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are classified, based on the matching primitives, into area-
In stereo vision the depth of a 3-D point is estimated based based and feature-based techniques. Area-based methods

on the position of its projections on the left and right images. correspond brightness patterns in two images [14, 24].
The image plane of cameras that produces the images consists These algorithms have several drawbacks which are
of discrete pixels. This discretization of images generates uncer- pointed out in [12, 18]. Feature-based methods match fea-
tainty in estimation of the depth at each 3-D point. In this tures such as edges [3, 9, 11, 13, 15, 21], and linear edge
paper, we investigate the effect of vergence and spatially vary- segments [1, 23]. Finally, the depth of each point is obtaineding resolution on the depth estimation error. First, vergence is

using triangulation.studied when pairs of stereo images with uniform resolution
Cameras have an image plane which consists of a numberare used. Then the problem is studied for a stereo system similar

of discrete picture elements (pixels). In general, these pix-to that of humans, in which cameras have high resolution in
els are uniformly arranged in a two-dimensional array ac-the center and nonlinearly decreasing resolution toward the

periphery. In this paper we are only concerned with error in cording to certain industrial standards. The projection of
depth perception, assuming that stereo matching is already each 3-D point in the scene is approximated to the nearest
done.  1996 Academic Press, Inc. pixel—the resulting error is referred to as discretization

error. In stereo, discretization error generates uncertainty
in estimation of depth of each 3-D point. In order to model

1. INTRODUCTION such uncertainty different approaches have been used, such
as discrete tolerance limits [2, 7] and multidimensionalA significant amount of research has been directed to-
probability distribution [22]. Figure 1 illustrates this depthwards the development of systems that are able to perceive
estimation error; for all the points lying in each diamond,the three dimensional (3-D) structure of objects. The 3-D
the same depth is estimated. This model was first intro-information is essential in many applications such as ro-
duced by Matthies and Shafer [22]. As this figure illustrates,botic navigation and medical imaging. Stereo vision is an
the depth estimation error grows with distance. However,important method for obtaining depth information from
the error is not a simple function of distance—the dia-a 3-D scene. In stereo, a pair of cameras provides left and
monds in Fig. 1 are skewed and oriented.right images of a scene. The depth of each 3-D point is

Optimal vertical and horizontal resolution of stereo cam-estimated based on the position of its projections in the
eras for minimizing the depth estimation error has beentwo images.
studied by Basu [4]. In this paper, we deal with an activeIn the process of depth recovery from stereo images,
stereo system. Such a system uses a dynamic pair of cam-three major steps are involved. First, two images are pre-
eras which can be tilted (rotated about the horizontal axis)processed; the objective is to identify well-defined features
and panned (rotated about vertical axis) independentlyin each image. Second, correspondence is established be-
[10, 26]. For such a device, we investigate the effect oftween features that are projections of the same physical
vergence on depth estimation. Initially, we assume that aentity in the two images. Many stereo matching algorithms
pair of cameras with uniform resolution is given. We at-have been proposed [1, 12–14, 17, 20, 21, 23–25, 28]. They
tempt to find the optimal vergence angle for minimum
depth uncertainty. Then, since vergence does not have a
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FIG. 1. Depth estimation error in stereo imaging.

Section 2 presents an equation for the depth of a single
3-D point as a function of vergence angle. In Section 3,
the effect of vergence on the depth estimation error for a
single 3-D point is studied; for a given point with known
projections in two images the maximum error is derived.
In Section 4, we assume an object of interest is located in FIG. 3. Stereo imaging system with vergence.
the scene; using the results obtained in Section 3, the aver-
age depth estimation error is analyzed as a function of the
vergence angle. This section also discusses how to minimize

of a stereo imaging system, where two cameras have paral-the depth estimation error by a combination of changes
lel image planes (no vergence) and are merely separatedin the vergence angle and the focal length of the cameras.
in the X direction. The focal length of each camera isSection 5 studies the depth estimation error with vergence,
denoted by f, and the separation distance between theusing the assumption that the stereo cameras have nonuni-
cameras is denoted by dX. It is assumed that the origin ofform pixel arrangements. Section 6 shows some experimen-
3-D world coordinates is at the focal point of the righttal results.
camera. Each camera has a uniform pixel arrangement
in both vertical and horizontal directions. The distance2. DEPTH OF A 3-D POINT
between two adjacent pixels along the x direction is de-

In this section, we first define a number of terms that
are used in this paper. Figure 2 illustrates the configuration

FIG. 4. Maximum relative error in depth estimation versus vergence
angle.FIG. 2. Stereo imaging system.
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FIG. 6. Isoresolution plots for stereo cameras with uniform discreti-
zation.

