

The effect on down-stream compilers is important when instrumenting an
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1 // Copy 1

2 int j = 0;

3 for (int i = 0; i < 50; i++){

4 // compiler removes loop

5 j += 2;

6 }

7

8 // Copy 2

9 int j = 0;

10 for (int i = 0; i < 50; i++){

11 // compiler cannot remove loop

12 Instrument();

13 j += 2;

14 }

Figure 2.2: The potential impact of instrumentation on downstream compiler
transformations. In this example, the loop spanning lines 3-6 is evaluated
statically by the compiler. The instrumentation call on line 12 prevents the
same loop from being evaluated statically. This issue can be mitigated by
instrumenting after optimization passes.

application’s source code. One method to mitigate the challenge shown in

Figure 2.2 is to add instrumentation after the compiler has run its optimization

passes. Instrumenting after the compiler has run its passes has the downside

of being architecture specific. Therefore, when gathering data with instrumen-

tation it is important to consider whether architecture agnosticism or detailed

performance measurements are more important.

2.2 GPU Execution Model

Graphics applications are naturally parallel because each stage in the graphics

pipeline is executed over a multi-dimensional buffer of independent elements,

allowing each element to be evaluated by its own thread. Post-processing

effects, such as convolution, that have dependencies between elements are

typically implemented using a compute pipeline. For example, each pixel in

the frame is independent, allowing it to be evaluated by separate threads

running in parallel. The independent property of work items in a graphics

pipelines naturally extends to rays in ray tracing. Ray tracing can therefore be
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accelerated using a GPU. However, ray tracing poses additional challenges to

GPU-based execution. Incoherent ray bounces and BVH traversal algorithms

cause disparate work allocation and memory accesses between threads. These

challenges have been partially mitigated using a dedicated hardware unit for

ray traversal [47].

Threads are grouped into warps—also known as subgroups—where threads

in each warp execute in lockstep on different data on Single Instruction, Multiple

Data (SIMD) hardware units. This execution paradigm reduces instruction

fetching, decoding, and scheduling overheads and enables coalesced memory

accesses. Control flow divergence reduces the efficiency of Single Instruction,

Multiple Thread (SIMT) execution due to threads becoming inactive in portions

of the execution path. In the worst case of divergence, the execution of threads

in a warp is completely serialized. The utilization of SIMD hardware units can

be assessed using SIMT efficiency, the average percentage of active threads per

warp.

2.3 Vulkan

Similar to recent low-level graphics APIs, such as Metal [3] and DirectX 12 [36],

Vulkan gives the application full control over the GPU devices and their

resources [31]. A thorough review of Vulkan is not within the scope of this

discussion. This section discusses the API and several key interfaces that relate

to ray tracing, including ray-trace commands, validation layers, the ray-tracing

pipeline, data collection by shader instrumentation, the acceleration structure,

memory buffers, and collection of ray-tracing information.

The following steps initialize Vulkan for rendering: creating an instance

of Vulkan, identifying a GPU for rendering, integrating with the windowing

system, initializing at least one render pass with a command buffer, and creating

a frame buffer. Vulkan applications populate buffers for each geometric object

with the object’s geometry data, such as vertices and indices for triangular

geometry. A rendering pipeline is created by specifying its shaders and their

variables. Pipelines include the Vulkan commands that trigger the GPU to
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render the scene. To render an image, applications bind the required memory

buffers and schedule pipelines.

Vulkan requires Standard Portable Intermediate Representation (SPIR-V)

for each programmable shader stage, and the driver is responsible for just-in-

time compiling SPIR-V to machine code. SPIR-V is generated by compiling

OpenGL Shading Language (GLSL) shaders, although other shader languages

can also be compiled to SPIR-V. GLSL specifies the built-in variables and

functions available within each shader stage.

To reduce runtime overhead, the Vulkan driver performs little error checking.

The expensive task of validating each API call occurs outside the driver within

a shared library, known as a validation layer. The validation layer is invoked

by the driver twice: once before each Vulkan API call, to evaluate the function

arguments, and once after the call, to evaluate the result. The source code of

the Vulkan application is not required. The method for specifying and enabling

a validation layer differs slightly for each OS but usually requires one or more

environment variables and a configuration file.
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Figure 2.3: Ray-tracing pipeline in the Vulkan ray-tracing extension.

Vulkan Ray-Tracing Pipeline: The Vulkan ray-tracing pipeline, shown

in Figure 2.3, is executed by all threads in a warp. It is distinct from the raster
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graphics pipeline that consists of vertex, tessellation, geometry, and fragment

shaders. The ray-tracing pipeline is recursive and nonlinear, unlike the linear

execution of the raster graphics pipeline.

Execution of the ray-tracing pipeline begins at the ray generation shader 1 .

The ray generation shader creates new rays and traces them through a scene

of 3D objects by invoking traceRay 2 . A traceRay call is translated by a

mixture of compiler transformations and hardware acceleration into the flow

described next.

First, traceRay performs traversal and intersection 3 given the ray ori-

gin, ray direction, and minimum intersection distance as function arguments.

Traversal and intersection takes a ray definition and traverses the acceleration

structure to determine ray collisions. An object may be defined with an Axis

Aligned Bounding Box (AABB) that encloses a procedural shape. If a collision

with an AABB is detected, then an intersection shader is invoked by trac-

eRay 4 . Other objects, composed of triangles, may invoke an any-hit shader

upon collision 5 . The condition 6 checks whether all intersections have been

processed. In the case that there are remaining intersections, steps 3 , 4 ,

5 are repeated. In the case that all intersections have been processed, this

may have happened in one of two ways: at least one collision occurred and

the closest-hit shader is invoked, or there were zero intersections and the miss

shader is invoked. The miss and closest-hit shaders may perform a recursive call

to traceRay 7 . Ray collisions trigger a lookup in the Shader Binding Table

(SBT) 8 , to determine what shader, if any, is associated with the collision.

Figure 2.4 shows a characterization of traceRay’s operation. The intersec-

tion shader is executed to evaluate the validity of the ray intersecting with a

procedural object. The any-hit shader is executed to re-evaluate the validity of

the intersection. The intersection and any-hit shaders are classified under con-

ditional geometry because they dynamically determine validity of intersections

with geometry, based on a programmable condition. If the set of confirmed

intersections is nonempty, the closest-hit is invoked; otherwise a miss shader

is invoked. These shaders receive the final result of the traceRay and thus

determine whether the ray should continue. Thus the closest hit and miss are
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TraceRay

Conditional Geometry

Any-Hit Intersection

Ray Behaviour

Closest-Hit Miss

Confirmed 
Intersections 

Ray 
Traversal

Figure 2.4: Overview of traceRay operation defined in Vulkan. The traceRay

operation traces a single ray through the scene. Application-provided shaders
(blue) define how geometry and the ray interact. The conditional-geometry
shaders allow intersections for the ray to be discarded programmatically. This
mechanism builds the set of confirmed ray-geometry intersections for the ray.
The ray-behaviour shaders determine how the ray should behave based on the
confirmed ray-geometry intersections.
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classified as defining ray behaviour.

In ray tracing, usually each thread traces a different ray. When executing

traceRay, rays allocated to threads within the same warp may hit different

objects and execute different shaders. The result is divergent indirect function

calls that implement the flow of execution. Upon identifying different ray

hits, each thread accesses the SBT with its hit information—which objects

and materials a thread has hit—to obtain the addresses of the shaders to

be executed. Fully divergent indirect function calls, where each thread in a

warp executes a different shader, serializes the execution of these functions.

If recursion occurs within the called shader, SIMT utilization can be further

impacted.

A single ray-tracing pipeline execution issued with the Vulkan API is

able to render an entire scene consisting of multiple objects with different

textures, materials (e.g. matte, gloss, semi-gloss, eggshell, etc.), geometry types

(e.g. triangles, implicit surfaces, etc.) and transforms. Contrast that with

rasterization, where each draw command renders a single geometry that may

not even be a whole object. The application specifies the dimensions of the

ray-tracing task, referred to as the launch size, and the ray-tracing pipeline is

executed for each element. For most common uses of ray tracing, the launch

dimensions will correspond to the dimensions of the rendered scene.

Acceleration Structure: The Vulkan API defines an Acceleration Struc-

ture (AS) to contain and organize scene geometry for ray tracing. A brief

description of the Vulkan API methods applicable to building acceleration

structures are provided in Table 2.1. An AS is broken down into top and

bottom levels. A Bottom Level Acceleration Structure (BLAS) defines a set

of geometry primitives. These primitives may either be triangles or bounding

boxes. A Top Level Acceleration Structure (TLAS) defines a set of BLAS

instances and transform matrices to specify the final geometry in the scene.

For ray tracing, the application creates BLAS nodes that refer to one or more

geometry buffers. The application then creates TLAS nodes with references to

BLAS nodes to populate the scene with objects, similar to a two-level scene

graph. To position and orient the objects in the scene, the application specifies
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a geometry-to-object transformation for each BLAS and an object-to-world

transformation for each TLAS.

This chapter introduced ray tracing, instrumentation, GPU execution, and

Vulkan. These technical details are requisite background for Chapter 3 and

Chaper 4. Chapter 3 introduces a SPIR-V instrumentation framework for

capturing detailed runtime information from Vulkan pipelines executing on the

GPU. Chapter 4 presents a ray-tracing visualization tool based on SPIR-V

instrumentation and Vulkan-API call instrumentation.
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Chapter 3

Vulkan Vision: Ray Tracing
Workload Characterization
using Automatic Graphics
Instrumentation

Instrumentation is a technique that enables developers to make informed

decisions. Instrumentation collects meta-information about program execution

in addition to the regular program output. The adoption of real-time hardware-

accelerated ray-tracing is driving innovation at the hardware, driver, compiler,

and application levels. However, no existing framework facilitates shader

instrumentation for Vulkan applications, as shown in Table 3.1.

This chapter answers the following research problem: To what extent can

the underlying hardware execution be measured through instrumentation, and

can the execution data be used for limit studies, characterization, and profiling

of the instrumented applications? To solve this problem, this chapter introduces

V-Vision, an open-source framework to capture fine-grained GPU execution

data, independently of vendor-specific compilers.

The Vulkan API is a widely adopted graphics and compute API that

minimizes driver overhead. This API elides default error checking and instead

offers an optional validation layer to provide debugging capabilities. Validation

layers support analysis and instrumentation of SPIR-V shader code. SPIR-V is

a vendor-independent pre-compiled intermediate representation for device code

required by Vulkan [24]. The existing support for SPIR-V instrumentation
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Tool Open
Source

Shader
Instrumen-
tation

Automatic
Profiling

Target
Agnostic

API

NSight
Graph-
ics [43]

No No Yes no DirectX
OpenGL
Vulkan

Intel
GPA [17]

No No Yes no DirectX
OpenGL
Vulkan
Metal

PIX [37] No No Yes Yes DirectX

Strengert
et al. [55]

Yes Yes No Yes OpenGL

V-Vision Yes Yes Yes Yes Vulkan

Table 3.1: Landscape of graphics profiling.

provides only error checking and the printf debugging extension.

V-Vision is a framework for graphics shader instrumentation in Vulkan appli-

cations. V-Vision extends existing validation layer instrumentation functionality

by providing a framework with a set of ready-to-use instrumentation primitives,

instrumentation utilities, and instrumentation analytics. V-Vision is open

source under MindInsight at https://gitee.com/mindspore/mindinsight.

Instrumentation primitives fall into two groups: (1) unique-identification

primitives, and (2) buffer-update primitives. Unique-identification primitives

reveal accurate and fine-grained shader runtime behaviour and relate it to

static data generated from the SPIR-V shader, such as the Control Flow Graph

(CFG). Buffer-update primitives provide alias and race-free write operations

to the instrumentation StorageBuffer. The instrumentation utilities specify

program points to emit instrumentation primitives at and the values to provide

to the utilities. The utilities provided by V-Vision produce both runtime

and static data which are combined to produce a characterization of pipeline

execution, such as dynamic instruction execution counts (hotspots).

The output of instrumentation utilities are consumed by the analytics in V-

18
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Vision to characterize runtime behaviour and identify performance bottlenecks,

such as serialized indirect function calls. The analytics include simulating

improvements to performance bottlenecks, such as thread compaction to reduce

the impact of serialization [13]. Lastly, the analyses produce visualizations

within the shader code to streamline refactoring and assist in solving perfor-

mance issues.

The rest of this chapter is organized as follows: Section 3.1 explains the

architecture of V-Vision. Section 3.2 discusses the instrumentation primitives

provided in V-Vision. Section 3.3 characterizes ray-tracing Vulkan applications

using instrumentation utilities. Section 3.4 evaluates V-Vision’s overhead

and compares binary and Intermediate Representation (IR) instrumentation.

Finally, we conclude in Section 3.5.

3.1 V-Vision Architecture

V-Vision provides programming interfaces to perform automated shader in-

strumentation prior to execution, and to analyze the corresponding output

data. V-Vision further provides built-in functionality for common instrumenta-

tion and analysis tasks. This section details V-Vision’s architecture, interface,

execution and out-of-the-box features.

