Review of 3D Transformations and Projections

A. Basu CMPUT 604

Usually represented around x, y or z axis

- R_x(Φ) = ?
- R_Y(Φ) = ?
- R_z(Φ) = ?

Rotating from one direction to another

- Angle between two vectors $V_0 \& V_1 = ?$
- Direction normal to two vectors = ?

Move each point by (Δx , Δy , Δz)

Matrix notation for translation is ?

Scale x-axis by Sx Scale y-axis by Sy Scale z-axis by Sz Matrix notation for Scaling is ?

Homogeneous transform

One 4 x 4 matrix that can represent Rotation, Translation and Scaling Combination of transforms Reversing transforms

Projecting 3D on to 2D

Orthographic projection

- Object far away & nearby look the same
- Equations ?

Perspective projection

- 2D (x,y) image is scaled by depth (Z)
- Equations ?

Two 2D image planes Simplest case --- stereo images translated along x-axis by dx Equations ?

General case --- vergence & torsion