FIG. 5. Variation of depth uncertainty with vergence using uniform
resolution images.

noted by ex , and similarly the distance between two adja-
cent pixels along the y direction is denoted by ey . The
projection of the 3-D point P(X, Y, Z) in the right and left
cameras is represented by (xr , yr) and (xl , yl), respectively.
Because of the discrete placement of pixels, these two
projections are approximated to (x̂r, ŷr) and (x̂l , ŷl). The
discretization error in turn leads to an estimate (X̂, Ŷ, Ẑ)
of the coordinates of point P.

Figure 3 illustrates a two-dimensional view of a stereo
system with vergence angle a. From now on we will not
consider the Y coordinate of 3-D points because the Y
coordinate does not have any effect on the estimation
of depth. The following theorem provides a formula for
the calculation of depth (Z coordinate) of the point P
in Fig. 3.

THEOREM 1. The depth of point P is calculated from FIG. 7. Variation of depth uncertainty for stereo cameras with uni-
form discretization and nonsymmetrical vergence angles.the equation
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FIG. 9. Stereo system with an object in the scene.

FIG. 8. Isoresolution plots for stereo cameras with uniform discretiza- EZ 5 UẐ 2 Z
Z U#

ex sin a
2 f

Z cos a 2 (X 2 dX) sin a
Ztion and nonsymmetrical vergence angles.

1
ex sin a

2 f
Z cos a 1 X sin a

Z

1
ex sin a
2 f dX

X(Z cos a 2 (X 2 dX) sin a)
Z

(2)Z 5
dX( f cos a 1 xl sin a)( f cos a 2 xr sin a)

( f cos a 1 xl sin a)( f sin a 1 xr cos a)
1 ( f sin a 2 xl cos a)( f cos a 2 xr sin a)

. (1)

1
ex cos a
2 f dX

(Z cos a 1 X sin a)

1
ex cos a
2 f dX

(Z cos a 2 (X 2 dX) sin a)It should be noted that this theorem does not consider
the size of the image plane of the cameras. In reality the
size of the image plane is limited and, for certain vergence 2

ex sin a
2 f dX

(X 2 dX)(Z cos a 1 X sin a)
Z

.
angles, point P may not lie in the field of view of the
cameras. The proof of this theorem is given in the Ap-
pendix. According to this theorem, the maximum relative error

is directly proportional to ex . In other words, the higher
the resolution of the cameras, the lower the error. Further-
more, the error is inversely proportional to the focal length.3. OPTIMAL VERGENCE FOR A 3-D POINT
Therefore, if the cameras zoom into a point, the error will
be reduced.In order to study the effect of vergence on the depth

Now let us consider the behavior of this error with re-estimation error for a single 3-D point, we consider Theo-
spect to the changes in the vergence angle. Suppose f isrem 2, which is proved in the Appendix.
50 mm, the size of image plane is 40 3 40 mm, dX is 100
mm, and ex is 0.5 mm. Figure 4 shows the relative depth
error versus vergence angle when point P is located atTHEOREM 2. The maximum relative error in depth, of

point P(X, Y, Z), is given by the equation X 5 50 mm and Z 5 250 mm. As illustrated in this figure,
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large compared to dx are almost straight lines. When the
vergence angle is increased, the plots become curved. The
resolution of the cameras directly affects the distance be-
tween the isoresolution plots. The higher the resolution of
cameras, the denser the isoresolution plots. The isoresolu-
tion plot’s density around a fixed point in the scene changes
depending on the vergence angle. This verifies the results
stated in this section using theoretical studies and the dia-
mond plots.

Figure 7 illustrates the variation of depth uncertainty
when stereo cameras have a nonsymmetrical vergence
angle. The error in depth perception will be maximum
when the projections of a given point in the scene is at the
center of the two cameras. This result is also verified by
the isoresolution plots in Fig. 8.

