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Abstract 

Basu, A., Optimal discretization for stereo reconstruction, Pattern Recognition Letters 13 (1992) 813-820. 

A significant amount of research has been done on designing sensors for digitizing visual images. Over the years vidicon and 
CCD technologies have been developed to improve sensor performance. However the problem of how the sensors should be 
distributed over a two-dimensional array has been largely overlooked. Sensor resolution is often determind by industry and 
international standards, and has little to do with the problem for which it is being used. In this work we investigate the optimal 
horizontal and vertical resolution (given the total resolution) for solving the problem of stereo-reconstruction. We show that 
the best arrangement of sensor elements depends on both the parameters of a stereo system and the assumptions on the 3-D 
scene, 

Keywords. Pixel placement, stereo, sampling theorem. 

I. Introduction 

Design of video cameras is essentially based on 
two types of technologies: vacuum-tubes (used by 
vidicons) and semi-conductors (used by charge- 
coupled devices). Vidicon devices use a photosen- 
sitive layer of millions of cells, each representing a 
tiny capacitor whose charge depends on the inci- 
dent light. The basic unit of a charge-coupled 
device (CCD) is an analog shift register consisting 
of capacitors placed close together. An analog 
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representation of the incident light is obtained by 
the accumulation of charge in the capacitors. (For 
further detail see [8].) Presently, most solid-state 
cameras are designed using charge-coupled devices. 
CCD cameras reduce the lag significantly com- 
pared to vidicon devices, and can also detect light 
in a larger wavelength (ultra-violet to infra-red). 

Even though a great deal of research has been 
done on designing sensor elements, there is no 
previous work addressing the problem of how 
these sensor elements should be arranged in a two- 
dimensional (2-D) array. The resolution and 
number of pixels (picture elements) along the X- 
and Y-axes (for a 2-D array of sensors), are usually 
arbitrarily determined according to industry and 
international standards. Such standards have little 
(if anything) to do with the underlying problem be- 
ing solved. Often the only criterion used to obtain 
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the minimum resolution along a scan line is the 
Shannon sampling theorem. This theorem deter- 
mines how far apart pixels should be to allow 
digital to analog conversion of a processed image 
without the aliasing effect. (Detailed analysis on 
this topic can be found in [5].) In this paper we 
analyze the problem of pixel distribution (in the 
vertical 'Y '  and horizontal ' X '  directions) given 
the total resolution (number of pixels) when we are 
solving the problem of stereo reconstruction. The 
problem of obtaining the structure of the scene by 
corresponding features in images has received a 
great deal of attention in the past [1-4,6,7]. 

In stereo vision problems we are given a pair of 
cameras, and typically we need to obtain param- 
eters in the 3-D scene based on corresponding 
features between the left and right images. The 
position of a 3-D structure (or point) projected on- 
to an image is estimated by the location of the 
nearest pixel in the image. This results in an ap- 
proximation that is commonly referred to as the 
'discretization error'. The maximum possible 
magnitude of this error depends on the distance 
between two adjacent pixels, and may be different 
for the x and y components in the image. The re- 

maining portion of this work will study the prob- 
lem of minimizing the error in estimating the 3-D 
position of structures in a scene. This will be done 

• by relating the discretization error in an image to 
the estimation error in the scene. 

Section 2 introduces some notation used in this 
paper. Section 3 derives the best pixel placement 
when the object under consideration is simply a 
point. The results obtained in Sectioa 3 are gener- 
alized for an arbitrary object (assuming constraints 
on its location) in Section 4. Some experimental 
results showing the resolution distribution in 2-D 
for various values of the parameters, are described 
in Section 5. 

2 .  N o t a t i o n  

Before we proceed with the solution, the follow- 
ing terms and notation used in this paper need to 
be defined. 

- f :  focal length of camera. 
- (X, Y, Z): 3-D point. 
- (X, Y, Z): estimated position of the 3-D point. 

Y 

(o, o, o) 

Left Image 

(dx, O, O) ,x:_:, y, / (X,Y,Z) 

X 

i 

Right Image 

Figure I. Imaging configuration. 
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- (xl, Yl): projection of the 3-D point on the left 
image. 

- (Xr, Yr): projection of the 3-D point on the right 
image. 

- (-'?t,)t): estimated projection of the 3-D point on 
the left image. This approximation occurs due to 
the discrete placement of pixels. 