Vulkan Validation Layers: Vulkan performs error checking and other

debugging capabilities in validation layers. Validation layers are intermediaries

between Vulkan applications and the driver and require no code modification

or recompilation [26].

Validation layers support use cases such as in-game overlays [58], and game

traces captured with the gfxreconstruct layer [32]. These examples are possible

because validation layers transparently compose with any standards-conforming

Vulkan application across major operating systems and GPU architectures.

Validation layers therefore support profiling any Vulkan application as no

changes are required from the application developer.

Tool Architecture: V-Vision extends the standard Vulkan validation

layer that provides error checking and printf. Figure 3.1 depicts V-Vision’s
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Figure 3.1: Vulkan Vision Architecture, Interface, and Execution Flow. The
stars in the figure mark which modules are a novel contribution. The dotted
boxes in Execution Flow represent the steps when using a validation layer for
instrumentation.

architecture, interface and execution-flow. V-Vision’s contributions are identi-

fied with stars. Vulkan validation layers intercept and modify the host-code

APIs 1 and device-code SPIR-V kernels 2 . Transformations of the device

code performs dynamic error checking and supports debugging with the de-

bugPrintfEXT built-in [33] 3 . By extending the instrumentation framework,

V-Vision supports generic application profiling.

V-Vision’s instrumentation primitives 4 systematically address challenges

in instrumenting a graphics pipeline. As detailed in Section 3.2, these primitives

are categorized into two groups: unique-identification primitives, and buffer-

update primitives. Instrumentation passes generate primitives to record per-

warp values, such which threads in a warp are active, and per-thread values,

such as a thread’s value of a variable. These primitives support customization

of variables and program points that are instrumented.

V-Vision provides ready-to-use utilities 5 built using the instrumentation

primitives: i) SIMT Efficiency: measure active threads at every basic block in a

graphics pipeline; ii) Divergence Characterization: measure respective impacts
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of control-flow, indirect function call and early-return divergence. iii) Indirect

Function Call Paths: reveal all execution traces leading to indirect function

calls; and iv) Execution Trace: complete warp and thread execution traces

throughout the graphics pipeline. These utilities are exposed as flags 6 . The

utilities can be used by application developers and hardware designers to expose

bottlenecks, such as poor SIMT Efficiency due to serialized indirect function

call execution, and opportunities to improve them, such as thread compaction

or shader refactoring.

Execution Flow: The workflow of V-Vision is shown in Figure 3.1 through

the black arrows that represent the order of events. The dotted boxes represent

the components of a Vulkan validation layer performing instrumentation and

the boxes marked with a star are novel contributions of V-Vision. Removing all

the dotted boxes results in the operation mode of a Vulkan application without

validation. The flow begins with the execution of Vulkan API calls 7 . Next,

the validation layer intercepts the application’s device-buffer creation to add a

StorageBuffer—a readable and writable type of storage that is visible anywhere

in the graphics pipeline—where the instrumentation data will reside 8 . The

validation layer receives the SPIR-V source for every shader module that the

Vulkan application creates 9 . The validation layer triggers V-Vision’s SPIR-V

automatic-instrumentation pass. This pass adds the desired instrumentation,

according to the instrumentation utility, to each SPIR-V module source, thus

creating new writes to the storage buffer 10 . Thereafter, events outside of

the validation layer occur: a graphics pipeline is created as a sequence of

shaders 11 , the pipeline is compiled into a GPU-specific binary 12 , and the

pipeline is run on the GPU 13 . The last event provides the instrumentation

data to the analyses in V-Vision 14 .

Instrumentation Analytics: V-Vision provides analytics that transform

the results of instrumentation utilities into feedback and visualizations 15 :

i) SIMT Efficiency: compute the SIMT Efficiency of shaders and graphic

pipeline by reconstructing warp behaviour; ii) Divergence Characterization:

characterize control-flow, indirect-function-call and early-return divergence by

analyzing inactive threads; iii) Thread Compaction: upper-bound of thread
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compaction benefit when applied to indirect function calls based on an oracle’s

knowledge [13], [60]; iv) Indirect-Function-Call Paths: enables the study of the

SIMT efficiency of ray generation traceRay by reconstructing runtime thread

paths; v) Execution Hotspots: visualize graphics pipeline hotspots based on

dynamic instruction execution counts using program source code information;

vi) Warp and Thread Execution Traces: study work allocation on thread and

warp granularities by tracing execution; and vii) Inline Data Representation:

present data inline at the point it was captured from in GLSL source. This

chapter demonstrates the insights that are revealed by applying V-Vision to

applications that implement Vulkan ray-tracing pipeline in Section 3.3.

3.2 Instrumentation Primitives

In general, there are common problems with instrumentation utilities, such as

complicated logic to parse variable-size data and inefficient utilization of the

instrumentation buffer. This section outlines V-Vision’s primitives that mitigate

these challenges and details their operation. The instrumentation primitives

are provided by V-Vision for developers to create their own instrumentation

utilities.

1 void ThreadUpdate(uint arg1, ...) {

2 uint i = atomicAdd(buf[1], entry_size);

3 if (i + entry_size >= buf.len())

4 return;

5 buf[i + 0] = thread_work_id;

6 buf[i + 1] = instrumentation_id;

7 buf[i + 2] = arg1;

8 ...

9 buf[i + 2 + k] = <arg k>;

10 ...

11 }

Figure 3.2: GLSL representation of ThreadUpdate primitive in V-Vision. The
ThreadUpdate primitive appends an entry to the StorageBuffer, buf, for each
thread that invokes it.

Buffer Updates Primitives: The core of V-Vision’s auto-instrumentation is

ThreadUpdate, shown in Figure 3.2 using GLSL. ThreadUpdate safely writes
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an entry to the StorageBuffer, denoted as buf in the figure. Line 2 atomically

adds the number of words to write, stored in entry size, to a special location

in the StorageBuffer, buf[1].

The variable i receives the value of buf[1] before entry size is added

to it. The if statement on lines 3-4 checks whether the write will overflow

the buffer, and if it will, aborts the write. The number of words written is

updated before the function is aborted to determine how many words the

instrumentation could write. This mechanism allows V-Vision to report if

the StorageBuffer was too small, and exactly how large it should be. Line 5

writes the unique work identifier that is assigned to the thread, for example

the LaunchID of the thread in ray tracing. Line 6 writes the identifier assigned

to the instrumentation callsite that is used to lookup the instrumentation

type and entry size. Lines 7-10 represent writing the arguments passed to the

ThreadUpdate function, the exact number of which may vary. This primitive

is called ThreadUpdate because every thread that executes it will append a

new entry in the StorageBuffer.

1 void WarpUpdate(uint arg1, ...) {

2 if(subgroupElect())

3 ThreadUpdate(arg1,...);

4 }

Figure 3.3: GLSL representation of WarpUpdate primitive. The WarpUpdate
primitive appends an entry to the storage buffer for each warp that invokes it.

The next primitive provided by V-Vision, WarpUpdate, writes an entry in

the StorageBuffer for each warp that executes it. A GLSL representation of

WarpWrite is shown in Figure 3.3. The if statement on line 2 differentiates

WarpUpdate from ThreadUpdate using the GLSL builtin subgroupElect. The

builtin will return true for the lowest-numbered thread in a warp, and false for

all other threads. Thus, calling ThreadUpdate only if subgroupElect is true,

results in one entry being written to the buffer. A special case of WarpUpdate

is to compose it with the GLSL builtin subgroupBallot(true) to measure

how many threads are active. subgroupBallot(true) evaluates the predicate

true for all active threads in the warp. Thus, a bitmask is recorded that has
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the property: biti is set iff threadi is active.

Unique-Identification Primitives: The unique identification primitives in

V-Vision allow execution to be traced in control-flow, inter-procedurally and

across pipeline stages.

Unique Warp ID: GLSL provides an abstract interface that differs from

GPGPU APIs, such as CUDA, that provide a programming model that closely

matches the hardware. GLSL is designed to develop shaders in isolation that

will be connected by the compiler. Each shader type has rules for what data it

is allowed to access.

An issue in analyzing the generated instrumentation data is the lack of

attribution from the instrumentation data to the warp that created it. Two

insights can lead to the creation of a mapping to allow for correct attribution

for data created throughout the graphics pipeline: (1) every shader type has a

thread-work id that is unique to each thread and always available within its

respective shader stage; (2) any thread that will be active anywhere in a shader

module, must also be active at the shader-module entry point. Based on these

insights, V-Vision provides a primitive that generates a warp id enabling the

creation of a mapping from thread-work id to warp id.

1 void CreateWarpId() {

2 uint warp_id = 0;

3 if(subgroupElect())

4 warp_id = atomicAdd(buf[0],1);

5 warp_id =subgroupBroadcastFirst(warp_id);

6 ThreadUpdate(warp_id);

7 }

Figure 3.4: GLSL representation of V-Vision’s instrumentation primitive Cre-
ateWarpId. The primitive creates a warp id and every thread in the warp
writes it to the buffer. buf[0] is a dedicated location in the StorageBuffer for
creating warp ids.

The GLSL representation of the primitive CreateWarpId is shown in Fig-

ure 3.4. This primitive is executed by every thread in a warp. In line 2 each

thread creates a copy of warp id. The subgroupElect call in line 3 returns

true to the lowest-numbered thread in the warp and returns false to all others.
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The only thread that executes line 4 receives the current next available id,

stored in position zero of the StorageBuffer, and increments it atomically. Thus,

each warp receives a unique id. The GLSL builtin subgroupBroadcastFirst

on line 5 is a synchronization point with two distinct functions. When invoked

by the lowest-numbered thread’s value of warp id it broadcasts this value to

all other threads. When invoked with zero by all other threads, it returns the

unique warp id broadcasted by the the lowest-numbered thread. Thus, after

line 5 all the threads in the warp have the same value in their local warp id.

In line 6 each thread calls ThreadUpdate to write the value of warp id to the

StorageBuffer. ThreadUpdate also writes the thread-work id of each thread,

and thus enables the creation of a complete mapping from thread-work id to

warp id. An alternative use of this instrumentation is determining how the

driver assigns thread-work ids to warps. In a ray-tracing application, it revealed

an 4 × 8 zig-zag assignment rather than a linear assignment.

Inst Id
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Payload

Buffer Entry

Inst Id
Work 

Item Id
Payload

Buffer Entry

Words 
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⋮
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Type

⋮
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Figure 3.5: V-Vision’s layout of StorageBuffer containing runtime instrumenta-
tion data and SPIR-V metadata used to complement the runtime data.

Unique SPIR-V Operation ID: Figure 3.5 shows the organization of
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the data created by V-Vision. In the StorageBuffer 1 , Words Written 2 is

the number of words that the instrumentation primitives write when Thread-

Update or WarpUpdate are called. V-Vision reports this value to the user if

it exceeds the capacity of the StorageBuffer. The user may then rerun the

application with a larger buffer. Warp ID Count is atomically incremented by

CreateWarpId to assign each warp a unique id. Buffer entries 3 are appended

to the buffer by ThreadUpdate and WarpUpdate. The inst id value identifies

which instrumentation call site produced the data. thread-work id identifies

each thread and payload contains the customizable entry data.

V-Vision improves the utilization of the StorageBuffer by only writing

runtime data. Statically-known data, represented as SPIR-V metadata 4 can

be of two types: static entry data 5 is associated with the instrumentation

call sites using inst id ; program structure 6 records the control flow graph and

information about individual basic blocks. With millions of entries written per

frame, this distinction between static and runtime data prevents duplication in

recording and leads to efficient profiling. For example, entries in the storage

buffer have variable sizes. Instead of recording the size of the entry in the

runtime entry, this size is obtained through a lookup in the SPIR-V metadata.

Program structure data is included in instrumentation utilities on an as-needed

basis. For example, the graphics pipeline hotspot analysis needs the number of

instructions in each basic block; and tracking thread paths that lead to indirect

function calls requires the shader module CFG.

1 /* execution count = 22072 histo=32:22072*/

2 WarpUpdate(subgroupBallot(true));

3 if(gl_LaunchIDNV.z != 0){

4 /* execution count = 11036 histo=32:11036*/

5 WarpUpdate(subgroupBallot(true));

6 ...

7 }

Figure 3.6: Data captured from V-Vision’s SIMT Efficiency instrumentation
utility. Presented as inline comments in the GLSL representation of the shader.

The instrumentation callsite ids support a visualization of analyses in

V-Vision. OpLine is an SPIR-V debug instruction designed to encode file
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Frame Application 3D Obj

Hairball ChameleonRT [57] Hairball [35]
Sponza ChameleonRT [57] Sponza [35]
Sky Quake II RTX [48]
Window Quake II RTX [48]
Cornell Box RayTracingInVulkan [14]
Reflective Ball RayTracingInVulkan [14]
Robot VkRaytrace [11]

Table 3.2: Frames studied with V-Vision and the application they were captured
from. 3D Obj files were only required for Chameleon RT.

information throughout the SPIR-V module. V-Vision repurposes OpLine to

present data throughout the GLSL representation of each shader by transform-

ing line directives into GLSL comments. The result, shown in Figure 3.6, is

warp-execution trace information presented as inline comments. Lines 1 and 4

show the total number of warps that executed each instrumentation call along

with histograms of the number of active threads in each warp. This inline

presentation leverages code understanding when examining the profile data.