4. OPTIMAL VERGENCE FOR AN OBJECT
FIG. 10. The average depth estimation error versus vergence angle.

In this section, we assume that there is an object of
interest in the scene. We generalize the results of the previ-

the error increases with vergence; the maximum occurs at ous section, studying the effect of vergence on average
almost 118. Moreover the plot ends at about 338, which is depth estimation error, when two constraints are imposed
the angle for which point P goes out of the view of the on the location of the object. As depicted in Fig. 9, these
cameras. In this example the point is symmetrically located constraints are
with respect to both cameras and will simultaneously be
out of the view of the two cameras.

Zmin , Z , Zmax Xmin , X , Xmax.Figure 5 illustrates the variation of depth uncertainty of
a point P for three different vergence angles. As illustrated

The average depth estimation error is given by the follow-in these figures, the size of the diamond that covers point
ing lemma, which is proved in the Appendix.P changes according to the plot of Fig. 4. Figure 5 demon-

strates that the maximum depth estimation error occurs LEMMA 2. The average depth estimation error for the
when the projection of the point P is in the center of the points belonging to an object with the above constraints is
image plane of both cameras.

LEMMA 1. Suppose point P is located symmetrically with
Ez 5 Fex sin a cos a

f
(Xmax 2 Xmin)(Zmax 2 Zmin)respect to two cameras. The vergence angle corresponding

to the maximum error for this point is obtained as

1
ex sin2 a dX

2 f
(Xmax 2 Xmin) ln SZmax

ZminDamax 5 arctan SdX/2
Z D. (3)

3
ex cos2 a

2 f dX
(Zmax2 2 Zmin2)(Xmax 2 Xmin)

Using this lemma with the system in the above example,
we have

1
ex cos a sin a

2 f
(Zmax 2 Zmin)(Xmax 2 Xmin) (5)

amax 5 arctan S100/2
250 D (4)

2
ex sin a cos a

2 f
(Zmax 2 Zmin)(Xmax 2 Xmin)

5 11.318.

1
ex sin2 a

f dX
ln SZmax

ZminDThis result explains the graph in Fig. 4.
Figure 6 illustrates the isoresolution plots for the stereo

system with uniform discretization. Each plot represents
3 SXmax3 2 Xmin3

3
2 dX

Xmax2 2 Xmin2

2 DGthe points in the scene that have the same maximum error
in depth perception. For the zero vergence angle, the iso-
resolution plots for the points whose depths are not very /(Xmax 2 Xmin)(Zmax 2 Zmin).
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Suppose an object of interest (in a system with f 5 50
mm, 40 3 40 mm imaging area, ex 5 0.5 mm, and dX 5
100 mm) is located in the region of 230 , Z , 270 and
35 , X , 65. Figure 10 shows the average error for this
object as a function of vergence angle. The maximum error
occurs when the center of the object region is projected
onto the centers of the cameras. The plot ends when any
part of the object is out of view of one of the cameras.

Lemma 2 indicates that the average depth estimation
error is inversely proportional to the focal length f. There-
fore, we attempt to reduce the depth estimation error by
altering both the vergence and focal lengths. Figure 11
illustrates three plots of average depth estimation error
for f 5 150, 175, and 200. By examining these figures, it
can be concluded that the average depth estimation error
for an object is minimum when the projection of the object
covers the whole image plane of the cameras. Such a situa-
tion for an object placed symmetrically with respect to two
cameras occurs for unique values of f and a.

5. VERGENCE WITH NONUNIFORM
DISCRETIZATION

So far we have analyzed the effect of vergence on depth
estimation error when the stereo cameras have uniform
discretization. As the results of the previous section dem-
onstrate, we can reduce the error by vergence; however,
there is no optimal vergence angle which leads to minimum
error while maintaining a good coverage of the back-
ground scene.

In order to solve this problem, we propose using sensors
with nonuniform discretization. In fact we are interested
in a stereo system similar to the human visual system. In
the human eye, there is a high resolution foveal region in
the center, and the resolution decreases toward the periph-
ery. Several approaches for modeling variable resolution
images have been proposed [5, 8, 27]. We assume each
camera has a nonuniform pixel arrangement similar to the
human eye and modeled by the fish-eye transform [6]. The
fish-eye transform, which is based on the characteristics of
fish-eye lenses, describes a variable resolution mapping of
a uniform resolution image to an image with high resolu-
tion in the center and nonlinearly decreasing resolution
toward the periphery. Based on this transform, any point
with coordinates (x̂, ŷ) in the variable resolution plane
is mapped to the point (x, y) in the uniform resolution
plane as

FIG. 11. The average depth estimation error with f 5 150, 175, r 5 Ïx̂2 1 ŷ2 û 5 arctan Sŷ
x̂Dand 200.

r 5
e(r/s)21

l
û 5 u (6)

x 5 r cos u y 5 r sin u.
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ex(x) 5 Eminecx, (8)

where Emin is the smallest pixel separation in the center
of the camera, and c is the factor that determines the rate
of increase in the pixel separation with distance. Figure 12
illustrates the pixel distribution for c 5 0.03. Since ey does
not contribute to the depth estimation error, the pixel
separation in the Y direction is uniform.

