
1

DOCUMENT
Anup Basu

Multimedia

- two different types
-

1) without any communication network
 i.e.) play a CD on computer, retrieve from local disk

2) multimedia with communication

- types of problems very different

e.g., –no security involved in non-network
-compression may be less of an issue

Components of Multimedia Communication System

Audio Image Video Data Graphics Objectives

 Compression

 Decompression

 Encryption

 Network Communications

 Decryption
Client

site

 Presentation of Information to client site

2

-info (media) sources
-compression/decompression technology
-encryption/decryption technology
-communication networks and protocols
-technologies and protocols for media synch

Components related to a Multimedia Communication System

-Multimedia databases
-User interfaces
-Media creation devices
-Communication with media creating devices

-i.e. scanner

Media Types

-data (text) -image -graphics
-audio -video

Data ! cannot afford to lose information
Compression Audio / image / video ! can afford to lose information

Graphics ! maybe

Some Compression Methods

-RLE, Huffman encoding etc. for LOSSLESS
-Sub-band coding, CELP for Audio
-JPEG, Wavelet, fractal for Images
-H.263, MPEG-1, MPEG-2 for video
-MPEG-4, Emerging standard considering all media types, including graphics.

3

Overview of Compression

-Goal of compression is to reduce redundancies in information

-Types of redundancies
-coding redundancies
-spatio / temporal redundancy
-perceptual redundancy (Human)

Reducing coding redundancies is completely lossless
Reducing spatio / temporal redundancies can be lossy
Reducing perceptual redundancies is lossy

What kinds of events convey more information?
Events: 1) There was a car accident

2) It snowed in Edmonton on January 1
3) It snowed in Las Vegas on July 10
4) A Jumbo Jet crashed

Event 3 contains the most because it’s the rarest event
Event 4 eventful, but not as rare
Event 2 not that important, because it happens so often
Event 1 is almost not worth mentioning

Let P(E) = Probability of an event E occurring

Info content in E proportional to 1
 P(E)

Suppose b digits are used to code an Event or Symbol. Then, information
content = log b 1

 P(E)

H = Entopy = Average Information content of a set of events (or symbols)

E, E2, E3, …., En

4

P (E1), P(E2), ….P (En)

where 0 ≤ P (Ei) ≤ 1 & Σ P (Ei) = 1

 N

H = Σ P(Ei) x Info content of Ei) = -Σ P(Ei) log P(Ei)
 i=1

where b is base used for
coding (e.g., 2 for binary)

 When P (Ei) = 1 , for i = 1, 2, …, N
 N

 the Entropy reaches its maximum value.

where b is what base
 (i.e. 2 for binary)

 For example, if base = 2 (i.e. Banary)

 Hmax = log N

e.g. 4 symbols:

code Prob Entropy – log 2 ¢ = 2 if binary representable

00 A ¼
01 B ¼
10 C ¼
11 D ¼

Usually during coding, some symbols appear more likely than others. In this
case, it is possible to have variable length codes representing these symbols in order to
reduce the average code length and get close to the entropy.

H = ----Σ P (Ei) log bP(Ei)

Hmax = logbN

Anup Basu

Anup Basu

Anup Basu

5

Huffman Coding

Idea is to create variable length codes depending on the probability of
appearance of different symbols. Symbols that appear frequently got shorter codes.

The probability of a symbol (X) is nothing but the proportion of time X appears in
the string of symbols to be coded. (P.344 in Image Processing text)

6 symbols: A B C D E F P(A) = 0.4 P(B) = 0.3 P(C) = 0.1 P(D) = 0.1
P(E) = 0.06 P (F) = 0.04

Using fixed length codes, 000 = A, 001 = B, …101 = F

H= entropy = - Σ P (Ei) x lg P (Ei) = 2.14

for variable length codes, we use Huffman method:

Step 1 Source Reduction
-list symbols in order from largest to smallest probability
-we then combine successive two small + probability symbols, until 2 left

A 0.4 ------- 0.4 ------- 0.4 ------- 0.4 ------- 0.4
B 0.3 ------- 0.3 ------- 0.3 ------- 0.3 0.6
C 0.1 ------- 0.1 ------- 0.1 ------- 0.3
D 0.1 ------- 0.1 ------- 0.2
E 0.06 0.1
F 0.04

Step 2 Code Generation
In this step we work backwards, assigning variable length codes:

 (v) (iv) (iii) (ii) (i)
A 1 ------- 1 ------- 1 ------- 1 ------- 1
B 00 ------- 00 ------- 00 ------- 00 0
C 011 ------- 011 ------- 011 ------- 01
D 0100 ------- 0100 ------- 010
E 0100 0101
F 01011

not efficient

6

Thus final Huffman codes will be:

 A = 1 B = 00 C = 011 D = 0100 E = 01010 F = 01011

Average Huffman Code length = 2.2 bits/symbol
 A B C D E F

 0.4 x (1) + 0.3 x (2) + 0.1 x (3) + 0.1 x (4) + 0.06 x (5) + 0.04 x (5)

Compared to entropy = 2.12 bits/symbol

 A B C D E F

- - - - ((((0.4 log 2 (0.4) +0.3 lg (0.3) + 0.1 lg (.1) + 0.1 lg (.1) + 0.06 lg (.06) + 0.04 lg (.04))

Note: codes are unique and identifiable without delimiters as individuals.

e.g., A = 1, and nothing else starts with 1
B = 00, and nothing else starts with 00

Run Length Encoding

from Huffman,…

A 04 1 1 20 20
B 0.3 00 2 15 30
C 0.1 011 3 5 15
D 0.1 0100 4 5 20
E 0.06 01010 5 3 15
F 0.04 01011 5 2 10
letters prob code # of bits total = 50 110
 in code # of bits

7

Suppose we have 50 letters in a text with probabilities

Using Huffman encoding:

110/50 = 2.2 bits / symbol

Overhead for code:
-need to store (or transmit) the codes and corresponding letters.

e.g. (1,A), (00,B), ….

Huffman (or other similar codes) by itself does not take into account the arrangement of
letters ABCDEF in the text.

For example:
AA….A BB…B CCCCC DDDDD EEE FF

 20 15 5 5 3 2

5 bits can count up to 32
3 bits can represent 6 characters

Now, lets look at an alternate way of coding a string such as this.

20A

5+3
8 X6

8
48 bits ⇒ 48/50 = 0.96 bits/symbol

Combining Run-length with Huffman

-Usually done for Binary code stream

8

011000110011110101…..Binary stream

(1,2), (2,1), (3,0), (2,1), (2,0), (4,1)…..
 1 2 3 2 2 4 3 Run Lengths

if we establish the first bit is 0, then it follows that it will alternate for each Run length
thereafter.

0 1 2 3 2 2 4 } new stream

How can I use Huffman here??

We use Huffman encoding to code the run length

Using Huffman with Run Lengths

1. First, use run length to encode the bit stream

2. Second, use Huffman to encode the run lenths

Coding Text, e.g. Unix Compress

• Can use a dynamic dictionary (code book)

Option 1: Start with a default skeleton dictionary of frequently used words
 (context sensitive)

1 IS

2 THE

3 CAN Default dictionary

ANDRE Dynamic dictionary

9

* Universal Method (note: a priori knowledge of source statistics is required)

♦ Messages are encoded as a sequence of addresses to words in the dictionary

- Repeating patterns become words in the dictionary

-Superior to run length encoding in most cases

 100

 1 variable length word
 2

 100

-original algorithm was developed by Ziv & Lempel

-Practical implementation was done by Welch, so its called Lempel-Ziv-Welch (LZW)
coding

-Unix compress is a variation of this method

(no guarantee that LZW will do better than Huffman)

General Models for Compression / Decompression

-they apply to symbols data, text, and to image but not video

1.1.1.1. Simplest model (Simplest model (Simplest model (Simplest model (Lossless encoding without prediction)Lossless encoding without prediction)Lossless encoding without prediction)Lossless encoding without prediction)

(server)

 Transmit

 (client)

2.2.2.2. Lossy coding without prediction:Lossy coding without prediction:Lossy coding without prediction:Lossy coding without prediction:

(Server)

Quantizatio

 Lo

Signal Encode

Signal Decode

Quantizer Encode
Signal
Coded
Decode
Decoded
Signal
1

n: → Initial Data 0, 1, 2, 3 … 256
Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

ssy

2

3.3.3.3. Transform Coding:Transform Coding:Transform Coding:Transform Coding:

audio / image (lossy)

(input)

 (Output)

 compressed audio/image
 file

One of the most popular transforms is called the discrete cosine transform (DCT)

In the frequency domain, we can have:
-Fourier transform
-Sin transform
-Cosine transform