3.3 Ray-Tracing Insights

This section applies utilities and analyses provided by V-Vision to Vulkan

ray-tracing applications. The insights are organized into insights for hardware,

compiler, and application developers respectively.

3.3.1 Methodology

The data for each case study was collected on an NVIDIA Turing 1660Ti

with beta driver version 451.79 that supports the VK RAY TRACING KHR ex-

tension. Table 3.2 shows the frames captured in each application studied

and, where applicable, the 3D object from Casual Effects [35]. Except for

ChameleonRT, frames are captured using NSight Graphics 2020.3 C++ capture.

For ChameleonRT, NSight Graphics failed to create a capture. Instead, the

first frame of running ChameleonRT on Hairball and Sponza models was instru-

mented. For all measurements, each frame is executed 5 times. All experiments
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are combined in a list and executed once, the list is scrambled before the next

execution. This method ensures that temporary variations in the execution

environment that are not under control will increase the variability of the

measurements but not insert biases. The frames captured from Quake II RTX,

Sky and Window, each execute the ray-tracing pipeline 5 times: Primary Rays,

Direct Rays, Reflection Refraction 1, Reflection Refraction 2, Indirect Rays.

3.3.2 Hardware Insights

Figure 3.7: Impact of Thread Compaction on number of warp executions of
traceRay. Windows are composed of consecutive warps.

Thread Compaction: Thread compaction is a proposed hardware modifica-

tion to increase SIMT efficiency by repacking threads [13]. Thread compaction

may create warps composed only of inactive threads that do not need to execute.

A relevant analysis question is how much thread compaction can be used to

improve ray tracing for each frame. V-Vision provides an upper-bound on

the improvement provided by thread compaction by simulating the process of

thread compaction using data captured through instrumentation.

Figure 3.8 presents an example of the instrumentation for Thread Com-

paction, V-Vision’s instrumentation utility that tracks the dynamic thread
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1 for (num_samples < MAX_SAMPLES){

2 ray = get_ray();

3 for(num_bounces < MAX_BOUNCES){

4 // PreTraceRay for traceRay 0

5 WarpUpdate(subgroupBallot(true));

6 traceRay(ray, ..., payload);

7 if(payload.missed)

8 break;

9 }

10 // Sync Point for traceRay 0

11 WarpUpdate(subgroupBallot(true));

12 }

Figure 3.8: Pseudocode for a global-illumination style ray-generation shader
with instrumentation for Thread Compaction analysis.

paths executing traceRay. Using the instrumentation on line 5 to capture

the threads executing the traceRay call on line 6, the analysis counts how

many times each thread executes that inner-loop call. The instrumentation on

line 11 captures threads exiting the inner loop. The analysis builds a thread

path—a bit vector with a bit for each execution of traceRay—for each thread.

A one in the thread path indicates that the thread is active for that execution.

Examining all thread paths, the analysis counts the number of threads active

for each traceRay execution. The estimation for the maximum compaction is

the ceiling of the number of the number of threads active for a given execution

of traceRay divided by the warp size. A more realistic estimate limits thread

compaction to a number of consecutive warps, the number of warps included is

the compaction window.

Figure 3.7 presents the % warps compacted—rendered inactive through

receiving all inactive threads—for each frame. The majority of the warps

rendering the Robot frame process rays that hit a skybox. These warps are

very coherent and do not benefit much from compaction. Window and Sky

perform both deterministic tracing and random tracing. Warps executing

random path tracing benefit from thread compaction. The divergence in

Cornell Box, Reflective Ball, Hairball and Sponza is significantly improved with

two warps in a compaction window, increasing the window size has diminishing
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benefits. This analysis illustrates how V-Vision estimates the potential for

compaction, but it does not take into consideration work assignment or the

memory subsystem. Thread compaction requires register migration between

threads leading to additional hardware dedicated to relaying thread ids.

3.3.3 Compiler Insights

1 if (cond){

2 TraceRay(...);

3 }

4 //Pre-volta sync point

Figure 3.9: Pseudocode that triggers independent thread scheduling on
NVIDIA’s Turing architecture.

Figure 3.10: Evidence of independent thread scheduling in ray tracing. Ex-
ecution count of ray generation shader exit normalized to entry execution
count.

In the NVIDIA Turing and Volta architectures, each thread has its own

Program Counter (PC)—in earlier GPUs all threads in a warp had the same

PC. Per-thread PCs allow Independent Thread Scheduling (ITS) whereby

threads no longer execute a GPU kernel in lockstep. V-Vision’s visualizations

reveal that divergent traceRay calls, as shown in Figure 3.9, trigger ITS.
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Inactive threads in line 2 do not wait at the join point in line 4. ITS causes

warp execution to split whereby multiple PCs are executing concurrently. The

entrypoint of the graphics pipeline must be executed exactly once by each warp.

Under the effects of ITS, the exit of the graphics pipeline may be executed

multiple times. ITS can be quantified by comparing how many times the

entrypoint and exit were executed. Figure 3.10 shows the exit execution count

in gray, and entrypoint execution count in black. The exit count is normalized

relative to the entry execution count to quantify how split the warp execution

is. Control-flow divergence inherent in random path tracing triggers ITS, as

evidenced by Cornell Box, Reflective Ball, Hairball, Sponza, Window (Indirect),

and Sky (Indirect).

3.3.4 Application Insights

SIMT Efficiency

SIMT efficiency is the percentage of active threads across all basic-block

executions. It measures the utilization of a SIMD GPU hardware. The low

SIMT efficiency in ray tracing is due to unpredictable control flow, such as

rays executing different shaders, and poor work assignment due to variation in

ray bounces [10]. Existing GPU instrumentation frameworks capture SIMT

efficiency of GPGPU ray tracers. However, capturing this metric in a graphics

pipeline is challenging because of restrictions between shader stages. V-Vision’s

primitives overcome these challenges and are able to track the execution across

indirect function calls and shader modules.

Figure 3.11 reports the SIMT Efficiency of each pipeline invocation. The

frames from RayTracingInVulkan, Cornell Box and Reflective Ball exhibit

similar SIMT Efficiency despite many differences in the frames themselves. In

the Cornell Box scene, rays bounce multiple times because they are trapped

in the box. Each bounce triggers control-flow divergence. Reflective Ball has

fewer bounces but many divergent intersections based on material (reflection,

refraction, opacity) lowering the SIMT Efficiency. The impact of geometry on

SIMT efficiency is observed in Hairball and Sponza, both from ChameleonRT.
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Figure 3.11: SIMT efficiency of profiled frames.

With many thin hairs, Hairball triggers many incoherent ray bounces, thus

lowering SIMT Efficiency when compared to Sponza. While the first three

pipeline invocations of Window and Sky have high SIMT Efficiency because

their effects are deterministic, the subsequent pipeline invocations, Direct and

Indirect, perform random path tracing reducing SIMT Efficiency. Random

path tracing in Quake II RTX has higher SIMT Efficiency than the other path

tracers because it only performs 1 ray bounce per thread, compared to 3 in

VkRaytrace, 16 in RayTracingInVulkan and 5 in ChameleonRT, limiting the

divergence.

Comparing Figure 3.10 to Figure 3.11 indicates that in general low SIMT

efficiency is related to ITS. However, Robot, Sky Direct and Window Direct do

not conform to this pattern. In Robot, for some warps, all the rays hit a skybox

while, in other warps, the rays hit geometry. For the ones that hit the skybox,

there is little work to do. In warps processing rays that hit geometry there

is significant divergence that leads to ITS, resulting in the difference between

entry and exit executions in Figure 3.10. The frame execution has low SIMT

Efficiency, as shown in Figure 3.11, because the warps that do most of the work

have high divergence. ITS occurs in both the Direct and the Indirect pipelines

of Sky and Window because of a branch that tests if a surface is facing away
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from the Sun. The effect is more pronounced in the Indirect pipeline because

of a random ray bounce before the branch.

Divergence Characterization

There are three sources of divergence: i) threads that complete the ray-tracing

pipeline and remain idle while the rest of the warp continues to execute; ii) diver-

gent indirect function calls when rays hit different objects; and iii) control-flow

divergence caused by branch instructions.

1 void chit() {

2 // Shader Entrypoint

3 WarpUpdate(subgroupBallot(true));

4 }

5

6 void main() {

7 if (cond){

8 // Early Return

9 WarpUpdate(subgroupBallot(true));

10 return;

11 }

12 // Pre-traceRay

13 WarpUpdate(subgroupBallot(true));

14 traceRay(...);

15 // Post-traceRay

16 WarpUpdate(subgroupBallot(true));

17 }

Figure 3.12: Simplified GLSL representation of instrumentation to characteri-
zation factors contributing to SIMT divergence.

When a warp executes an instruction, each inactive thread accounts for

an inactive instruction-execution slot. V-Vision’s Divergence Characterization

analysis reports the total number of such slots for each divergence factor. To

do so, it uses the program basic-block data to count the number of inactive

instruction slots for each inactive thread. In the example of instrumentation

in Figure 3.12 the chit function is the closest hit shader. Each of the instru-

mentation calls in lines 3, 9, 13, and 16 record a bit mask indicating the active

threads at that execution point. Threads active in line 9 cause early-return

divergence. Instrumentation calls, such as the one in line 3, inserted in every
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shader trace the individual execution of every thread. Whenever a thread be-

comes inactive at the entry point of a given shader executed by the warp, there

is indirect-function-call divergence. The instrumentation calls in lines 13 and

16 capture the start and end of the traceRay execution trace respectively. An

inactive thread that has not been captured as either an early-return divergence

or as indirect-function-call divergence must be inactive due to control-flow

divergence.

Figure 3.13: Characterization of factors contributing to SIMT Divergence.

Figure 3.13 presents the divergence characterization. In Cornell Box, Re-

flective Ball, and Robot the control-flow divergence is caused by the varying

ray path lengths in the tracing loops and by variations in material types that

lead to different actions upon collision. Invocations of the intersection and

any-hit shaders lead to indirect-call divergence. For instance, when rays collide

with spheres in Reflective Ball, the intersection shader invocations lead to

many divergent indirect function calls. Miss and closest-hit shaders cause

much less divergence because they are invoked at most once per traceRay

call. Thus, indirect-function-call divergence is less significant for other frames.

Variable number of ray bounces account for the early-return divergence in

Hairball and Sponza. Sky and Window Reflect 1 and 2 have high early-return

divergence because of checks for collisions with reflective materials. The effect
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is less pronounced in Window Reflect 1 because part of the frame is reflective

material.

Ray-Tracing Hotspot Detection

The behaviour of the ray-tracing pipeline is complex, involving cycles and recur-

sion, and difficult to reason about. The same visual effects in the ray-tracing

pipeline may be implemented in different shader stages. Architecture-specific

complexities, such as ITS, further complicates writing shaders. Visualizing

hotspots that may be the result of geometry or other runtime factors, allows

the developer to focus their refactoring efforts.

V-Vision’s instrumentation utility, SIMT Efficiency, records a static mapping

from instrumentation callsite id to the PCs of all instructions in the basic

block. The utility also captures the number of active threads in each dynamic

basic-block execution. The number of runtime threads is added to the totals of

each instruction in the basic block to create the dynamic instruction count.

Figure 3.14: Hotspots for Reflective Ball and Robot frames, normalized to
maximum dynamic instruction execution count.

Figure 3.14 presents the dynamic instruction execution counts of each PC

normalized to the maximum for Reflective Ball and Robot. Each color in the

figure represents a shader in the ray-tracing pipeline. The intersection shader

of Reflective Ball dominates the execution of the pipeline because all objects
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in the scene are spheres. The closest-hit shader is more complicated here

than the closest-hits of other frames due to reflection and refraction effects. A

pseudorandom number generator dominates the dynamic instruction count of

Robot. The pseudorandom number generator executes 16 iterations of a loop

to create a random direction for a ray. As most rays in Robot miss geometry,

the random direction must be recomputed for nearly every ray. If the geometry

becomes larger, then more rays would collide with it and perform more bounces

before requiring a new pseudorandom number. This hotspot is a clear example

of a bottleneck that occurs in the presence of a specific scene configuration.

Warp and Thread Lifetimes

Imbalanced work allocation degrades GPU performance because threads that

complete their work first become inactive. The same principle applies to warps

that are scheduled in groups. Imbalanced thread assignment is also a problem in

path-tracing on GPGPUs [10]. The GPGPU solution of fixing work assignment

with work-coarsening does not translate to graphics where frame latency is a

key measure. Work assignment is also unpredictable because it is impacted by

the geometry of the scene.

Figure 3.15: Thread and Warp lifetimes for Hairball and Sponza, normalized to
maximum path count between both scenes. Other frames omitted for brevity.