In order to compute the depth estimation error in a
stereo system with nonuniform discretization we use the
following lemma.

LEMMA 3. Suppose we have a single 3-D point P(X, Y,
Z) which has projections xr and xl on the right and left
cameras respectively. Each camera has a nonuniform dis-
cretization; such a discretization is specified by a function

FIG. 12. Exponential pixel distribution in the image plane for c 5
ex(x) which defines the separation of pixels as a function of0.03.
their location. The maximum relative error in depth estima-
tion of P is given by

In the above equation s is a simple scaling factor, and
l controls the amount of distortion over the entire range. EZ 5 UẐ 2 Z

Z U#
ex(xl) sin a

2 f
Z cos a 2 (X 2 dX) sin a

ZUsing the fish-eye model and ignoring the y coordinate,
we derive the following equation for the separation

1
ex(xr) sin a

2 f
Z cos a 1 X sin a

Zof pixels:

1
ex(xl) sin a

2 f dX
X(Z cos a 2 (X 2 dX) sin a)

Z
(9)ex(x) 5

eE/s 2 1
l

ex/s. (7)

In this equation E is a constant which is equal to the 1
ex(xr) cos a

2 f dX
(Z cos a 1 X sin a)

separation of pixels in the uniform resolution plane. As is
observed from this equation, the separation in this case is

1
ex(xl) cos a

2 f dX
(Z cos a 2 (X 2 dX) sin a)exponential with respect to the position of pixels. In fact,

Eq. (7) can be rewritten into the form

2
ex(xr) sin a

2 f dX
(X 2 dX)(Z cos a 1 X sin a)

Z
.

Suppose in the system described in the preceding sec-
tions, we use cameras with a fish-eye pixel arrangement
(Emin 5 0.5, c 5 0.03). Usng Lemma 3, the depth estimation
error of point P located at X 5 50 mm and Z 5 250 mm
is illustrated in Fig. 13. The error of P is minimum for the
same vergence angle at which the error in the uniform
resolution system was maximum; this is the vergence angle
for which the projection of P lies on the center of the image
plane of the cameras. Figure 14 illustrates the variation of
depth uncertainty of a point P for three different vergence
angles and sensors with nonuniform discretization. The
plot of Fig. 13 is graphically verified in terms of the size
of diamonds in Fig. 14.

Similar to the cameras with uniform resolution, we calcu-
late the average error for an object of interest in the scene.
Same constraints on the X and Z dimensions of the object

FIG. 13. Depth estimation error when fish-eye images are used. are imposed. In his case, finding an analytic solution for
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FIG. 15. The average depth estimation error when fish-eye images
are used.

cameras with nonuniform exponential resolution. The den-
sity of plots changes with vergence, in accordance with the
theoretical results and diamond plots.

Figure 17 illustrates the variation of depth uncertainty
when stereo cameras have nonsymmetrical vergence angle.
The error in depth perception will be minimum when the-
projections of the given point in the scene are in the center
of the cameras. The result is also verified by the isoresolu-
tion plots illustrated in Fig. 18.

One interesting issue that needs investigation is how
to select the parameter c in the nonuniform exponential

FIG. 14. Variation of depth uncertainty with vergence using fish- system such that the error is independent of the vergence
eye images. angle. By studying the diamond plots from the uniform

resolution system, we realize that the behavior of depth
perception error with vergence is directly related to the
focal angles1 of the pixels. For the uniform resolution cam-the average error is too complicated. Therefore, we solve
eras, the focal angle of the pixels in the center of thethe following equation using the numerical methods
image plane are larger than the focal angle of pixels in the
periphery. This is the reason why the depth perception
error is larger when the vergence angle is selected such