- 0?r,.0r): estimated projection of the 3-D point on 
the right image. 

- e x :  distance between two neighboring pixels 
along the x-direction. 

- e y :  distance between two neighboring pixels 
along the y-direction. 

- dx: distance between the nodal points of the left 
and right cameras. 

- R: resolution, i.e., total number of pixels in the 
sensor array. 

To better understand some of the above terms 
please see Figure I. Also, Figure 2 describes how 
the discretization errors occur during image forma- 
tion. 

3. Optimal estimation o f  location of  a 3-D point 

The relation of a 3-D point with respect to its 
image projections is given by: 

f X  f ( X -  dx) 
X r -" - -  (1) Z '  Xl= Z ' 

f Y  
Y = Y / = Y r  = . 

Z 

From (1) it follows that: 

f d x  
Z - ~  

X r -  Xl " 

Using this relationship the depth is usually estimated 
as :  

2 _ f  dx  
.~ r_  ~ / . (2 )  

Also, the X, Y values of a 3-D point are estimated 
by: 

)r x=zT' 
The discretized image points are at most within 
half a pixel of the actual projections. Thus, at 
worst: 

.~r--Xr+__~, .~r'-Yr +ey 
- 2 '  (3) 

= = 

- - 2 '  

From now on we will obtain the worst case 
(maximum possible) error in the different com- 
ponents of the 3-D estimates. First let us consider 
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Figure 2. Discretization error. 
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the error in depth measurement. From (2) and (3) 
it follows that: 

2,= fdx 
(Xr-X~)+-ex 

± ex -f-~ ) . = Z ( l  Z -t 

Assuming (exZ)/(fdx) is small, which is true if 
the depth is reasonable compared to the resolution 
of the image, we have: 

The error bounds on the estimate of X, can be ob- 
tainod from: 

Z exZ\ 

- - -  exZ'~ (1 ± ~  ) _ ZX' ( l ± 
f f d x /  

ex 
-- X(I  : i :7~  + ~xr ± 2f-'~XXrJ 

Similarly, 

exZ ey 

Hence ,  

e ~ z  
± 2-Y / ' 

Minimizing the error in .~" or 2 gives a solution 
which simply requires that the discretization size 
along the x-axis be as small as possible. However 
this is the worst possible solution for estimating Y. 
On the other hand, reducing error in 1~ gives a 
solution which is: 
• optimal for estimating Y, 
• better than uniform discretization for estimation 

of X and Z, in most practical situations. 
Therefore, we will obtain the optimal discretiza- 
tion strategy of estimating Y. 

Let 

ftex) - - - ~  , 

i .e . ,  
1 1 

f(ex)=[(~dx)ex+(2R y[)e x 
Z 

4 
2 fyR dx 

Hence 
1 1 

f'(ex)= I~dx ex2(2R[y[)]  " 

Equating the derivative to zero we have: 

f'(ex) =0 

SO 

I-_1 e e Z] 
[~'Y--~Y[<<'l, fdx+2-'~ + 2~[-~tX~ By (6), 

1 , ,/2,, z = f e x Z  1 Z ey=-~ [ " ~ x  " 
t, f dx + 2R~I Yl ~ 2fR dx l Yl " 

(5) 

If R is the resolution (number of pixels) in a 1 × i 
region and ex (ey) is the horizontal (vertical) 
distance between pixels, then 

(7) 

1 
e~ = ,,xDe" t6) 

SO 

% 
e~ 2RIy[ - f d x  

thus 
l l f fdx  (8) 

(9) 

[Note that if ex> 1 in the above formula then we 
set ex-1 and ey-I/R. Similarly, if ey>l  we set 
ey = 1 and ex-  I/R.] 

The formulae derived above are for specific 
values of Y and Z, i.e., they describe how the 
pixels should be distributed if our only goal is to 
estimate the 3-D position of a fixed point. In order 
to make the analysis meaningful, the solution 
needs to be applicable in some general environ- 
ment. We will discuss this issue in the next section. 
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4. Optimal discretization with depth and range 
constraints 

We will now generalize the above results under 
some assumptions on where an object of interest is 
located. The following two constraints are imposed 
on the 3-D scene: 

A. Depth Constraint. The objects of interest are 
located in the depth range (Zmin, Zmax). 

B. Range Constraint. The values of y in the image 
lie in a fixed range (-Ymax, +Ymax). 

That is, the sensor array used to obtain a digital 
image is of a fixed known size. 