Execution Trace is a V-Vision’s instrumentation utility that provides com-
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plete per-thread and per-warp execution traces. The lifetime of a thread or

warp is defined as the number of basic blocks executed and can be derived from

the execution traces. Figure 3.15 shows the thread and warp lifetimes for both

the Hairball and Sponza frames. A large bump centered around path length of

530 is present in Sponza but not in Hairball. This bump is caused by Sponza

being an enclosed space, trapping rays into a higher number of consecutive

bounces. Rays that bounce off of Hairball’s geometry and then miss, account

for the higher incidence of path lengths in the range from 100 to 200 basic

blocks. The wider range of thread path lengths causes a wider range of warp

path lengths in Hairball. In comparison, Sponza has a very compressed range

of warp paths due to being an enclosed space. Both scenes have a bump where

rays are traced up to the maximum bounce depth. These results show that

geometry has a strong effect on work assignment at the thread and warp level.

Ray Generation Thread Paths

The ray-generation shader generates rays and invokes traceRay to perform

traversal and intersection, known to be expensive and to benefit from hardware

acceleration [7]. Variable number of bounces and conditional calls based on

material type influence the behaviour of the ray-tracing pipeline [10]. Un-

derstanding the effect of material type and geometry offers opportunities for

optimizations, such as value specialization.

The thread paths generated by the Thread-Compaction utility offer insights

into application design. Each thread receives a thread path, a bitmask repre-

senting the runtime invocations of traceRay. The number of unique bitmasks

indicates the potential for divergence in executing expensive traceRay calls.

Accumulating the frequencies of thread paths reveals threads’ proclivities for

number of bounces or visual effects over their complete execution.

Table 3.3 shows the total number of unique thread-paths and the top 3

frequencies of individual paths. The thread paths that miss geometry are

very significant when present. The frequencies 49.11% in Cornell Box, 16.1%

in Reflective Ball, and 89.79% in Robot are due to rays missing geometry.

Reflective Ball has many different material types and thus executes many
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Frame Path
Count

1st High-
est

2nd High-
est

3rd High-
est

Cornell Box 126 49.11% 2.93% 0.99%
Reflective
Ball

129 26.49% 16.1% 5.27%

Robot 51 89.79% 4.93% 2.61%
Hairball 10 27.64% 17.34% 16.16%
Sponza 9 45.74% 14.91% 12.57%
Sky Primary 1 100.0% 0 0
Sky Reflect 1 2 98.67% 1.33% 0
Sky Reflect 2 2 99.99% 0.01% 0
Sky Direct 4 47.09% 43.89% 5.39%
Sky Indirect 4 53.72% 39.21% 3.63%
Window Pri-
mary

1 100.0% 0 0

Window Re-
flect 1

2 73.8% 26.2% 0

Window Re-
flect 2

2 99.31% 0.69% 0

Window Di-
rect

4 71.07% 26.43% 1.57%

Window Indi-
rect

4 55.29% 41.41% 1.73%

Table 3.3: Unique path count and top 3 frequencies of individual paths generated
by Thread Compaction utility.
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thread paths. For instance, reflection requires a different ray than refraction

while opacity does not need any rays. Excluding the rays that miss, variable

ray bounce lengths cause a high path count of 126 for Cornell Box, each

path having a low frequency. The Reflect 1 pipeline invocation in Window

differs from Reflect 1 in Sky due to a conditional Return statement that quits

when the object collided with is not reflective. The Window frame contains a

section of floor and wall that accounts for the 26% of threads taking a different

path. Sky has no reflective material so all threads take the Return statement.

ChameleonRT has fewer unique paths due to not using different material types

and tracing fewer rays per thread than RayTracingInVulkan.

The paths leading to traceRay calls are influenced by application and

scene design. Implementing complicated visual effects and geometry increases

the variation of runtime behaviour. Separating ray tracing into different

pipeline invocations, as in the case of Quake II RTX, reduces variance. When

present, the skybox causes threads to take the same short path and creates an

opportunity to introduce better work balancing.

3.4 The Cost of Instrumentation

Architecture-specific data, such as register allocation, cannot be captured using

SPIR-V instrumentation because SPIR-V is not bound to an architecture. Con-

versely, SPIR-V instrumentation has the advantage that it is supported across

architectures and vendors. SPIR-V instrumentation may impact performance

due to the intangible effect it has on downstream compilers. However, manual

high-level instrumentation is successful in improving performance in production

games, so there is value in timing and performance data [34].

Figure 3.16 presents the frame latency and memory overheads of the respec-

tive utilities to produce the results in Section 3.3. Each utility may generate

multiple outputs. For example, SIMT Efficiency creates the dynamic instruc-

tion count, graphics pipeline hotspots visualization, and full SIMT Efficiency

analysis. The overheads range from 14× to 1502× increased latency over

no instrumentation. In the worst case of SIMT efficiency for Reflective Ball,
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Figure 3.16: Top: Overhead of data collection and analysis for each mode.
Bottom: Device data overhead for each mode.
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the complete execution time is 100 seconds. This performance degradation is

reasonable because program behaviour cannot otherwise be captured. Instru-

mentation and analysis happen offline during design of architecture or code

generation solutions, therefore this execution time is manageable. Figure 3.16

also illustrates that analysis contributes significantly more overhead than the

instrumentation itself. Execution Trace and SIMT Efficiency collect the same

amount of data but have vastly different overheads. The most data produced

by the instrumentation is 566 MB which is 9.4% of the available memory of

the 1660Ti.

3.5 Conclusion

This chapter presented V-Vision, a framework for performing graphics ap-

plications profiling through automatic instrumentation without requiring the

application source. V-Vision contributes SPIR-V instrumentation primitives

that are used to construct instrumentation utilities. The instrumentation

utilities produce static and dynamic data which are both consumed by analyses

that return meaningful application performance data. V-Vision’s execution

trace assisted in revealing architecture specific behaviour, such as NVIDIA’s

independent thread scheduling, when executing applications implementing the

recent ray-tracing extension to Vulkan. V-Vision is also capable of estimating

the upper-bound benefit of hardware changes, such as performing thread com-

paction, for ray-tracing applications. In this chapter, we focus on control-flow

divergence issues that plague ray tracing. However, V-Vision is not limited to

studying control-flow as the instruction primitives readily map to applications

such as value and memory-access divergence. V-Vision’s compatibility with any

Vulkan application will allow developers to glean new insights, and create their

own utilities and analyses using the framework presented. As we demonstrate

in the next chapter, the V-Vision framework is flexible and can form the basis

for gathering high-level insights into ray-tracing application design in addition

to the low-level insights outlined in this chapter.
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Chapter 4

RayScope: Interactive
Visualizations of Vulkan
Ray-Tracing Applications Using
Automatic and
Application-Agnostic
Instrumentation

Real-time ray tracing is experiencing significant momentum in several markets,

including gaming consoles, high-end desktops, and mobile devices [18]. This

momentum is driven by hardware acceleration and first-class support in graphics

APIs [19], [36], and manifests in the ever increasing adoption of real-time ray

tracing in the gaming industry [18].

Despite recent hardware acceleration and Application Programming Inter-

face (API) standardization, real-time ray tracing still imposes more challenges

in functionality, performance, and energy efficiency than traditional rendering

using rasterization. Developers missing important flags that are available

in the Vulkan API is a common issue stemming from the API’s complexity.

However, aside from API complexity, implementing ray-tracing applications

is, in itself, a sophisticated process with a large surface area for bugs and

performance pitfalls [15]. Ray-tracing applications must interact with geometry,

often generated by a third-party. Therefore, the interaction of the runtime

ray-tracing implementation and scene geometry is often unpredictable. For
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Figure 4.1: Left: The rendering of an opaque robot holding a transparent
vial by VkRaytrace, a Vulkan ray-tracing application. Top Right: A point-
cloud visualization of all any-hit shaders executed by the application, enabled
by RayScope, reveals that all parts of the opaque robot are being tested for
transparency—this is an implementation oversight. Any-hit shaders selectively
ignore ray intersection and are used to implement transparency in VkRaytrace.
Bottom Right: After applying RayScope’s performance recommendation to
mark parts of the robot as opaque, the RayScope’s point-cloud visualization
reveals that executions of any-hit shader are reduced by 96.8% when they are
only executed on the transparent vial.
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example, geometry may have imperceptible holes that allow rays to escape and

incorrectly affect the lighting [9]. Geometry may also trap rays in small dark

crevices where ray bounces do not improve the final rendered image. Vulkan

ray-tracing applications must also specify the minimum allowable distance for

a ray intersection. There is little guidance on how to choose this value but

improperly setting it leads to unnecessary computations. Section 4.3 shows that

these issues can be detected in Vulkan ray-tracing applications and visualized

using RayScope.

Figure 4.1 shows an example of a hidden ray-tracing performance pitfall. The

application renders a scene containing an opaque robot holding a transparent

test tube. The visually correct scene is rendered using Vulkan ray tracing [19].

However, the picture in the top right of Figure 4.1 shows that rays must test

every pixel of the robot’s opaque body for transparency, leading to unnecessary

computations. To avoid these computations the Vulkan ray-tracing specification

provides a flag to label opaque objects. The picture on the bottom right of

Figure 4.1 shows that 96.8% of the run-time transparency tests can be eliminated

by adding the opaqueness flag to the robot’s body.

Many tools, such as RenderDoc [21], NSight Graphics [43], Intel GPA [20],

Microsoft Pix [37], and Vulkan Vision [49], are available for visualizing the

incremental rendering process in modern rasterization-centric graphics APIs

. These tools typically help in isolating each draw call within a frame and in

isolating the effect of vertex and fragment stages using the transform feedback

process [21]. Some of these tools have added recent features that help in

visualizing the impact of scene geometry in modern ray-tracing APIs [37], [43].

However, to the best of our knowledge, there is no support for visualizing

ray paths in modern ray-tracing APIs, a non-trivial process as shown in this

chapter.

This chapter addresses the following problem: Is there useful application-

agnostic ray-tracing information available in Vulkan, how should the information

be captured, and how should the data be represented to assist developers in

debugging, profiling and design tasks?

This chapter presents RayScope; the first tool that uses the Vulkan ray-
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tracing API for automatic ray visualization in ray-tracing applications. RayScope

is an open-source platform-independent tool with a workflow that automatically

captures detailed ray-tracing information and features an interactive visualizer

to display this information. RayScope’s visualizer accurately represents proce-

dural geometry using runtime execution information that prior state-of-the-art

tools only approximate.

RayScope combines compiler instrumentation of the shader code with

instrumentation of Vulkan API calls to automatically and transparently collect

ray-tracing information from a Vulkan application. This instrumentation is

performed using a Vulkan validation layer that intercepts and modifies Vulkan

API calls from the application before they reach the driver.

We characterize the application-independent geometry information, ray

information, and ray-geometry interaction information in the Vulkan API.

RayScope automatically collects this ray-tracing information using Vulkan API

and shader instrumentation. RayScope emits the ray and geometry data as

human-readable files to encourage use with other visualization tools.

RayScope produces a human-readable ray-tracing execution file containing

each ray’s start and end location in the scene as well as intermediate shader

executions. The geometry and execution information is fed into RayScope’s

interactive visualizer, implemented with the Unity game engine [56]. The

visualizer also analyzes the ray information to present features of interest, such

as the ray that bounced most, to developers. RayScope’s visualizer, shader

instrumentation, and Vulkan API instrumentation are open source and the

ray-tracing execution file is human readable to encourage custom integrations

with games or game engines.

In addition to visualization, RayScope’s instrumentation provides sufficient

data to detect common issues in Vulkan ray-tracing applications. Some issues

stem from a poor understanding of the sophisticated Vulkan API and others

are pathological to ray tracing, such as rays becoming trapped in geometry

configurations.

Through case studies, we demonstrate that RayScope is effective in assist-

ing debugging and supporting application-design tasks. These case studies
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demonstrate that RayScope produces visualizations that allow long-standing

bugs to be quickly identified; provides effective performance recommendations

resulting in tangible performance benefits; and allows emergent issues with

well-studied models, such as Sponza, to be identified.

The rest of this Chapter is organized as follows. Section 4.1 discusses

our characterization of application-independent ray-tracing information and

the modified Vulkan Validation Layer used by RayScope to automatically

capture it. Section 4.2 presents RayScope’s operation and interactive visualizer.

Section 4.3 demonstrates how RayScope can be applied for debugging and

application design tasks through case studies of Vulkan ray-tracing applications.

Conclusions are presented in section 4.4.

4.1 Ray-Tracing Information Capture in

RayScope

This section presents a characterization of application-agnostic ray-tracing

information in Vulkan and discusses RayScope’s mechanisms to overcome

challenges in collecting the data outlined in the characterization. RayScope’s

data collection is automated and requires no changes to the application’s source

code or recompilation.

Figure 4.2 shows our characterization of Vulkan’s ray-tracing specification.