EZ 5
EX5Xmax

X5Xmin
EZ5Zmax

Z5Zmin
EZ dX dZ

EX5Xmax

X5Xmin
EZ5Zmax

Z5Zmin
dX dZ

, (10) that the projection of the 3-D point is in the center of the
camera. For the nonuniform exponential resolution, there
is no value for parameter c that results in equal focal

where EZ is obtained from Eq. (9). Suppose the object of angles for all the pixels, and, therefore, the error plot versus
interest (in a system with f 5 50 mm, 40 3 40 mm imaging vergence is never flat. However, the parameter c should
area, ex 5 0.5 mm, and dX 5 100 mm) is located in the be chosen such that the focal angle of pixels increases
region of 230 , Z , 270 and 35 , X , 65. Figure 15 monotonically, going from the center of an image plane
shows the average error for this object as a function of
vergence angle. The minimum error occurs when the center

1 If the left and right boundaries of a pixel are connected by lines to
of the object region is projected. The error of depth percep- the focal point of the camera, the two resulting lines create an angle which
tion is obviously higher for peripherally visible targets. is named the focal angle of the pixel. This concept is clearly illustrated in

the diamond plots in this paper.Figure 16 illustrates the isoresolution plots for stereo
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FIG. 18. Isoresolution plots for stereo cameras with uniform discreti-
zation and nonsymmetrical vergence angles.FIG. 16. Isoresolution plots for stereo cameras with nonuniform dis-

cretization.

toward the periphery. For small values of l, although the
pixel separation increases monotonically from the center
toward the periphery, the focal angles may initially de-
crease and then increase—resulting in depth perception
error changing in a nonmonotonic fashion. The following
lemma provides the minimum value of c that results in a
monotonic increase of focal angles from the center toward

FIG. 17. Variation of depth uncertainty for stereo cameras with non-
uniform discretization, and nonsymmetrical vergence angles. FIG. 19. Points at which depth was estimated.
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FIG. 22. Stereo images with 168 vergence.FIG. 20. Stereo images with no vergence.

vergence angles. From the results of this table, we observethe periphery. The important point to note here is that the
that the error of depth estimation of different points variesvalue of l is derived from the geometry of the camera and
in a different manner. The maximum error of points D,not from the characteristics of the scene.
E, and F occurs at 6.368 vergence, the reason being that

LEMMA 4. The minimum value of c for monotonic in-
the projections of these points are closer to the center

crease in focal angles of pixels from the center of image
of the images. For the other points, which are situated

plane toward the periphery is
asymmetrically with respect to two cameras, the error var-
ies with vergence; however the maximum does not occur
at the same vergence as points D, E, and F.cmin 5 ln S 2 f 2

f 2 2 E2
min

2 1D. (11)
In the second set of experiments, the error of depth was

evaluated using fish-eye images, as shown in Figs. 23 and
6. EXPERIMENTAL RESULTS 24. Fish-eye images were acquired by transforming high

resolution (512 3 480) images. The resulting fish-eye im-
This section presents the results of a number of experi- ages were inversely transformed to the uniform resolution

ments which were conducted to verify the theoretical re- plane; however, the resolution in the periphery of the final
sults achieved in the previous sections. The error of depth images was reduced, while the resolution in the center was
of seven 3-D points, marked in Fig. 19, was evaluated using preserved. In contrast to the uniform resolution case, the
several pairs of stereo images. Stereo images were acquired error of points D, E, and F is minimum at 6.368 vergence
using a single CCD camera ( f 5 8.37018 mm) at two differ- (Table 2). For the other points, the minimum error does
ent positions (dX 5 112 mm); the camera was moved not necessarily occur at the same vergence angle.
horizontally from the first position to the second. The In the above experiments, we illustrated how the maxi-
vergence angle was measured precisely from the amount mum error in the depth of the selected points in the scene
of displacement of a particular point in the image. Points varies with the vergence angle. The results of experiments
from the left and right images were correlated manually for individual points are not meaningful, since the discreti-
with high accuracy. zation error resulting from projection of a single point can

In the first set of experiments, three pairs of uniform
resolution stereo images (128 3 120) acquired with three
different vergence angles were used, as illustrated in Figs.
20 to 22. Table 1 shows the maximum percentage of relative

TABLE 1error of the estimated depth at each point, for different
Maximum Percentage of Error in Depth of the Se-

lected Points in the Scene Using Stereo Images with
Uniform 128 3 120 Resolution and Different
Vergence Angles