A particular value of ex will not be optimum for 
all points satisfying the above two constraints. 
Thus instead of solving (equation (7)) 

I Z 1 l I f d x  
f d x - 2 / ~ e  2'  l yl = 0 or z = [yl2Re2x 

we will instead minimize: 

subject to the restrictions CA) and (B) above. That 
is, we want to find ex minimizing 

F(e,.) l Y 2Re~ d y dZ. 
~! Zmln ,' -Yma~ 

The above equation can be rewritten as: 

F(ex) = (2Rfe~) 2 y2 d y dZ 

-(2Re2x)-' f dx - - d y d Z + h  

where/3 is a term independent of ex and thus does 
not have any effect on the choice of e.,.. 

Let 

li = y2 dy dZ = (Zma x - Zmin) 3 ' 

12 = I' --Z [ d y dZ = (In Zmax- In Zmin)Ymax.2 
q 

Then 

F(ex) = 4R2e4xl~ - (2Rf dx)e212 + 13. 

Hence 

f '(ex) = 16R21~e3x-4Rf dx 12ex. 

Equating the derivative to zero, F'(ex)= O, gives 

16R211e~ = 4Rf dx 12e x, 
i .e. ,  

SO 

e2x=k 4R / 

3 f d x  ln(Zmax/Zmin) 
4-- 

8 e Ymax(Zmax- Zmin) 
finally 

f 3 f d x  ln(Zmax/Zmin ) -~1/2 

e x - (.8" ~ Ymax(emax- Zmin) .) " 

The formula above can be used to determine the 
best pixel distribution (given the total resolution R) 
for estimating the Y component of 3-D features 
under constraints (A) and (B) above. However, the 
experimental results in the next section demonstrate 
that the optimum discretization for estimating Y 
also happens to be better (in most cases) for ob- 
taining ,~" and 2, than the case where pixels are 
distributed uniformly along both axes. 

5. Experimental results 

For all the experiments we will fix some of the 
parameters to values relating to actual stereo 
systems, and vary the depth range to study its ef- 
fect on the pixel placement. We selected the focal 
length f =  2 mm (or 0.2 cm), range o fy  values lying 
in -0.5 cm to 0.5 cm (i.e., a 1 × I cm imaging area 
is assumed), total resolution R=400 (20x20 
resolution if pixels were distributed uniformly), 
and distance between the stereo pair of cameras to 
be 50 cm (half a meter distance between stereo 
cameras). The resulting pixel placement for depth 
range between 1 to 100 cm is shown in Figure 3. In 
this example the discretization error along the y- 
axis is about 3 times larger than the error along the 
x-axis. Therefore the errors in the estimates of X 
and Z components are also very much reduced 
compared to the case where pixels are placed 
uniformly along both axes. 

Figure 4 shows the resolution distribution when 
the depth range is I cm to 2 meters (200 cm). In this 
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case the distance between pixels along the Y-axis is 
more than 5 times that along the X-axis. There is 
a simple explanation for these results. As the depth 
of a point increases, to obtain a better estimate for 
Y we need a better estimate for Z, since Y=yZ/f.  
Estimate of the Z-component (also X-component) 
is improved if the discretization error along the x- 
axis is reduced. To further verify this argument, 
consider the next experiment: in Figure 5 the depth 
is between 1 to 30 cm, and the resulting discretiza- 
tion gives ex approximately equal to ey. The last 
example is unrealistic except for problems such as 
character recognition, where text at a close range 
needs to be interpreted. 

Finally, the effect of increasing the minimum 
depth is shown in Figure 6. The depth range in 
Figure 6 is 10-30 cm, and the discretization size in 
the y direction is almost 2.5 times that in the x 
direction. This shows that ex decreases rapidly as 
the minimum depth is increased. 

6. Conclusion 

We addressed the problem of determining the 
optimal method of distributing pixels (in a two- 
dimensional array) for the problem of stereo 
reconstruction. This type of analysis can be used, 
along with the Shannon sampling theorem, to ob- 
tain the best resolution for solving a class of vision 

problems. The derivations in this paper were based 
on the error in estimating only the Y-component of 
3-D structures. The results can be generalized by 
minimizing the average error of all the three com- 
ponents (X, Y,Z) instead. This would make the 
resulting equations much more complicated, and is 
thus left for future research. 
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