The blue box on the left contains the geometry data that the application

must initialize before ray-tracing can execute. The geometry information is

derived from the specification of the Vulkan acceleration structure. Section 4.1.1

discusses the difficulties of capturing fine-grained geometry information and

RayScope’s solutions to overcome them. The orange box on the right contains

the ray-tracing-execution information that is implicitly generated when the GPU

executes the ray tracing binary. This information is derived from the Vulkan

ray-tracing pipeline and can be further characterized into conditional geometry

and ray behaviour events. Conditional geometry events determine the validity

of ray intersections with geometry, based on a runtime condition. Ray behaviour

events receive the result of the ray traversal and determine whether the ray
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Figure 4.2: Characterization of application-agnostic information available
implicitly in the Vulkan ray-tracing API. We divide the ray-tracing information
into two main categories: raw geometry data (blue) and runtime execution
data (orange). To be able to effectively visualize the behaviour of arbitrary
Vulkan applications, RayScope must gather all the data in both trees.

should end or be traced again. Section 4.1.2 specifies RayScope’s mechanism

to identify and capture the events at application runtime. By gathering all the

information shown in Figure 4.2, RayScope captures a complete view of the

application’s rays, geometries, and ray-geometry interactions.

4.1.1 Geometry-Data Capture

To collect scene geometry RayScope must follow the flow of geometry data from

creation to usage through Vulkan API calls. RayScope identifies the geometry

buffers used to build the AS and infers the type of data that they contain,

either triangular or axis-aligned bounding box (AABB). Vulkan applications

copy geometry data between buffers and consequently RayScope must track

the application’s geometry data through copy operations.

RayScope captures all AS information because the AS defines the geometry

side of ray-geometry interactions. RayScope’s instrumentation outputs each

BLAS as a human-readable OBJ file [29]. The TLAS is output as a text

file containing the transform matrices and BLAS file name of each geometry

instance.

Capture Mechanism: Figure 4.3 shows the instrumentation needed to
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Figure 4.3: RayScope’s graphics instrumentation for capturing geometry in-
stance data and geometry data.

capture geometry data. The following instrumentation is also performed

by RayScope, but omitted from the figure for clarity: tracking the creation

and destruction of buffers; and tracking device addresses for buffers, memory

allocations, and acceleration structures. The Vulkan API calls referenced in

this section are defined in greater detail in Table 2.1.

The device memory is populated with host data using vkMapMemory that

generates a host-accessible pointer. The application may call vkUnmapMemory

to release the host-accessible pointer. Shadow copies of device memory are

created immediately before the application calls vkUnmapMemory because the

memory must be populated.

When vkBindBufferMemory is called, RayScope creates a shadow copy of

the buffer as a subset of the shadow memory region. If vkCmdCopyBuffer is

called, RayScope creates another shadow buffer entry for the destination buffer.

RayScope uses the contents of the shadow buffers to reconstruct the geometry

and the geometry instances when vkCmdBuildAccelerationStructuresKHR

is called.

4.1.2 Ray-Tracing Execution Capture

To reconstruct a detailed view of ray-tracing in an application-agnostic manner,

RayScope must leverage information present in the runtime execution of the

ray-tracing pipeline. To provide developers with recommendations of hardware
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Event Name Built-
in
Vari-
able

Built-
in
Func-
tion

Shader
Stage

Trace X
Trace Miss-Only X
Miss X
Closest Hit X X
Implicit Hit X
Any Hit X X
Intersection X
Ignore Intersection X

Table 4.1: Characterization of ray events that are captured from the Vulkan ray-
tracing pipeline and the application-independent information used to generate
them. The column built-in variable, built-in function, and shader stage receive
a checkmark if they are used to generate the event.

utilization, RayScope must also capture hardware-level information in the

execution-trace. To accomplish both of these tasks, RayScope inserts shader

instrumentation to record the values of key variables and the executions of key

shaders.

The shaders in the Vulkan ray-tracing pipeline define how rays and geometry

behave. The shader stages in the ray-tracing pipeline receive ray-tracing

information through builtin variables. For example, the any-hit and closest-hit

shaders receive the distance of the hit from the ray origin in the glHitTEXT

builtin variable. The shader stages themselves encode information about the

execution. For example, the miss shader is executed if a ray misses geometry.

The properties of shader stages and builtins are application independent because

they are specified in the Vulkan API.

Table 4.1 shows the ray-tracing execution events that RayScope captures.

The table also shows the information, given by the Vulkan API, that is used to

generate the event. The events can be classified into two types: conditional

geometry and ray behaviour, as shown in Figure 4.2. The Trace, Trace-Miss-

Only, Miss, Closest-Hit, and Implicit-Hit events completely specify ray start
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points and ray end points. The Any-Hit event records all hits that were

considered for validity. The Intersection event records all hits with application-

specified bounding boxes. The Ignore-Intersection event records all hits that

were ignored. These events allow RayScope to reconstruct the geometry and

ray behaviour in an application-agnostic manner.

RayScope’s shader instrumentation records the assignment of threads to

subgroups using builtin subgroup functions. Each ray-tracing execution event

records the thread that generated that execution. Using this information,

RayScope can reconstruct thread and subgroup behaviour. RayScope uses the

thread and subgroup behaviour information for visualization and automatic

recommendations.

1 0:410:trace -0.199989 -0.500232 5.499992,

2 chit -6.022733 3.282307 -1.041899,

3 trace -6.022733 3.282307 -1.041899,

4 chit -9.976090 -1.805820 -1.237896

Figure 4.4: Formatted ray-path from RayScope’s ray-tracing execution file.
The first two values 0 and 410 are the thread id and subgroup id respectively.
Thereafter RayScope reports ray events and their positions. This example
contains 2 rays’ origin and closest-hit positions.

Figure 4.4 shows an excerpt of RayScope’s ray-tracing execution information

file. The complete file contains the runtime information for all threads and

all ray-events from the pipeline execution. The file is designed to be human-

readable to aid in debugging and to encourage custom integrations with other

visualization tools.

Capture Mechanism: RayScope creates an instrumentation pass using

the framework Vulkan Vision [49] to capture detailed thread-level execution

data. RayScope’s shader instrumentation pass uses the following mechanisms

for generating the ray-tracing pipeline events:

1. Trace: This event records the values of the ray origin, ray direction,

and Tmax arguments of traceRayEXT. The data is recorded immediately

before traceRayEXT executes.
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2. Trace-Miss-Only: This event is the same as Trace but only records

data for traceRayEXT calls where the flag glRayFlagsSkipClosestHit-

ShaderEXT is present. This flag indicates that the closest-hit shader

should not be executed for the ray. Therefore, a call to traceRayEXT

either executes the miss shader or executes nothing. RayScope classifies

this type of ray as a miss-only ray because it tests if there was a miss.

3. Miss: This event records that the miss shader executed.

4. Closest Hit: This event records the value of gl HitTEXT and gl -

InstanceID when the closest-hit shader is executed.

5. Implicit Hit: This event is recorded when there was no Miss event for

a Trace-Miss-Only event.

6. Any Hit: This event records gl HitTEXT and gl InstanceID when the

any-hit shader is executed.

7. Intersection: This event records gl HitTEXT when reportIntersec-

tionEXT is executed.

8. Ignore Intersection: This event records that ignoreIntersectionEXT

executed.

4.1.3 Validation Layer

Vulkan Vision provides a shader instrumentation framework for Vulkan through

a validation layer [49]. RayScope implements a new instrumentation pass and

a new analysis using Vulkan Vision to capture ray-tracing execution events.

Moreover, as discussed, RayScope instruments the Vulkan API functions that

are responsible for building ray-tracing geometry.

4.2 RayScope Operation

This section details the operation and the user interface of RayScope’s inter-

active visualizer shown in Figure 4.5. RayScope instruments the API calls
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Figure 4.5: Operation of RayScope. RayScope uses instrumentation to capture
geometry and ray-tracing execution data. RayScope’s interactive visualizer
analyzes the data to produce visualization and recommendations. The dotted
lines indicate that RayScope’s instrumentation data can be integrated with
other visualization tools or interpreted by the developer directly.

and shaders to intercepts API calls generated by a Vulkan application. This

instrumentation produces the geometry instance data and the geometry data.

The shader instrumentation produces the runtime ray-tracing execution data.

RayScope’s visualizer automatically analyzes the raw geometry and execution

data and converts it to a visual form. A developer may interact with RayScope’s

visualizer to understand and improve their ray-tracing implementation. A de-

veloper may also directly inspect RayScope’s instrumentation data or interact

with another visualization using RayScope’s data.

RayScope’s visualizer is implemented in Unity [56] because Unity offers

high-level constructs for visualization and interactivity. This implementation

leverages the builtin rendering and UI features with moderate customization

to create RayScope’s visualizer. Another benefit of Unity is the editor view.

The editor view allows geometry and rays to be recolored, selectively enabled,

disabled, or serialized at runtime. This level of control allows new features to

be quickly prototyped and one-off issues to be investigated without writing any
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Figure 4.6: Screenshot of RayScope’s visualizer with VkRaytrace’s renderered
image overlaid in the bottom right. The image shows the VkRaytrace scene with
geometry (gray), closest-hit point cloud (purple), and ray-pick visualization
enabled. The yellow ray is a primary ray from the camera. The red ray is a
miss-only ray that misses. The green ray is a secondary ray that misses. The
purple rectangle projected onto the Robot and its backdrop are the points in the
point cloud corresponding to primary rays from the camera. The UI controls
for interacting with the visualizer are around the borders of the screen. The
legend, shown at the bottom, is dynamically generated based on user-chosen
colours.
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code. Unity has first-class support for loading and viewing 3D objects. We

used this feature to validate RayScope’s geometry reconstruction.

4.2.1 Graphical User Interface

Graphics applications are inherently visual and lend themselves to being

analyzed visually [15]. RayScope’s visualizer shows information that was

previously unavailable to developers, such as ray paths or shader executions.

RayScope’s visualizer offers high-level features based on synthesizing the raw

geometry and the ray data, such as allowing a developer to pick a ray path by

thread id, in addition to visualizing geometry and ray paths. A developer may

interact with these features through the UI of RayScope’s visualizer.

Figure 4.6 shows a screenshot of RayScope’s visualizer. The image in

the bottom right of Figure 4.6 shows the rendered image of the application,

VkRaytrace [11] that is being visualized. The visualizer is presenting the

geometry of a Vulkan ray-tracing application overlaid with ray and point

cloud information. The geometry is a robot holding a vial and a rounded

backdrop coloured as shades of gray. The point cloud, showing the locations of

all closest-hit shader execution locations, is colored purple. The point cloud

shows a rectangle projected on the robot and its backdrop. This rectangle

corresponds to the area hit by primary rays from the camera. The rectangle

can be understood as showing a light source at the position of the camera

analogous to shadow mapping [16]. The rest of the point cloud shows the other

closest-hit executions resulting from bouncing rays. The visualized rays are

computing the color for the pixel at x = 931 and y = 153 as selected using

the pick feature. The yellow ray begins on the right and passes behind the

robot before colliding with the backdrop. This collision spawns a secondary

ray (green) and miss-only ray (red).

Geometry

Visualizing the geometry on its own is insufficient for understanding the runtime

behaviour of the ray-tracing pipeline. However, showing both rays and geometry

encapsulates the runtime behaviour. RayScope’s visualizer offers the ability to
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render the geometry data from a Vulkan application. This visualization lets a

developer clearly see the geometry interaction with rays.

RayScope’s visualizer uses a multithreaded implementation to load the scene

geometry. The visualizer launches a thread to load the TLAS file containing

the geometry instances. Each geometry instance has a transform matrix and

a reference to a TLAS file. After determining all geometry instances, the

visualizer launches a thread for each unique TLAS file. A thread loading a

TLAS file constructs a mesh representing the triangular geometry and the

bounding boxes from the original Vulkan application. After all meshes are

created, Unity GameObjects are instantiated for each TLAS instance. Finally,

the GameObjects are positioned according to the transform matrix from the

geometry-instance information.

A benefit of maintaining the TLAS and BLAS information in the visualizer

is that instances referencing the same TLAS can share the same mesh and

thus reduce the amount of data required by the GPU. Another benefit is that

RayScope can graphically represent information about the TLAS as shown

in Section 4.3. Finally, since RayScope analyses the OBJ file format [29] for

the TLAS file, it is easy to examine each TLAS individually. Through this

analysis, we found several instances of applications using copies of the same

geometry that could be deduplicated using instancing.

Effectively rendering the geometry instances requires the values of the

surface normals. However, the normals of the geometry cannot be automatically

deduced from the Vulkan specification. Some applications define custom vertex

normals and mix triangle winding directions within a single BLAS. Therefore,

there is no reliable way to determine the surface normal using instrumentation.

RayScope generates new normals for the triangles in the geometry based

on a fixed winding direction. This normal generation results in normals that

may be flipped causing issues with Unity’s culling and lighting. RayScope uses

a custom shader that disables back-face culling to ensure that no triangles are

incorrectly culled. The shader also performs flat shading because lighting based

on a flipped normal results in poor visualizations. Flat shading is acceptable

because the goal of the visualizer is to present data and not visual attractiveness.
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Disabling back-face culling may impair performance but in our experience there

was no noticeable degradation.

Ray Paths

Vulkan ray-tracing applications define how rays behave in shaders. For example,

shaders define the number of times that a ray bounces and the direction of

the ray for each bounce. These shaders are executed hundreds of thousands of

times per pipeline execution. Vulkan developers have little recourse other than

trial and error to implement ray interactions correctly. To solve this problem,

RayScope’s visualizer generates a comprehensive set of ray paths for all rays

traced for a single thread.