Point a 5 0 a 5 6.36 a 5 16.32

A 3.70 3.75 3.70
B 3.70 3.74 3.67
C 3.70 3.70 3.74
D 4.17 4.21 4.04
E 4.17 4.21 4.04
F 4.17 4.19 4.01
G 3.13 3.24 3.21

FIG. 21. Stereo images with 68 vergence.
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FIG. 24. Fish-eye stereo images with 68 vergence.FIG. 23. Fish-eye stereo images with no vergence.

vary significantly. We therefore consider the average error tion error. In the uniform resolution plane, there is no
for a number of discrete points lying on an artificial object. vergence angle for which the error of a particular point is
We choose an artificial scene for convenience. For a real minimum while maintaining an appropriate view of the
scene, points will have to be selected manually, which can background. When an object of interest is located in the
be a tedious process. scene, the error is minimized with a combination of changes

In the first experiment on the artificial scene, we assume in vergence and focal length. We also considered vergence
the stereo cameras have uniform discretization. In this in a stereo system similar to the human eyes. In this case,
experiment we assume that ex 5 0.5, the focal length ( f ) cameras have higher resolution in the center and reduced
of each camera is 50, and the distance (dx) is 100 mm. The resolution in the periphery. Vergence in this variable reso-
average error (EZ) in the depth is calculated for points lution stereo system has desirable effects. Error in depth
lying on a plane with depth Z 5 350 and on a grid size of estimate is minimized when both cameras ‘‘look at’’ an
1 mm within the boundaries 25 , X , 75 and 50 , Y , object of interest.
100. Figure 25 illustrates the changes in average value of In this paper, we were only concerned with the analysis
EZ with the vergence angle. of error in depth perception assuming that stereo corre-

In the second experiment on the artificial scene, we spondence is given. The results are particularly important
assume that the stereo cameras have nonuniform exponen- for designing optimal stereo displays—in this case the
tial discretization. In this experiment we assume that stereo correspondence is done by the human brain. In
Emin 5 0.5, c 5 0.05, the focal length ( f ) of each camera future research, we will consider the problem of stereo
is 50, and the distance (dx) is 100 mm. The average error correspondence for stereo images with spatially varying
(EZ) in the depth is calculated for points lying on a plane resolution. We will also study a more general active stereo
with depth Z 5 350 and on a grid size of 1 mm within the system in which each camera has a combination of pan,
boundaries 25 , X , 75 and 50 , Y , 100. Figure 26
illustrates the changes in average value of EZ with the
vergence angle.

7. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of de-
termining the optimal vergence for minimum depth estima-

TABLE 2
Maximum Percentage of Error in Depth of the Se-

lected Points in the Scene Using Stereo Fish-Eye Im-
ages (g 5 0.0135) and Different Vergence Angles

Point a 5 0 a 5 6.36 a 5 16.32

A 1.37 1.28 1.34
B 1.43 1.38 1.29
C 1.12 0.94 1.18
D 0.96 0.06 1.32
E 0.93 0.05 1.37
F 1.00 0.08 1.35

FIG. 25. The average error in depth estimation versus vergence angleG 1.31 1.26 1.22
for the artificial scene, when stereo cameras have uniform discretization.
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ZL 5 Z cos a 2 (X 2 dX) sin a
(14)

XL 5 (X 2 dX) cos a 1 Z sin a.

Using these relationships, Eq. (12) is rewritten as

xr 5
f (X cos a 2 Z sin a)
(Z cos a 1 X sin a)

(15)

xl 5
f ((X 2 dX) cos a 1 Z sin a))
(Z cos a 2 (X 2 dX) sin a)

.

By eliminating X from these equations, we have

Z5
dX( fcosa1xl sina)( fcosa2xr sina)

( fcosa1xl sina)( f sina
1xr cosa)1 ( f sina2xl cosa)( fcosa2xr sina)

.

FIG. 26. The average error in depth estimation versus vergence angle
for the artificial scene, when stereo cameras have nonuniform exponen-
tial discretization.

THEOREM 2. The maximum relative error in depth of
point P(X, Y, Z) is obtained by the equation

tilt, and torsional movements [16] and are not necessarily
EZ 5 UẐ 2 Z

Z U#
ex sin a

2 f
Z cos a 2 (X 2 dX) sin a

Zsymmetrical like the human visual system.

