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Active Calibration of Cameras: 
Theory and Implementation 

Anup 

Abstruct- The problem of calibrating a camera has been 
widely addressed in the past. Almost all techniques described 
in the literature use a known calibrating pattern and a static 
camera. We introduce a novel technique, based on an active 
camera, which does not need any predefined patterns. All that 
is required is a scene with some strong and stable edges. Two 
alternative algorithms are presented and analysed-the second 
method is shown to be more robust to noise and useful in practical 
situations. Using our methods, an active camera can automatically 
calibrate itself. Experimental results are shown, demonstrating 
the validity of the algorithms. 

I. INTRODUCTION 
AMERA calibration involves relating the optical features C of a lens to the sensing device. The parameters of interest 

are the image center and the focal length along the 2 and y 
axes, all expressed in terms of image pixels. The focal lengths 
are usually different along the vertical and horizontal axes 
because the scaling factor is not necessarily the same in the 
two directions. Calibration is important for any process where 
a 2-D image needs to be related to the 3-D world. Examples 
of such applications include pose estimation [ 181, 3-D motion 
estimation [6] and automated assembly. 

Camera calibration techniques can be broadly classified 
according to two criteria: non-linear vs. linear systems, and 
algorithms which consider lens distortions vs. those which 
do not. Even though linear techniques [14], [22], [28] are 
simpler to implement, most cannot model camera distortions. 
Non-linear methods are able to consider complicated imaging 
models with many associated parameters [131, [24], [2S], [29]. 
However, they require computationally expensive search pro- 
cedures, and a reasonably good initial guess for convergence 
of the solutions. Techniques which model lens distortions 
often need to make simplifying assumptions. For example, 
only radial distortion is considered in [27]. Such restrictions 
in modeling often limit the domain of application of many 
algorithms. 

One major drawback of existing algorithms is that cameras 
are calibrated using predefined pattems 1271, [171, [SI, [l], 
[12], [23] by relating their image projections to the camera 
parameters. Even recent algorithms [lS], [3], [9] suffer from 
this limitation. In order to avoid solving complicated equa- 
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tions, recently some researchers have started studying classes 
of problems that can be solved without camera calibration 
[20], [ 111. Eyes in humans and other animals do not need any 
artificial assistance for calibration. How can we explain the dif- 
ference? In this work we try to provide one plausible answer to 
the above question. Specifically, we show that eye movements 
simplify the calibration problem: an active camera capable of 
panning and tilting can automatically calibrate itself. Active 
vision systems and algorithms [2], [21] have received a great 
deal of attention in the recent past. Active machines allow 
us to keep track of objects of interest, without having a lens 
with a wide field of view. They also facilitate region-of- 
interest processing. Furthermore, vergence movements have 
been shown to simplify problems in stereo vision. 

When a camera is only rotating (not translating), the po- 
sition of image contours after rotation can be obtained as a 
transformation of the initial contours [ 161. This result assumes 
that the rotation and the camera parameters are precisely 
known. We relate the lens parameters to the image boundaries 
before and after a camera rotation. For small pan and tilt 
displacements, simple solutions for various unknowns can be 
obtained. Initial estimates can be iteratively improved (by 
further camera movements) until desired accuracy is obtained. 

Unlike several other techniques [12], [SI, [23], we do not 
need a starting estimate of both focal length and image center. 
All we assume is an estimate of the center that is not too 
far from the true value. Reasonable results were obtained 
using synthetic data, even when the initial guess was up to 30 
pixels away from the actual parameters. The active calibration 
procedure does not need any prior information about the focal 
length. In addition, the algorithm does not need to match points 
or features (such as comers or edge elements) between images. 
Only reasonably accurate localization of contours is assumed. 

In this paper two methods are presented and analysed. The 
first technique [4] uses perspective distortions to measure 
calibration parameters. Since perpective changes are usually 
small, this algorithm does not produce reliable estimates for 
real data or synthetic data with low levels of noise. In order to 
circumvent this problem, a second strategy [SI which does not 
use perpective distortions, is introduced. It is shown that the 
alternative method gives reliable estimates for synthetic data 
with high levels of noise and real scenes. 