RayScope’s visualizer loads the ray-event data asynchronously to avoid

stalling the main thread. The visualizer constructs a mapping from thread id to

a list of ray events. The visualizer also constructs a mapping from subgroup id

to a list of thread ids. This information forms the basis for several visualizations

and recommendations.

To render ray paths, RayScope’s visualizer has two modes for visualizing

rays: constructing a mesh with line topology, or using Unity’s LineRenderer.

The LineRenderer component has a very significant overhead when scaled to

millions of rays but has more advanced visualization capabilities, such as a

narrowing shape indicating ray direction. Therefore, we use the LineRenderer

when the number of rays to visualize is low and the mesh when the ray count

is high. RayScope’s visualizer can show arbitrary rays, allowing visualizations

such as all primary rays or all miss-only rays.

Another benefit of constructing a 3D mesh of the rays is that the ray

visualization intuitively composes with geometry visualization. For example, if

instead the rays were rendered in screen space, rays would occlude geometry

despite being behind it in the original Vulkan application.

Point Cloud

Vulkan geometry can be composed either of triangles or procedural objects.

RayScope visualizes triangle-based geometry using meshes as described above.
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Figure 4.7: Left: RayScope’s visualization of procedural objects from ap-
plication RayTracingInVulkan. The visualization combines bounding box
visualization (gray boxes), closest-hit point cloud (purple), and ray paths
(green + yellow ray). The boxes visualize the application-provided bounding
box for each procedural object in the scene. The point cloud visualization is
crucial to observe the true shape of the object. Otherwise the wireframe boxes
would be the only visualization of procedural objects. Right: Screenshot of
application’s rendered image.

This approach does not work for procedural objects that are defined at runtime

by executing intersection shaders. To visualize procedural objects, RayScope

offers a point-cloud visualization. Figure 4.7 shows RayScope’s visualization

of procedurally defined spheres and their application-defined bounding boxes.

The point-cloud visualization shows the spherical shape of the object which is

only known at application runtime. Visualizing the bounding boxes also allows

developers to check if they are sized correctly to minimize wasteful intersection

shader executions.

For reference, Figure 4.8 shows the prior state-of-the-art visualizations of

procedural objects in NSight Graphics [43] and PIX [37]. The images were

captured from a DirectX12 [36] application because NSight Graphics crashes

when used with Vulkan applications developed on the up-to-date Khronos

ray-tracing extension and PIX does not support Vulkan. RayScope could be

applied to DirectX ray-tracing applications once the DXVK [51] compatibility

project supports DirectX12 and ray-tracing. In both NSight Graphics and PIX,

the visualization renders a rectangular prism with the same dimensions and
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Figure 4.8: PIX and NSight Graphics visualization of procedural objects. The
objects’ true shapes are hidden in the visualization.

position as the AABBs of the application’s object. However, this visualization

conceals the true shape of the objects and obfuscates how rays would interact

with them. Therefore, neither visualization allows the developer to check if

the AABB was sized correctly, however such a check is possible in RayScope.

In contrast, RayScope shows the AABB as a wireframe and the shape of

procedural objects hit by rays using the point-cloud visualization.

The point-cloud visualizer is useful for more than just visualizing procedural

objects. RayScope’s visualizer provides control to the user to select the types of

points to be included in the point cloud. The example in Figure 4.1 illustrates

that the point cloud of any-hit executions can be used to evaluate if objects

are correctly being marked as opaque. Generally, RayScope’s point-cloud

visualization shows implicit aspects of the ray-tracing pipeline, such as shader

executions, in 3D.

RayScope’s point-cloud visualization also shows information that is not

visualized in a ray path. For example, the traceRay operation requires that all

candidate hits be established to determine the closest hit. If bounding boxes

of procedural objects overlap, multiple intersection shader executions may be

required to determine all candidate hits. Comparing RayScope’s point cloud

visualization of intersection events to closest-hit events visually shows how

many wasted intersection shader executions there were. In general, RayScope’s

point cloud visualization is key to visualizing dynamic geometry interactions.

RayScope generates a point cloud by scanning the ray-tracing information

file for all events in a user-defined set of ray-event types. A mesh with point
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topology is generated with a point for every ray event. If the user changes the

set of ray-event types, a new mesh is generated according to the new set. Both

Figure 4.6 and Figure 4.7 show that the point-cloud visualization, geometry

visualization, and ray visualization can be combined.

Pick Coordinate

Rendering issues may manifest as visual artifacts in a subset of pixels. Currently,

debugging these issues requires invasive changes to the application or a process

of trial and error. In these cases, it is extremely helpful to understand the

precise behaviour of the threads computing the results for those pixels.

RayScope’s visualizer allows a user to select a thread coordinate using

sliders for the x and y value. The visualizer shows the ray paths of the user-

selected thread. Typically, the thread coordinate corresponds directly to the

pixel coordinate. This feature is designed to enable developers to debug pixels

with incorrect colour values. Additionally, the feature may be used by users to

better understand how the ray-tracing algorithm proceeds for certain threads

and pixels.

Bisecting Rays

Rendering issues may not manifest as visual artifacts. This is emphasized in ray

tracing due to the widespread adoption of denoising [54]. Therefore, to ensure

that rays are being utilized effectively, it is necessary to have a visualization

other than the final image. RayScope offers the ability to view all ray paths

and then bisect them to detect suboptimal ray behaviour.

A user may display all ray paths for a Vulkan ray-tracing pipeline invocation

by pressing Start. RayScope’s visualizer allows a user to choose Yes if they

see the ray of interest or No otherwise. A user can identify an issue by viewing

all ray paths and then narrow down the issue to a single ray path in seconds.

The id of the offending thread is reported allowing a more detailed inspection

of the thread in the ray file.
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4.2.2 Recommendations

RayScope’s ray-tracing execution data file contains all rays, often millions,

generated for a single pipeline invocation. This amount of data is difficult to

sift through manually but contains rich execution information. RayScope’s

visualizer analyzes this data and allows developers to view recommended

features of interests through the UI.

Opaque Flags: Any-hit shaders are not executed for ray intersections

with opaque objects. RayScope automatically recommends that the developer

should consider marking geometry as opaque if RayScope detects that the

any-hit never ignored a collision. In that case, marking the object as opaque

would not change the closest hit. The example in Figure 4.1 demonstrates the

effect of implementing this recommendation. Section 4.3 discusses this feature

of RayScope in more detail.

Work Hotspots: RayScope’s visualizer recommends the threads with

the most ray-tracing work to the user. This feature is designed to assist

in understanding the ray-tracing algorithm’s dynamic interaction with scene

geometry. For example, rays can become trapped and bounce many times in a

small space with little overall colour contribution. RayScope’s visualizer offers

a button to quickly cycle through rays with maximum work.

Poor Hardware Utilization: RayScope’s visualizer highlights the sub-

group that has the lowest average of active threads for each ray-tracing operation.

This feature highlights aspects of the scene and ray-tracing pipeline that result

in poor hardware utilization of the GPU. In this case, the developer could

consider switching to a wavefront ray tracer [27] or limit the bounce count to

improve the hardware utilization. RayScope’s visualizer also has a button to

cycle between divergent subgroups.

4.3 Case Studies

This section illustrates, through the study of four Vulkan ray-tracing applica-

tions shown in Table 4.2, how RayScope effectively assists both debugging and

application design tasks. Unless otherwise specified, the data was collected on
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Application 3D Obj Issue Types Discovered

ChameleonRT [57] Sponza [35] 2
RayTracingInVulkan [14] 2
VkRaytrace [11] 1
PBRVulkan [62] 2

Table 4.2: Applications studied with RayScope. Additional 3D models were
only required for ChameleonRT. RayScope aided in discovering different types
of issues in all applications.

an NVIDIA RTX 3080 with driver version 461.40.

Bugs in ray-tracing applications may arise from the complexities of the

ray-tracing or of the Vulkan specification. RayScope’s visualizations allow a

developer to observe the execution of the ray-tracing pipeline visually and can

be of great assistance in discovering unknown bugs or investigating known ones.

The automatic instrumentation in RayScope enables developers with little or

no application expertise to find and investigate bugs.

The geometry in a scene has a large impact on the runtime behaviour of the

ray-tracing implementation [9], [49]. It is difficult to detect poor ray-geometry

interactions, such as trapped rays, without an execution trace. RayScope’s

visualizations can aid in designing scenes that are ray-tracing friendly by

eliding wasteful rays. For example, the visualizations can highlight sections of

the geometry allowing rays to leak out, waste computation, and potentially

cause visual artifacts. The visualizations of the patched geometry also confirm

that the fix was successful. In addition to detecting poor ray behaviour,

RayScope also detects poor hardware utilization in the application. RayScope’s

recommendations highlight issues, such as ray incoherence, that were previously

challenging for developers to detect and investigate. The remainder of this

section details specific examples of RayScope assisting in finding bugs, poor

ray-geometry interactions, and application design issues.
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4.3.1 Path-Tracer Bug

Bugs in renderers that do not manifest visually degrade performance and

can remain undiscovered for a long time. Gribble et al. found an unknown

bug causing performance degradation in a CPU path tracer [15]. RayScope’s

visualizations facilitated the discovery of an analogous bug in a Vulkan path-

tracing application PBRVulkan [62]. The following discussion of this bug

highlights that ray tracing is difficult to implement correctly independent of

the tracer.

Figure 4.9: Top Left: RayScope’s visualization of PBRVulkan’s default path-
tracing implementation. The yellow ray is generated from the camera. The
green ray is the secondary ray incorrectly generated from the back-face of the
box. Top Right: RayScope’s visualization of PBRVulkan after fixing a bug
causing rays to be generated from the back faces of triangles. RayScope’s
visualization shows that the green ray is no longer traced. Bottom Left:
Pseudocode for our patch where our addition is outlined with a red box. The
if statement terminates rays before they can be generated from the back faces
of triangles. Bottom Right: Rendered image of PBRVulkan.

Figure 4.9 shows RayScope’s visualization of PBRVulkan’s path-tracing

implementation before and after fixing a bug that caused rays to be generated
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from the back faces of triangles. Conceptually, this bug is equivalent to light

passing through opaque objects. This bug did not result in any visual artifacts,

afflicted all scenes, and has been present in PBRVulkan since its inception. It

is likely that this bug would have remained undiscovered without RayScope’s

visualization.

Figure 4.9 shows the visualizations that led to the discovery and fixing

of the bug in PBRVulkan. The scene is enclosed by 5 faces of an opaque

box 1©. Visualizing all rays reveals that rays escaped through the solid faces

of the box. This is counterintuitive because, if implemented correctly, all rays

would bounce within the box and only escape through the open face. Rays

generated from the back face of the box are clearly incorrect in this scene as

they can never hit another object or light source. Bisecting the rays shows

a single ray that exhibits the issue 2©. This ray hit one of the faces of the

box, and the next bounce is issued from the back-face of the triangle. The

issue manifests as an incorrect direction of secondary ray bounces. Adding a

check 3©—highlighted with a red box—that breaks out of the ray-bounce loop

when the dot product of ray direction and the normal is negative fixes the issue.

RayScope’s visualization of the same ray shows the issue no longer occurs after

the successful fix 4©. 3.3% of all rays traced for the stormtrooper scene were

generated from the back-faces of triangles. Thus, fixing this bug by breaking

out of the bounce loop reduces the number of rays by 3.3%.

4.3.2 Ambient-Occlusion Bug

Shader bugs often manifest as visual artifacts in the final image of rendering

applications. When the issue only influences a subset of pixels, the developer

must determine the responsible effect or material. Even knowing the affected

pixels, it is time consuming to find the cause of the issue. RayScope improves

the situation by collecting a complete trace of each thread obviating the need

for tedious printf debugging by the developer. RayScope’s visualizer also

provides the pick feature to visualize all the rays traced for a given thread and

its pixel.

Figure 4.10 shows PBRVulkan’s Ambient Occlusion (AO) implementation
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Figure 4.10: Top Left: PBRVulkan’s AO image with dark visual artifact in area
that is not occluded. The incorrectly coloured pixels are highlighed with a red
oval. Top Right: PBRVulkan’s AO image after bug is fixed and visual artifacts
are no longer present. Bottom Left: RayScope’s geometry and visualization
of ray path generated by the incorrect AO implementation. The yellow ray
is the primary ray generated from the camera. The red rays are occlusion
rays being generated pointing into geometry. All occlusion rays hit geometry
giving the pixel a very dark color. Bottom Right: RayScope’s geometry and
visualization of ray path generated by patched AO implementation. The blue
rays are occlusion rays that are now pointing away from geometry.
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before and after fixing a bug causing visual artifacts. The figure also shows

RayScope’s visualization that guided the fixing of the problem, and RayScope’s

visualization of the corrected implementation.

PBRVulkan’s final rendered image, top left image of Figure 4.10, in AO

mode shows visual artifacts. The bottom left image of Figure 4.10 shows the

visualization generated by entering the coordinate of a problematic pixel using

RayScope’s pick feature. The resultant visualization shows that miss-only rays

receive a direction pointing into the geometry rather than pointing away from it.