1
ex sin a

2 f
Z cos a 1 X sin a

ZAPPENDIX

THEOREM 1. Depth of point P is calculated from the
1

ex sin a
2 fdX

X(Z cos a 2 (X 2 dX) sin a)
Zequation

1
ex cos a
2 fdX

(Z cos a 1 X sin a)
Z5

dX( fcosa1xl sina)( fcosa2xr sina)
( fcosa1xl sina)( f sina

1xr cosa)1 ( f sina2xl cosa)( fcosa2xr sina)

.

1
ex cos a
2 fdX

(Z cos a 2 (X 2 dX) sin a)

Proof. In order to prove this theorem, a new coordi-
2

ex sin a
2 fdX

(X 2 dX)(Z cos a 1 X sin a)
Z

.nate system for each camera is defined, as illustrated in
Fig. 3. The origin of the new coordinate system is located
in the focal point of the camera and its Z axis is perpendicu-

Proof. The projection of point P in each camera haslar to the image plane. Let (XR , YR , ZR) and (XL , YL ,
at most ex/2 discretization error. We haveZL) be the coordinates of P in the new coordinate systems,

which correspond to the right and left cameras respectively.
The following relations between the projection of P and x̂r 5 xr 6 ex/2 x̂l 5 xl 6 ex/2. (16)
its coordinates in each of these systems exist:

Using Theorem 1, the depth of point P is estimated as

xr 5
fXR

ZR
xl 5

fXL

ZL
. (12)

Ẑ 5
dX( f cos a 1 x̂l sin a)( f cos a 2 x̂r sin a)

( f cos a 1 x̂l sin a)( f sin a 1 x̂r cos a)
1 ( f sin a 2 x̂l cos a)( f cos a 2 x̂r sin a)

.
XR , ZR , XL , and ZL can be converted to X and Z (the
main 3-D coordinate system) using the equations

(17)
ZR 5 Z cos a 1 X sin a

(13)
XR 5 X cos a 2 Z sin a By substituting for x̂r and x̂l in the above equation, we have
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Ẑ 5 dXS f cos a 1 xl sin a 6
ex sin a

2 D Ẑ > ZS1 6
ex sin a

2( f cos a 1 xl sin a)D
3 S1 6

ex sin a
2( f cos a 2 xr sin a)D (21)S f cos a 2 xr sin a 6

ex sin a
2 D

@FS f cos a 1 xl sin a 6
ex sin a

2 D 3 S1 7 Z
G(Z)

dX( f cos a 1 xl sin a)( f cos a 2 xr sin a)D.

S f sin a 1 xr cos a 6
ex cos a

2 D
(18)

By the expansion of the right-hand side of the above equa-
tion, some of the terms that are the result of multiplication
of two or three fractional terms in the parentheses are

1 S f sin a 2 xl cos a 7
ex cos a

2 D negligible. Thus,

S f cos a 2 xr sin a 7
ex sin a

2 DG Ẑ > ZS1 6
ex sin a

2( f cos a 1 xl sin a)
6

ex sin a
2( f cos a 2 xr sin a)

5 Num(Z)S1 6
ex sin a

2( f cos a 1 xl sin a)D 7 Z
G(Z)

dX( f cos a 1 xl sin a)( f cos a 2 xr sin a)D.

(22)S1 6
ex sin a

2( f cos a 2 xr sin a)D@(Den(Z) 6 G(Z)),

By substituting G(Z) from Eq. (19) the worst case relativewhere Num(Z) and Den(Z) represent numerator and de-
error of Z is given bynominator of the equation of Theorem 1, and G(Z) is

G(Z) 5
ex sin a

2
( f sin a 1 xr cos a) UẐ 2 Z

Z U# H ex sin a
2( f cos a 1 xl sin a)

1
ex sin a

2( f cos a 2 xr sin a)

1
ex cos a

2
( f cos a 1 xl sin a)

(19)
3

ex sin aZ( f sin a 1 xr cos a)
2dX( f cos a 1 xl sin a)( f cos a 2 xr sin a)

1
ex cos a

2
( f cos a 2 xr sin a) 1

ex cos aZ
2dX( f cos a 2 xr sin a)

(23)

1
ex sin a

2
( f sin a 2 xl cos a). 1

ex cos aZ
2dX( f cos a 1 xl sin a)

By replacing Z/Num(Z) for Den(Z), Eq. (18) will be sim-
1

ex sin aZ( f sin a 2 xl cos a)
2dX( f cos a 1 xl sin a)( f cos a 2 xr sin a)J.plified to