The organization of this paper is as follows: Section I1 gives 
a survey of previous literature. Some mathematical derivations 
relevant to our method are presented in Section 111. Section 
IV outlines an active camera calibration procedure. Experi- 
mental results demonstrating the validity of our algorithm are 
presented in Section V. 
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Fig. 1. Perspective projection 

11. THEORETICAL DERIVATIONS 

We consider a perspective projection model (Fig. 1). The 

- ( 2 ~ )  Image coordinates. 
- f z  Focal length in pixels in the 2-direction. 
- f ,  Focal length in pixels in the y-direction. 
- (hZ. 5, )  Error in estimated lens center. 
- R = ( ~ i ~ ) ~ ~ ~  Rotation matrix. 
- ( X .  Y. 2) Point in the 3D scene. 
- (xP; y p )  Image coordinates after pan motion. 
- (xt3 v t )  Image coordinates after tilt motion. 
- H t  Tilt angle. 
- eP Pan angle. 

- T AI. Translation part of camera motion. 

Lemma 1: 

following notation is used: 

(1.;) 
Given a static scene. if the camera rotates by R 

and translates by T.  the new image contours are given by: 

7-1 1 z + 7-1 1 y + T:3 I fz - f ,. y 
f Y  2,, = 

r 1 3 2  + ? - 2 : 3 t  + r:m - y 

Proo$ Follows from the fact that 

(i:) = R T ( t )  - T  

and the perspective projection equation. Note that camera 
rotation (translation j is equivalent to the inverse rotation 
(translation) of points in the scene. A similar result is proven 
in [16]. 

In this paper we consider f x ,  f, instead of a single focal 
length and the aspect ratio of the camera. Note that these two 
representations are equivalent. 

Suppose that depth (2) is large compared to 
AX. AY. or AZ. and the camera moves by a small tilt angle 
8 , .  Then, 

Proposition 1: 

z/ c:,(,+O/,) 

- 
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Pro08 For a small tilt angle Qt the matrix R is approx- 
imately given by: 

[“ 0 et : -y 
In addition if y, %, & 
Lemma 1 that 

are negligible, it follows from 

Since et is small, the right hand side of the equations can be 
expanded using the Taylor series, and higher order terms can 

Remark: In our system the padtilt axes are within 6” from 
the center of the optical axis (based on physical measure- 
ments). For a 2 degree padtilt rotation, the maximum value 
of AXlAY is around 0.2”, and AZ is negligible. If depth 
(2) of contour observed is 40’’ or more, the terms y, T, 
& 

Under the same assumptions as in Proposition I ,  
if the camera moves by a small pan angle O p ,  then: 

be dropped to obtain the desired result. 

are less than 0.005, and thus can be ignored. 
Corollary: 

Pro$ Follows from Proposition 1. 

111. STRATEGIES FOR ACTIVE CALIBRATION 

Given some knowledge of stable image contours before and 
after a small camera motion, we would like to obtain a relation 
between the lens parameters and the image information. We 
will show that by using small padtilt movements, an active 
camera can easily estimate its center. Calibrated values of f s  
and fy can then be obtained by solving a system of linear 
equations. 

As a first step, we will relate the focal length to other camera 
parameters and the panhilt angles. Then we will show how 
focal length can be eliminated from these equations if multiple 
independent contours are considered. The simplified formulae 
can be used to obtain the calibrated values of the lens center. 
Note that present active cameras (such as COHU MPC shown 
in Fig. 2) are equipped with potentiometers, which can be read 
for values that provide estimates of the panhilt angles. Fig. 3 
describes the schematics of the device shown in Fig. 2. 

We now prove a few propositions and corollaries, before 
outlining the active calibration algorithms. 

Proposition 2: Under similar assumptions as in Proposition 
1.  {f the center of the lens is estimated with a small error (6,. 
b y )  then: 

{.?/ - rb, - g6, } 0, f. = , 
(T, - T )  Y -  
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Fig. 2. An active camera. 

where the symbol ''- I '  denotes the average taken over a relevant 
i m q e  contour. 

Proof From Proposition 1 ,  
2.y 

zt = IL'+ Ht- 
f, 

When the image center is estimated with error (b,,, h,) the 
above reduces to: 

Q t  

.fY 

:Et  - ti, "! z - ti, + -((. - b,)(:y - h,) 

y - :Ybx) 
Q t  

2 t  - z = -((zy - zb 
f ,  

=+ 

(Ignoring the terms in b,S,, since the error is small.) 0 
The result follows from the above equation, considering 

averages taken over specific contours. 
Proposition 3: Using tilt (or  pan) movements and consider- 

ing three independent static contours, two linear equation in b, 
and 6, can be obtained if negligible terms are ignored. 