The type of the ray (miss-only) narrows down the traceRay call sites that could

be responsible to a single callsite. The direction for the miss-only ray direction

is not calculated using the normal. Instead, the direction is calculated using

the face-forward normal—if the dot product of the normal and the incident ray

direction is less than 0, then then normal is inverted. Using the face-forward

normal results in some miss-only rays using the negative surface normal. These

rays trivially collide with the surface they are generated from. Therefore, the

rays receive a 100% occlusion rate and causes a very dark artifact, circled in

red in the top left image of Figure 4.10.

Switching from the face-forward normal to the surface normal fixes the ray

direction. The image in the top right of Figure 4.10 shows the final rendered

image after this change. The image in the bottom right of Figure 4.10 shows

the impact of this fix on the visualization.

4.3.3 Opaque-Flag Recommendation

Vulkan is a verbose API that provides the driver with information to optimize

the application [19]. For example, specifying that a buffer must be host coherent

introduces additional overhead for communication between the host and the

device and thus this specification must be used carefully. Such flags have non-

trivial performance implications. However, there are a large number of such

flags and it is difficult for a developer to correctly set all of them. RayScope

automatically detects when the opaqueness flag is missing from geometry and

reports it in the visualization.

The opaqueness flag dictates how the Vulkan driver interacts with instances
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of a BLAS. This feature allows different instances of the same geometry to

be transparent and opaque. The any-hit shader does not need to be executed

against opaque geometry instances. Ray-tracing best practices recommend

marking as many geometries opaque as possible [54].

Figure 4.1 shows the image produced by the application VkRaytrace [11]

and RayScope’s visualizations of the any-hit shader point cloud. The picture in

the top right of Figure 4.1 shows the any-hit point cloud. Points being present

for the robot indicates that the robot is being tested for transparency. The

backdrop that can be observed in Figure 4.6 is omitted from Figure 4.1 for

clarity.

Figure 4.11: RayScope’s visualizer showing the BLAS instances to investigate.
All geometry drawn in blue did not leverage the transparency feature despite
executing the any-hit. The gray geometry does require the any-hit.

Figure 4.11 shows RayScope’s recommendation for the geometry instances

that should be marked as opaque. Geometry instance are assigned the colour

blue to indicate that they should be investigated by the developer. The

transparent vial is gray because RayScope recognizes it is properly utilizing
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transparency. All other instances are correctly detected as candidates for

marking as opaque. The picture in the bottom right of Figure 4.1 shows the

effect of implementing RayScope’s recommendation on the any-hit point cloud.

1 set<int> any_hit_ids = {}

2 set<int> ignored_ids = {}

3

4 void OnEvent(EventType type, Vec3 pos, int instance_id){

5 if(type == AnyHit){

6 any_hit_ids.insert(instance_id);

7 } else if (type == IgnoreIntersection){

8 ignored_ids.insert(instance_id);

9 }

10 }

11

12 void OnDone(){

13 set<int> ids_to_investigate = set_difference(any_hit_ids,

ignored_ids);

14 }

Figure 4.12: Pseudocode for RayScope’s algorithm that recommends instance
ids that should be marked as opaque.

Figure 4.12 shows RayScope’s algorithm for deciding the set of instance

ids that should be investigated. RayScope maintains two sets. The any-hit

shader executes on the instances in the set any hit ids while the ignoreIn-

tersection instruction executes on the instances in the set ignored ids. The

sets are updated whenever an Any Hit or IgnoreIntersection event is pro-

cessed. After all events are processed, RayScope outputs the set difference

of any hit ids − ignored ids. An alternative, and simpler, strategy would

be to output the complement of the set of ignored ids. However, such a set

would erroneously identify instances that are transparent but had no execution

information.

Vulkan Vision’s shader trace utility can measure the number of shader

executions before and after the change [49]. The number of any-hit shaders

was reduced by 96.8%.

An evaluation of the end-to-end performance impact of this change starts

with annotating the application to record frame latencies before and after the
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change. Given that VkRaytrace does not begin ray-tracing until the model

is loaded, the evaluation starts after the model is loaded. The evaluation is

based on a sample of 100 frames for the 1660ti and 1000 frames for the 3080.

The baseline measurement is collected before the optimized measurement to

ensure that any throttling that may occur does not inflate the speedup. The

measurement was repeated 5 times per GPU revealing an FPS increase of 3.15%

on an RTX 3080 and an increase of 15.71% on GTX 1660Ti with negligible

variance between measurement repetitions.

Correctly marking geometry as opaque has a more significant impact on

the 1660Ti because it does not have hardware-accelerated ray-box and ray-

triangle intersection tests. Therefore, the 1660ti must execute a software

implementation of the BVH traversal algorithm. An examination of the

output of Vulkan Vision’s execution-trace utility reveals that the software

implementation eagerly evaluates shaders during the BVH traversal. In contrast,

the hardware implementation batches the shader executions after the BVH

traversal. Therefore, avoiding any-hit shader executions is more beneficial

to the software implementation because it reduces register pressure of the

software BVH traversal and because the eager any-hit execution has lower

SIMT efficiency.

4.3.4 Leaky Geometry

Dynamic ray behaviour depends greatly on the models present in the scene.

When faces of geometry are not contiguous, rays can escape through the

resultant holes. Holes in geometry can degrade visual correctness in production

games [9]. Holes can result in wasteful rays that never collide or receive light

information. Some holes may be too small to see by inspecting the geometry on

its own and therefore it is important to view the geometry in the context of the

ray paths. Approaches exist that attempt to statically prove that geometry has

no leaks, but this is not applicable to modern real-time ray tracing applications

that generate dynamic geometry, such as BattleField V [22]. RayScope helps

to identify leaky geometry in two ways. The first way is the point-cloud

visualization that shows events in places that should be impossible to reach,
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Figure 4.13: Left: RayScope visualizing a ray leaking through small gap below
a door on the second floor of Sponza in ChameleonRT. Right: The same ray
visualized from behind the door. The ray hits the inside of the Sponza model
and produces another secondary ray that cannot reach a light source.

such as inside a sealed box. The second way is the all-ray visualization that

shows the ray paths that escape through imperceptible holes.

The picture at left in Figure 4.13 shows a ray leaking through a hole in the

second floor of the Sponza model [35]. The ray proceeds to bounce three more

times in an area that it should never reach. In ChameleonRT, each bounce also

generates a shadow ray, omitted from Figure 4.13 for clarity. This needless

computation also affects the visual correctness of the final image.

The Cornell Box in PBRVulkan is defined as a set of faces that are aligned

using a floating-point offset. RayScope’s visualization in Figure 4.14 shows a

ray that escapes through an imperceptible gap between the faces of the box.

Figure 4.13 and Figure 4.14 highlight the problem of rays escaping through

holes. Both PBRVulkan and ChameleonRT had many more rays that leaked

through gaps. RayScope’s visualization of all rays highlights rays that escape.
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Figure 4.14: A ray leaking through imperceptible gap in PBRVulkan’s Cornell
Box due to improper geometry construction. The yellow ray is the primary ray
generated from the camera. The green ray escapes between the faces of the
box.
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The bisect feature can then be used to determine the problematic section of

geometry that let a ray through. This section of geometry may be fixed, and

the process repeated to construct ray-tracing-friendly geometry.

4.3.5 Properly Setting Tmin

All Vulkan ray-tracing developers must provide a Tmin value to the traceRay

operation. Tmin specifies the minimum distance from the ray origin to valid

intersections. Setting this value is complicated by geometries being arbitrarily

scaled. Little guidance is given on how to choose Tmin and often it is set to

an arbitrary power of ten. RayScope aids in detecting instances where Tmin

was set improperly and provides a constructive mechanism for choosing Tmin.

RayScope’s visualizer provides the minimum distance of all rays traced at

runtime. The Tmin value can be based on this analysis instead of an arbitrary

value.

Setting Tmin to be too high, results in rays leaking through objects and

producing incorrect results. Figure 4.15 shows rays escaping the Cornell Box

in RayTracingInVulkan. Unlike PBRVulkan, RayTracingInVulkan specified

Cornell Box to share the vertices at the corners. Therefore, rays are not escaping

through minute gaps in the geometry because there are no gaps. In this case,

rays escape because Tmin is set too high and omits the ray intersection. It is

unlikely that the developer is aware of this problem because fixing the problem

only requires changing one value in the Ray Generation shader.

Another problem comes from setting the value of Tmin to be too low. In this

case, rays may have intersections that should have been omitted. Figure 4.16

shows a ray escaping through the floor of Sponza due to the value of Tmin

being too low. The orange ray collides with the floor of the model. Then a

new ray is generated that has a direction that is nearly parallel with the floor.

The new ray has an intersection with a distance value of 0.00033. The next

bounce is generated based on the direction of the previous ray. The direction

of the previous ray was almost parallel with the floor causing the next ray to

generate on the other side of the floor. The developer likely did not consider the

possibility of rays intersecting the floor at a nearly parallel direction resulting
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Figure 4.15: A ray leaking through corner of Cornell Box in RayTracingInVulkan
due to a too-high value of Tmin. The ray bounces 5 times before striking the
precise point where 2 faces of the Cornell Box meet. The green ray is generated
inside the box but does not collide with the top of the box due to a too-high
value of Tmin.
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Figure 4.16: A ray leaking through the floor of Sponza in ChameleonRT due to
a too-low value of Tmin. The yellow ray hits the floor of Sponza. A ray with
length 0.00033 is generated (shown as a green circle) and collides with the floor
immediately. The purple ray is generated through the floor and continues to
bounce around the inside of the Sponza model.
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in the incorrect direction of the red ray.

RayScope’s visualization can be used to determine an appropriate value

for Tmin for different combinations of scenes and applications. Given this

feedback, it is easy to refine the value of Tmin.

4.3.6 Poor Ray-Geometry Interactions

Most Divergent: Ray-tracing is known to be troublesome for GPUs due

to incoherent bounces [27]. This information is difficult to act on because

ray bounces are dependent on the ray-tracing algorithm and on the geometry.

Additionally, the thread-to-subgroup assignment has a large impact on spatial

locality and ray coherence. RayScope’s instrumentation captures the warp

and thread responsible for each ray-event. This information is encoded into

the ray file so that the visualizer can account for the hardware-level execution

when making performance recommendations. A user can quickly cycle between

subgroup with poor hardware utilization using RayScope’s visualizer’s UI.

RayScope records the subgroups with the worst divergence—measured as

the subgroup with the greatest total of threads that are inactive when a ray

is traced. RayScope’s visualizer offers the option to view the most divergent

subgroups.

Figure 4.17 shows a visualization of the subgroup with the lowest average

of active threads in RayTracingInVulkan [14]. Primary rays enter from the left

of the image and all rays but one miss geometry. The final ray bounces fifteen

times before finally missing and concluding the subgroup execution. The SIMT

efficiency of traceRay calls would be 9% for the visualized subgroup.

Based on this recommendation developers may choose to switch from a

monolithic ray-tracing implementation to a wavefront implementation [27].

Based on RayScope’s visualizations, a limit could be placed on the number of

consecutive bounces that can occur due to internal reflection.

Trapped Rays: Rays bouncing many times in small areas are difficult to

detect. These rays are unlikely to improve the image on consecutive bounces

because the light information remains constant in that small area. More

generally, choosing the maximum bounce limit is a tradeoff between visual
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Figure 4.17: RayScope’s visualization of rays that most poorly utilize SIMD
hardware for rendering of transparent Lucy model (screenshot of final image
overlaid left). The Lucy model is shown as a point cloud of closest-hit events.
32 primary rays enter from the top-right of the image. 31 of the primary rays
miss geometry and are coloured green. The threads tracing these rays have no
more work. 1 primary ray hits Lucy’s arm and 15 more rays are traced down
the arm and through the torso for internal reflection. Each of those 15 bounces
would have 1 thread active for each traceRay operation. Disproportionate work
assignment between threads is the worst-case for GPU-based ray tracing.
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Figure 4.18: RayScope’s recommended and visualized high-work ray-path. The
scene geometry, composed of spheres, is shown as a point cloud of intersection
events. The final rendered image is overlaid in the bottom left for clarity. The
yellow ray is the primary ray generated from the camera. The ray bounces 3
more times before becoming trapped underneath the sphere. The red circled
region contains 12 ray-bounce operations as the ray becomes trapped.

quality and computation cost. RayScope’s visualizer allows a developer to

cycle through the threads that traced the most rays at runtime. Developers

may choose to close off the areas that trap rays or limit the maximum bounce

count to reduce these cases.

Figure 4.18 shows an example of RayScope’s recommended and visualized

high-work ray path from RayTracingInVulkan. The application RayTracing-

InVulkan does not accumulate any colour unless a ray eventually hits a light

source. Despite performing 16 bounces, the ray in Figure 4.18 receives no color.

12 of the bounces are in a tight area between the sphere and the floor. This is

one of many examples in the application where a ray becomes trapped. These

poor dynamic ray-geometry interactions induce greater computation for no

discernible increase in visual quality.