1 – D DCT:
• forward transformation

 7

F(u) = c(u) ∑ f (x) cos (2x+1) π u , u = 0. 1, 2 …, 7
 2 x=0 16

 ½ for u = 0
• inverse transform c(u) = 1 for u > 0

 7

ƒ (x) = ∑ c(u) F (u) cos (2x+1) u
u = 0 2 16 , x = 0, 1, 2….7

 8 pts 8pts 8pts

Transform Quantizer Encoder

Decoder Inverse Transform

3

2-D DCT [Works on 8 x 8 image blocks]

• forward:

 N-1 N-1 uΠ (2 x +1) VΠ (2y(1)

F (u,v) = 2 C (u) c (v) ∑ ∑ f (x,y) cos 2N Cos 2N
 N x=0 y=0

• inverse

 N-1 N-1 uΠ (2 x +1) VΠ (2y(1)

f (x,y) = 2 = ∑ ∑ F (u,v) v(u) c(v) cos 2N
Cos

 2N
 N u=0 v=0

F (010) = 1 ∑ ∑ f (x,y) = N (average Grey level of 8 x 8 block)

- lower u,v values represent lower frequencies or slow transition (smooth variations) ina
signal. Human perception is more sensitive to changes in smooth variations, so we use
more precise quantization at lower u v numbers and less precise with higher u,v levels;
the higher u, v values represent sudden changes in a 1-D signal or sharp edges in a 2-
D image

-compression is achieved by specifying 8 x 8 quantization table, which usually has
larger values for higher frequencies (i.e. higher (u,v))

-default quantization tables are created taking number perception into account

-however, you can choose your own quantization tables.

Some other classes of Transforms

-wavelets (to be discussed in labs. + programming assignment)
-Gabor filters

4

f (x,y) usually 0 to 255 for 8 bit gray scale

4.4.4.4. Predictive CodingPredictive CodingPredictive CodingPredictive Coding

1-D Digital Audio

(Given Signal) Prediction: last sample point

(Predicted signal)

(error after pred)

 Predictive coding types 1)lossless 2) lossy

lossless -> does not quantize error in prediction

lossy -> quantize errors in prediction

LOSSLESS MODEL:LOSSLESS MODEL:LOSSLESS MODEL:LOSSLESS MODEL:

 fn

compression Input Integer +Σ error Encode ⇒
Predictor fn Transmit

 …f n-1 or store

 en

Transmission Decoder -Σ fn output
 fn decompression

 predictor integer

The most effective AUDIO codes use a form of linear prediction (LP). Some popular
ones are:
 -CELP (Code Excited Linear Predictions)

5

Lossy Predictive Coding:Lossy Predictive Coding:Lossy Predictive Coding:Lossy Predictive Coding:

fn: estimate of fn

en = fn – fn = error in estimate

Coder

f n > + ∑∑∑∑ en Quantizer en Symbol Compressed signal
 Encoder

fn Predictor fn ∑∑∑∑ +
 +

Decoder

compressed Symbol en +∑∑∑∑ fn Decompressed
signal Decoder + signal

 fn Predictor

One of the simplest lossy predictive coding methods is known as “Delta Modulation”

1) Uses a simple predictor like fn = X (fn-1)

2) Quantization is a simple Delta function with 2 levels depending on the error.

6

e quanticed error

 +2
+2 for en ≥ 0

 e e n = -2 otherwise
 0

 -2

fn : 10, 9, 15, 13, 6, 12, 15, 16, 18, 24, ….

lossless predictive coding fn = fn – 1, i.e., x = 1
 en = fn – fn = fn – fn -1

en = 1, 6, -2, -7, 6, 1, 2, 6, …

these en’s are then encoded using the symbol encoder

lossy predictive coding using diagram at the top (Delta mode)

fn = d fn-1 = fn-1 en = fn – fn = fn – fn-1

en :

Example

7

Coding of Audio Signals
Digital Samples

⇒ A/D converter ⇒
+

 Analog signal dt: sampling interval

- number of levels for each Digital Sample depends on the number of bits / sample of
the A/D converter

-A/D can be 8 bits / sample, 10, 12, etc. …

 256 level 1024 levels 1096 levels

dt: The sampling interval depends on the width of the frequency interval that you wish to
digitize.

dt ≤ 1 : Sampling theorem
 width of freq. interval

So that you can reconstruct audio exactly, in a given frequency band, from the
digital samples.