Proof Let C1 and C2 be two different contours, and 
(x;( l ) ,  y( l ) ) ,  (d2) :  Y ( ~ ) )  denote points lying on them. From 
Proposition 2 it follows that: 

And: 

Equating the right hand sides of the two equations and 
simplifying, we have: 

~ _ _  ~ 

z (2 )y (2 )  - K1&)y(l) = ( d 2 )  - K1,r(1))bv 

+ (@ - K l y o ) b ,  ( 3 )  
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Fig. 3 .  Schematics of the active camera 

( x ( L )  -,,(L)) Where K1 = - - 
( J 4 l l t - d L ) ) '  

Let C, be the third contour, and ( ~ ( ~ 1 ,  y(") denote points 
lying on it. Then: 

Where K2 = ( r " ) * - z ( " )  - -  
( I ( l ) t - x ( t ) )  ' 

Once the lens center is estimated f X  and f, can be obtained 
using: 

{pj - CS,' - JS,,'} Q t  

fy = 

Here the superscript "'" denotes the estimate of a certain 
parameter. 

The active calibration procedure discussed above can be 
briefly summarized as: 
Strategy A: 

Using three distinct image contours, or three different 
positions of the camera, estimate S,, and S,, using ( 3 )  
and (4). 
Substituting these estimates into (5) and (6), obtain esti- 
mates for f I  and f,. 
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Error I" esrlmafes u l r k  v b r y l n ~  fora ergtr  Even if h,, h, are as large as 50 (that is, the optical center is 
50 pixels away from the center of the sensor) the last three 
terms are negligible. This is true in our system since Bt is less 
than 0.05 radians, and f, is around 900 pixels. This gives us: / 

Simplifying the above: I 
Fig. 4. Variation of error in focal length, Similarly, f z  can be obtained by solving: 

J (9) 

Corollary 2: Given two independent contouss. panhilt cam- 
era movements. and estimates of f r  and ,f, given by fL ' and ,f,,' 
respectively. b ,  and 6 ,  can be obtained by solving: 

PsooJ Follows from Proposition (2), considering two 

Practical Considerations: Consider (8). For most practical 
systems the absolute value of y is less than 300, whereas 

4 6 n 0 14 

Standard aev-atlon of ~ O I S E  ' 6  independent contours. 0 
Fig. 5.  Variation of error in focal length with noise (Strategy B). 

A. Alternative Stsutegy 

The major drawback of Strategy A is that the terms ( F  - S) 
and (7& - p) make ( 5 )  and (6) unstable. When a camera tilts 
(moves up or down) the variation in the :c-coordinate for any 
point is due to changes in perspective distortion. Similarly, 
when a camera pans (moves left or right) there is little change 
in the image y-coordinate corresponding to a given 3-d point. 
Thus (.t - F) and (G - g) are small, usually a few pixels. 
In the presence of noise and inaccuracies in  localization of a 
contour, the relative error in these terms can be large. Hence, 
the estimates in ( 5 )  and (6) are often unreliable. 

An alternative strategy can be obtained by compromising the 
accuracy of the theoretical equations to obtain a more robust 
and simpler algorithm. Consider the following propositions: 

Using a single contous ami padtilt curitera 
movements j ,  arid f,, can be obtuiried if negligible terms ure 
ignored. 

Pro@ From the second equation in Proposition I ,  when 
6,r, 5, are non-zero: 

Proposition 4: 

.f, is greater than 500. This implies (8) is of the form 
Af, '  + B f ,  + C = 0, where -4 = 1 and B is negative, 
and c' is small compared to B. Thus, the meaningful solution 
to (8) is: 

(The other root being close to zero can be ignored.) 
Similarly, the solution for f Z  is: 

Hence, the alternative strategy for active calibration can be 
summarized as: 
Strategy B: 

Using a single image contour, estimate f z  and f, from 
(12) and (13). 
Substituting these estimates into ( I O )  and (1  l), and using 
another independent contour, solve for 6, and 6,. 

B. Robustness Analysis 
After some simplifications we have: 

Ot ' X  ' Proposition 5: When there is essor in contous localization 
f Y f ,  .fu apes padtilt movements. the ratio of the ersoss in Strategy A 

~ ~ t - ~ ~ ( l + ~ ~ Z ) - ~ ~ ~ ~ . f ~ - ~ , ~ ~ ~ + ~ - ~  &Y2 
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(C) 

Fig. 6. Sequence of images. 

compared to Strategy B for  estimating fz ( f , )  is approximately 
- Y - Y t  _ -  - -  - _  z - z p  

y p - y  L - F J  
Proof (Outline): The proof is outlined in the following 

steps: 
i) Introduce similar error term in ?E - :cp and & - j j  in (1 3) 

and ( 5 )  respectively. 
ii) Simplify the expressions and consider the approximate 

magnitude of error in both the expressions. 
iii) Take the ratio of these two terms. 