To remedy this problem, the floor could be raised, or the spheres lowered

to reduce the occurrence of trapped rays. Additionally, shadow effects could

be implemented using occlusion rays to reduce the number of rays required.
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4.4 Conclusions and Future Work

RayScope’s automatic instrumentation gathers application-agnostic ray-tracing

information available in Vulkan ray-tracing applications. RayScope’s visualizer

reconstructs the ray paths and geometry and allows the user to interact with

them. Additionally, RayScope’s visualizer creates point clouds to represent

implicit, and otherwise invisible, ray-tracing events. These visualizations aid in

understanding, profiling, debugging, and designing Vulkan ray-tracing applica-

tions. The outputs of RayScope’s instrumentation are readily understandable

and should allow other visualization tools to easily integrate the instrumenta-

tion data. Tools such as NSight Graphics and Pix can readily benefit because

they already visualize the acceleration structure. Additionally, integration with

game engines would allow game developers to observe how the engine-provided

ray-tracing implementation interacts with their geometry.

RayScope’s shader instrumentation can effectively detect that objects are

incorrectly marked as transparent. RayScope shall also be able to recommend

using a cull mask if hidden geometry is implemented as an any-hit shader

that always ignored collisions. RayScope’s visualizer also has the potential

to recommend the shortest rays to the user by detecting when rays perform

trivial bounces.

RayScope’s point-cloud feature allows the visualization of procedural ge-

ometry. The point-cloud data could be converted to a triangular mesh to

embed within the scene and thus allow it to be treated similarly to a triangular

BLAS instance. For example, the developer could experiment with moving

geometry around in the scene using the Unity editor view. A natural extension

of converting point clouds to geometry is to create optimized representations

of triangular meshes. For example, certain parts of models may be unreachable

by rays and therefore should not be represented as detailed triangles.

RayScope is a highly capable addition to a Vulkan developer’s toolkit.

RayScope’s unprecedented view into the runtime execution of the monolithic

ray-tracing pipeline enables deeper understanding leading to patched bugs,

more efficient execution, and fixes to leaky geometry. RayScope demonstrates
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the power of leveraging information already available in the Vulkan specification.

Analogous tools for compute and rasterization workloads could be developed

using the V-Vision framework.
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Chapter 5

Related Work

The first tool presented in this thesis, V-Vision, is a SPIR-V instrumenta-

tion framework with applications across the GPU software-hardware stack.

The second tool presented, RayScope, extends V-Vision to include automatic

graphics API call instrumentation to visualize the Vulkan ray-tracing process.

Both tools are instrumentation-based, aid in debugging and profiling tasks,

and generate visualizations. This chapter is organized as follows. Section 5.1

discusses proprietary instrumentation tools, open-source instrumentation tools,

and manual instrumentation. Section 5.2 covers event-based debuggers and

profilers, runtime debuggers, and static debugging and profiling. Section 5.3

explores visualization tools that aid in graphics application development.

5.1 Instrumentation Tools

Proprietary: NSight Graphics collects samples of the graphics pipeline binary

being executed and accumulates hardware performance counters [23]. Similar

to NSight Graphics, Intel GPA uses vendor-specific hardware performance coun-

ters to characterize application performance on Intel Graphics Hardware [17].

Microsoft Pix is a graphics profiling tool that achieves cross-vendor support by

leveraging the debugging capabilities of a single graphics API [37]. In compari-

son to these tools, V-Vision provides fine-grained data from the code executing

on the GPU with a commensurately higher overhead. Thus, V-Vision may

complement the proprietary tools in situations where performance bottlenecks

occur in the graphics pipeline itself. V-Vision sets itself apart as an open-source
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framework for developing studies, such as Thread Compaction, which require

precise execution data.

NVBit [59] uses library injection to create wrapper functions for CUDA

driver calls to perform on-the-fly instrumentation. NVBit instruments SASS

allowing it perform analyses, such as register allocation, that are impossible

for V-Vision at the SPIR-V level. V-Vision provides instruction primitives to

overcome graphics instrumentation challenges, similar to NVBit’s abstraction

of SASS instructions that overcome binary instrumentation challenges.

Zeroploit implements value-specialization for DirectX using IR instrumenta-

tion [50]. Zeroploit observes, with manual instrumentation, that many common

shader operations produce a value of 0. V-Vision’s instruction primitives can

collect frequencies of a given value to automatically detect such opportunities

in existing games using Vulkan.

Open-source: Strengert et al. developed a debugging tool for OpenGL

applications that instruments shaders based on user guidance [55]. Their tool

uses library injection which allows for modification of a shader before it is

executed with a custom source-to-source transpilation. Their approach is

geared towards providing values from variables indicated by the user. This

limits the tool, in its current form, from capturing general information such

as the SIMT efficiency. V-Vision leverages existing compiler infrastructure

for SPIR-V instrumentation, so implementing auto-instrumentation is more

productive than in a custom transpiler. V-Vision is effective for aiding in

debugging by generating execution traces for user-specified warps or threads.

Manual: Runtime feedback includes the developer manually placing

printf calls within a shader to test if that call is reached and recording

a set of runtime values on invocation [25], [30]. Debugging rendering pipelines

using printf is challenging due to the number of threads. If all threads call

printf then a prohibitive number of messages are created. If few threads call

printf then issues that occur only in certain threads may be missed. Since

printf is often insufficient, developers create their own solutions to inspect

specific values. For example, developers may choose to include an extra tex-

ture in debug builds of their application. The developer may then manually
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instrument certain values by writing them into the texture and inspecting them

after execution concludes. Inspecting the output values is time consuming,

and this approach increases the amount of code to maintain. A flaw with

both approaches is that developers must interpret the data, such as position

values, as text instead of viewing them in the context of the scene. RayScope

reconstructs the ray-tracing scene through visualization greatly simplifying the

task of interpreting the data.

5.2 Debugging and Profiling Tools

Event Based: Many hardware vendors provide proprietary tools for logging

host-side rendering events and for profiling their execution [3], [20], [21], [37],

[42], [43]. Such tools can be used to measure the timing and frequency of draw

calls and other graphics API events. Developers use these tools to identify

shaders that take longer than expected to complete and rendering algorithms

that generate an unexpected number of graphics API events. Many GPUs

provide hardware counters that are monitored by these tools and report wall-

clock execution time and various other runtime statistics, such as the number

of memory accesses or the number of expensive instruction invocations made

during each draw call. To debug pixel color issues, NSight Graphics also

includes a method for collating all the draw calls that contributed to a given

pixel’s color. Several tools for event profiling of GPU compute workloads, such

as those programmed with CUDA, have similar capabilities [44]. V-Vision and

RayScope allow the sophisticated behaviour of graphics pipeline executions

to be understood and both complement coarse-grained event-based tools that

identify problematic pipeline executions.

Runtime: Runtime debuggers provide the ability to break execution at

a given line of code to examine the values stored in register and memory.

CPU/host debuggers, such as GDB, are common and widely used. Debugging

program execution in a GPU to examine performance issues at a pixel level

is considerably more challenging. This is partly because the GPU executes

millions of threads across thousands of cores often arranged into SIMT units
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(warps) and has a distinct memory and register file from the host CPU. When

debugging execution on the GPU is not possible, device emulation is an option.

Alternatively, instrumentation can record an execution trace to be reviewed

offline. Warp occupancy and instruction latency can then be reported with the

execution trace to give the developer insights into the shader’s performance [2].

On NVIDIA GPUs, a runtime debugger for CUDA allows developers to step

through execution of an entire SIMT group (warp), to inspect values stored both

in the host and in the GPU memory as well as in PTX or SASS registers [39],

[40], and to identify memory access violations [41]. V-Vision is implemented in

a validation layer that operates above the Vulkan driver and therefore cannot

leverage hardware-specific features unless they are offered as a Vulkan extension.

This limits V-Vision’s ability to inspect hardware register and memory values,

but if a value exists at the SPIR-V level, V-Vision can be used to inspect it.

As demonstrated with RayScope, there is significant information known at the

SPIR-V level and much value in presenting it.

Static: Offline static analysis includes compiler-generated errors, warnings

and recommendations. Offline shader compilation is carried out without full

knowledge of the rendering pipeline. Static errors and warnings check for

conformance to the language specification and common programming mistakes.

Other features of static analysis tools include cycle-count estimates, disassembly,

and examining the effects of compiler passes [1], [4]. These tools allow developers

to optimize their shaders for a specific GPU architecture. Static performance

estimates are less applicable to workloads with highly variable work distribution

such as ray tracing. Performance estimates of programmable shader stages do

not take into account the fixed-function logic of a rendering pipeline. V-Vision

and RayScope are orthogonal and complementary to static analysis.

5.3 Visualization Tools

For offline visualization, Duca et al developed a tool that performs shader

and OpenGL API call instrumentation to develop a database of rasterization

information [12]. This database can be searched using a query language and
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generates results that are visualized in a GUI. RayScope presents automatic

recommendations and visualizations of the ray-tracing data without requiring

the user to learn a query language.

Several tools have been created to visualize ray tracing [15], [28], [53]. rtVTK

employs a plug-in model that requires developers to manually instrument their

renderer code. The visualization of ray-tracing behaviour produced by this

tool was used to find longstanding issues. Lesev et al. [28] focus on bulk data

collection of ray information that is streamed to a user. They propose shipping

the instrumented ray-tracing application to end users. They also allow arbitrary

data to be associated with rays, requiring the developer to also create an analysis

to understand the final data stream. Similar to rtVTK, this approach requires

manual instrumentation, adjusting application code, and is limited to CPU

ray tracers. Simons et al. [53] allow developers to optimize scene parameters

to converge faster in physically-based offline rendering. Features, including

light intensity and paths, can be better understood using their visualization.

Their tool can help developers evaluate the impact of geometry positions. For

instance, they use manual instrumentation to analyze radiance while optimizing

positions. Their results indicate that offline optimization of geometry positions

can have a significant impact. RayScope is more broadly applicable than

these works because it performs automatic instrumentation of a major graphics

API. RayScope also requires no application expertise to insert instrumentation

because its automatic instrumentation is based on the Vulkan specification.

However, RayScope is currently limited by the information available in Vulkan.

In the future, RayScope and V-Vision could be extended to allow manual

annotation of the shader source with values such as light-source position and

types.

NSight Graphics [43] and Pix [37] provide a tool that uses rasterization

to visualize the acceleration structure allowing developers to identify redun-

dant BLAS nodes. As demonstrated, RayScope improves the state-of-the-art

AS visualization by showing procedural objects using a point cloud of their

intersection shader executions.
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Chapter 6

Conclusion

This thesis contributes a significant improvement to the developer tools available

in the Vulkan ecosystem. Prior to this contribution, basic questions such as how

efficiently is the hardware being utilized? or is my ray-tracing implementation

correct? were time-consuming to answer and required invasive application

changes. The answers to such questions are necessary for informed design

decisions. In answering such questions, this work identified systematic issues

across Vulkan ray-tracing implementations causing wasteful computation and

affecting visual correctness.

Chapter 3 presented V-Vision. V-Vision is a framework for generating,

analyzing, and presenting execution data to developers. The chapter explored

challenges in understanding runtime behaviour of the sophisticated Vulkan

ray-tracing pipeline. The instrumentation primitives available in V-Vision

allow warp execution to be tracked through the fixed-function logic inserted by

downstream compilers. This unprecedented view into the runtime execution

yields many interesting insights, such as observing the differences between

the black-box software and hardware implementations of traceRayEXT in

the NVIDIA ecosystem. The chapter then explored challenges in using the

existing but inefficient instrumentation infrastructure. To remedy this, V-

Vision introduces the concept of instrumentation callsite ids and a method

for transferring statically known data at compile-time. Finally, the chapter

presented, through case studies, the potential for V-Vision to be applied for

application, driver, compiler, and hardware studies.
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Chapter 4 presented RayScope, a tool that exploits V-Vision’s potential

for application-level studies. RayScope automatically captures application-

agnostic geometry and ray-tracing execution traces from Vulkan applications.

The geometry and ray-tracing data is stored in an accessible format to encourage

future research and visualizations. RayScope offers an interactive visualizer to

present and analyze the data captured from the Vulkan application. RayScope’s

visualizer provides novel visualization methods of Vulkan ray-tracing data.

These visualizations allow a developer to see implicit or invisible aspects

of their application’s execution such as shader executions. In case studies

using RayScope, we identify systemic issues that afflict Vulkan ray-tracing

applications. Many of the recommendations and bug fixes motivated by

RayScope are trivial changes. This reinforces that Vulkan developers lacked

proper support for creating Vulkan ray-tracing applications.

There are several dimensions that this work can be extended in. Through

interoperability efforts, V-Vision and RayScope could be applied to Direct3D.

The shadow allocation methodology used in RayScope could be extended more

parts of Vulkan to provide more automatic recommendations. Other debugging

and visualization tools could be developed using V-Vision for rasterization,

mesh, and compute pipelines. In sum, the work presented in this thesis lays

the groundwork for gaining a deeper understanding of the dynamic behaviour

of graphics applications. The work further demonstrates the insights that can

be gained by extending the groundwork into a highly specialized study of ray

tracing.
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