Amount of Data (w/o any compression) is determined by number of bits per sample and
sampling interval

e.g.) 8 bits/sample and 8,000 samples / sec

! 64,000 bits/sec of uncompressed data

8

Time Domain Waveform CodingTime Domain Waveform CodingTime Domain Waveform CodingTime Domain Waveform Coding

"PCM – Pulse Code Modulation
"APCM – Adaptive Pulse Code Modulation

PCM is simply an anti alias lowpss filter which can be applied before the A/D conversion
process.

Input Anti-Alias S(4) Sampler S(n) A/D xbits/sample
Audio lowpass filter Quantizer digital Audio

 similar to clock that
 smoothing of controls sampling

 a signal rate of A/D

Adaptive PCMAdaptive PCMAdaptive PCMAdaptive PCM

-Adaptive Quantizer Pulse Code Modulation

"Variable step-size, which varies depending on short-term audio amplitude

"stepsize is proportional to average short-term amplitude

"two ways of implementing this

a) variable quantizer

b) variable gain

9

Differential Pulse Code Modulation (DPCM)Differential Pulse Code Modulation (DPCM)Differential Pulse Code Modulation (DPCM)Differential Pulse Code Modulation (DPCM)

f (n) : estimate of f(n)

e(n) = f(n) – f(n)

e(n) is quantized using a fixed quantizer

Adaptive Differential Pulse Code Modulation (ADPCM)

The quantizer stepsize is ADAPTED depending on the level of the amplitude (or
the variations of the signal over a local window) etc.

-lower levels (or smaller variations)
⇒ smaller stepsize in Quantizer

-large variations (higher levels)
⇒ larger stepsize in Quantizer

Details of DPCM
-first step is to find a “good” predictor

i.e.) fn to estimate fn, based on past values fn-1fn-2….

We will restrict ourselves to only linear predictors

fn = Σ xifn-i, Σ xi ≤1 0 < Xi < 1

To compute the best predictor, with m coefficients, we need to find “optimal” values of
Xi’s I=1,…m

Optimizing a certain criterion. The criterion usually used is “minimum means square
error”

E(e2

n) = E (fn – fn)
2 = E (fn - Σ xifn-i)

2 ------ (*)

Idea is to find Xi’s minimizing (*)

To do this, we take derivative WRT Xi and set it equal to zero.

en = fn - fn

10

d fn - Σ xifn-I
2 = -2 fn-1 fn - Σ xufn-i

 dx1

 E d (fn - Σ xifn-I)
2 = E 2 fn-1 (fn - Σ xifn-I) = 0

 dxi

 m

-2 E (fnfn-1) - E (Σ Xi f n-1 f n-I) = 0
 n-1

 m

Σ (fn fn-1) = Σ x i E (f n-1 , f n-i)
 i=1

Partial, WRT L 2 , gives

 m

 E (fnfn-2) = Σ Xi Σ (f n-1 f n-i)
 n-1

 m

 E (fnfn-m) = Σ Xi E (f n-m f n-i)
 1-1

or, can be expressed in vector form as:

E (fnfn-1) E (fn –1 fn-1), E (fn-1 fn-2), … E(fn-1 fn-m) X1

E (fnfn-2) E (fn –2 fn-1), E (fn-2 fn-2), … E(fn-2 fn-m) X2

E (fn fn-m) E (fn –m fn-1), E (fn-m fn-2), … E(fn-m fn-m) Xm

i.e. P = R X; where P & X are vectors and R is a matrix.

So, what should X be??? X = R-1 P

In practice these computations are not practical in reasonable time, thus simplifications
are made and global coefficients are computed based on a priori information.

11

Basic Concepts for Multimedia Synchronization

Media Types
-Audio video 30 frames / sec
-Video 1 1 1 1 1 1 1
-Text 1/30 1/30 1/20 1/40 1/15 …

Time in sec between display of consecutive frames

Jitter: measure of variation of actual appearance of a frame from its expected location.

-People are most sensitive to jitter in sound.

Simple strategy for synchronization is to have one of the media types as master and the
others as slaves.

e.g., Audio is master. For each and packet you’ll have audio in formation, video packet
number and text packet number.

A strategy for reducing jitter is to use a buffer. The input packets are added to a buffer
from which multimedia is played out.

The larger the buffer, the greater the delay in the playback. Thus buffering may not be
acceptable for real-time applications such as video conferencing.