Ẑ5ZS16
ex sina

2( fcosa1xl sina)DS16
ex sina

2( fcosa2xr sina)D Using Eq. (15), the above equation is rewritten as

@S16Z
G(Z)

dX( fcosa1xl sina)( fcosa2xr sina)D. EZ 5 UẐ 2 Z
Z U#

ex sin a
2 f

Z cos a 2 (X 2 dX) sin a
Z

(20)
1

ex sin a
2 f

Z cos a 1 X sin a
ZFor practical situations where Z is not very large,

1
ex sin a
2 fdX

X(Z cos a 2 (X 2 dX) sin a)
ZZ

G(Z)
dX( f cos(a) 1 xl sin(a))( f cos(a) 2 xr sin(a))

1
ex cos a
2 fdX

(Z cos a 1 X sin a)
is small and the above equation is rewritten into the form
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1
ex cos a
2 fdX

(Z cos a 2 (X 2 dX) sin a) 1
ex cos a
2 fdX

(Z cos a 2 (X 2 dX) sin a)

2
ex sin a
2 fdX

(X 2 dX)(Z cos a 1 X sin a)
Z

. 2
ex sin a
2 fdX

(X 2 dX)(Z cos a 1 X sin a)
Z J dX dZ

LEMMA 2. The average depth estimation error for the I(Z) 5
ex sin a cos a

f
(Xmax 2 Xmin)(Zmax 2 Zmin)

points belonging to an object with the above constraints is
computed from

1
ex dX sin2 a

2 f
(Xmax 2 Xmin) lnSZmax

ZminD
EZ 5 Fex sin a cos a

f
(Xmax 2 Xmin)(Zmax 2 Zmin)

3
ex cos2 a

2 fdX
(Zmax2 2 Zmin2)(Xmax 2 Xmin)

1
ex dX sin2 a

2 f
(Xmax 2 Xmin) lnSZmax

ZminD 1
ex cos a sin a

2 f
(Zmax 2 Zmin)(Xmax 2 Xmin)

3
ex cos2 a

2 fdX
(Zmax2 2 Zmin2)(Xmax 2 Xmin)

1
ex sin a cos a

2 f
(Zmax 2 Zmin)(Xmax 2 Xmin)

1
ex cos a sin a

2 f
(Zmax 2 Zmin)(Xmax 2 Xmin)

1
ex sin2 a

fdX
lnSZmax

ZminD
2

ex sin a cos a
2 f

(Zmax 2 Zmin)(Xmax 2 Xmin)
3 SXmax3 2 Xmin3

3
2 dX

Xmax2 2 Xmin2

2 D.

(26)6
ex sin2 a

fdX
lnSZmax

ZminD
Consequently, we have

SXmax2 2 Xmin3

3
2 dX

Xmax2 2 Xmin2

2 DG
EZ 5 Fex sin a cos a

f
(Xmax 2 Xmin)(Zmax 2 Zmin)

/(Xmax 2 Xmin)(Zmax 2 Zmin).

1
ex sin2 a dX

2 f
(Xmax 2 Xmin) lnSZmax

ZminDProof. The average depth estimation error is calcu-
lated as

3
ex cos2 a

2 fdX
(Zmax2 2 Zmin2)(Xmax 2 Xmin)

EZ 5
eX5Xmax

X5Xmin eZ5Zmax

Z5Zmin EZ dX dZ

eX5Xmax

X5Xmin eZ5Zmax

Z5Zmin dX dZ
. (24)

1
ex cos a sin a

2 f
(Zmax 2 Zmin)(Xmax 2 Xmin)

Using Theorem 2, we have
2

ex sin a cos a
2 f

(Zmax 2 Zmin)(Xmax 2 Xmin)

I(Z) 5 EX5Xmax

X5Xmin
EZ5Zmax

Z5Zmin
EZ dX dZ5 EX5Xmax

X5Xmin
EZ5Zmax

Z5Zmin
1

ex sin2 a
fdX

lnSZmax
ZminD

3 Hex sin a
2 f

Z cos a 2 (X 2 dX) sin a
Z

3 SXmax3 2 Xmin3

3
2 dX

Xmax2 2 Xmin2

2 DG
1

ex sin a
2 f

Z cos a 1 X sin a
Z /(Xmax 2 Xmin)(Zmax 2 Zmin).
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