 Audio
video #

text #

12

JPEG Image Compression StandardJPEG Image Compression StandardJPEG Image Compression StandardJPEG Image Compression Standard

-standards are created by an international body of “experts” in a field

-CCITT was the initial body that developed the JPEG standard
-based on D.C.T.
-JTCL/ST../… JPEG2000 ! use wavelets
-Currently standards are being developed in the MPEG-4 and MPEG-7 areas

Motion Encoding

H.261,H.263, MPEG-1, MPEG-2

Multimedia (Encompassing Many Types of Media)

MPEG-4

Motivation

Why did the JPEG committee decide to choose certain options in their standard?

1) As size of image increases, transforms become more and more expensive. So, what
sizes do we make the window and what transformation algorithm to use?

The JPEG committee chose to use an 8 x 8 DCT because MSE was not reduced
significantly for larger windows (sub-image size) and DCT performed better than other
well known transforms.

2) Human Eyes (Visual System) are more sensitive to luminance (brightness)
changes rather than chrominance (color) changes.

Thus, JPEG has options for reducing the resolution of the chominance part,
compared to the luminance part.

13

 512 R Image
512 Luminance (Y) 512 x 512

512
 512 G

 Chrominance (Cb, Cr)
512
 512 B

3 x 513 2 = 30

 5122 + 2 x 2562 256 256
 = 1.5c

 256 256

As long as luminance is left unchanged, the chrominance change is less noticeable.

This saves 50% because

3 x 512 2 = 3 S 5122 + (2 x 2562) = 1.5 S

 initial final

3) Human eyes are more sensitive to loss at lower frequencies than loss at higher
frequencies.

 00 01

 10

lower quantization values
⇒

higher quantization values
8.8

8 x 8

JPEG Modes:

1) Lossless

2) Baseline Sequential
Every JPEG coder must support at least
the Baseline standard

3) Progressive

4) Hierarchical

Methods 2, 3 and 4 are lossy transform coding based on DCT

Method 1 uses predictive coding ! NO TRANSFORMATION

Progressive Mode:Progressive Mode:Progressive Mode:Progressive Mode: usually updates different frequency component (from LOW to
HIGH) progressively.

Hierarchical Mode:Hierarchical Mode:Hierarchical Mode:Hierarchical Mode: create multi-resolution representation of images, and codes
“Difference” between conseptive levels.

Lossless Mode:Lossless Mode:Lossless Mode:Lossless Mode:

JPEG allows Huffman & Arithmetic encod

Unlike audio, image compression must b

Source
Image
Data

Predictor

Entropy
Encoder

Compressed
Image
Data

Sp

Table

ecification
14

ing

e 2 dimensional

15

Prediction:

-Want to predict value of X given values of A,B,C in the 2 x 2 neighborhood.

Predictors for lossless coding

Predictor Code Prediction

0 No Prediction
1 A
2 B
3 C
4 A+B-C
5 A+[(B –C) /2]
6 B+[(A -C) /2]
7 (A+B) /2

example:

250 249 we can have positive as well as
200 210 negative errors.

Baseline Sequential Mode:

Y: luminance
Original ⇒
Image Cb: chrominence

Cr

C B
A X

16

Similar compression methods are used for all components, with the following
differences:

(i) The Chrominance resolution is usually reduced

(ii) The quantization tables are different for the chrominance and luminance parts.

OUTLINE of Steps in the JPEG Baseline Compression Method:OUTLINE of Steps in the JPEG Baseline Compression Method:OUTLINE of Steps in the JPEG Baseline Compression Method:OUTLINE of Steps in the JPEG Baseline Compression Method:

1. Transform the (R,G,B) image into 3 channels based on Luminance (Y) &
Chrominance (Cb, Cr).

2. Each channel is divided into 8x8 blocks; images are padded if necessary to make
rows and columns multiples of 8.

3. Each 8x8 image block is transformed into 8x8 frequency blocks by using the
Discrete Cosine Transform (DCT).

4. The DCTs are usually computed to 11-bit precision if the R, G, B colors have 8-bit
precision. This extra precision in DCT computation is kept to compensate for loss of
accuracy when the frequency coefficients are divided by a Quantization matrix.

5. The DCT coefficients are ordered in a zig-zag format, starting with the top left corner
corresponding to F(0,0).

6. The DC coefficients (F(0,0)) are coded separately from the other coefficients (AC
coefficients).

7. The DC coefficients are coded from one block to the next using a predictive coding
strategy. [The DC coefficient in one block can be predicted using the DC coefficient
in the previous block.]

8. The AC coefficients are quantized in the zig-zag order, then treating these values as
a sequence of bits a Run-length Coding method is used with the run-lengths being
coded using Huffman or Arithmetic coding.

	Multimedia
	Media Types
	Overview of Compression