The above proposition has very important implications. For 
practical systems, the error in Strategy A can be as large as 30 
times that of Strategy B, for estimating the focal lengths. Thus 
even though the first algorithm is theoretically more precise, 
it is not reliable for noisy real scenes. This point is further 
demonstrated by the experimental results in Section V. 0 

IV. THEORETICAL ERROR ANALYSIS 

In this section we study the effect of errors from various 
sources on the estimation of different parameters in Strategy 

A. The error analysis for Strategy B is similar, and thus 
not discussed here. First, errors in measurements of panhilt 
angles are taken into account; then the effect of noise, in 
the extraction of image contours, is analysed. The following 
remarks summarize the main results that were obtained. 

Remark I :  Error in measurement of the pan (tilt) angle 
generates a proportional error in the estimate of f z  ( f , ) .  

Pro08 Consider (5) .  The estimate of f z  is proportional 
to the pan angle, hence any error in the measurement of this 
angle translates to a corresponding error in the estimate of f z .  

Similarly, from (4) it follows that error in measurement of the 
tilt angle generates a proportional error in the estimate of f,.O 

Remark 2: Errors in measurement of the pan and tilt angles 
do not affect the estimate of the lens center, if and only if 
independent contours from the same image are considered. 

Pro08 Linear equations in 6, and 6, are obtained by 
equating the right hand sides of two equations. As an example, 
consider ( I )  and ( 2 ) .  Suppose contours are extracted from the 
same image, and let f1  denote the error in measurement of 
the tilt angle. Thus, precisely (3) is obtained as (0, + e l )  
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7 
- ’  ------- 
d-- :- 

(a) 

Fig. 7. Edges of image sequence 

cancels out from both sides. For this case the errors in the 
padtilt angle measurements do not affect the estimate of the 
lens center. 

On the other hand, consider two independent images gen- 
erating the contours in (1) and (2). Let €1, € 2  be the errors in 
estimation of the tilt angles in (1) and (2) respectively. In this 
case K1 in (3) gets modified to K1 m. However, (8t+tl) 

( O t f f Z )  
is not equal to 1 in general. Thus, if contours from independent 
images are considered, errors in angle measurements can 

0 
Remark 3: The coefficients of the linear (3)-(6) are unbi- 

ased in the presence of uncorrelated noise with zero mean. 
Proof (outline): The coefficients involve a linear combi- 

nation of terms of the form: Z, g, Ej. These terms are 
unbiased in the presence of uncorrelated noise with zero mean. 
Thus any linear combination of terms like the above is also 
unbiased. 0 

change the estimates of the lens center. 

Remark 4: When uncorrelated noise with zero mean is 
considered, the variance of the coefficients of (3)-(6) is 
inversely proportional to the number of points on a contour. 

Proof: Follows from that fact that the variance of terms 
of the form: 5, Tj, Q, is inversely proportional to the number of 
points for which the averages were computed. [Further detail 

0 on similar analysis can be found in [6].] 

V. EXPERIMENTAL RESULTS 

A. Simulation 

To test the validity of our algorithms, we first tested Strategy 
A using synthetic data. Three sets of 3D points were used 
to represent three independent contours. These points were 
projected onto the image plane and the values quantized 
to the nearest integer. When no noise was added Strategy 
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I 

( c )  

Fig. 8. Contours tracked over image sequence. 

A produced more accurate estimates-less than 1 percent 
relative error in focal length estimates. Strategy B was 
slightly less accurate, giving estimates with a relative precision 
of around 1.5 percent. 

In order to study the variation of error in focal length 
estimate, we changed f jc and f y  from 100 to 1000 by steps 
of 100, keeping all other parameters fixed. Fig. 4 shows the 
results obtained when the panhilt angles were fixed at 0.03 
radians. The effect of discretization error seemed to influence 
the estimates of Strategy A more when the focal length was 
small. There is a simple explanation for this: Strategy A 
is not very robust to noise. The discretization error acts as 
random noise of up to half a pixel. When the focal length 
(in pixels) is large, this error is small relative to the focal 
length.’ Thus Strategy A produces better estimates as the focal 

’ The inter-pixel distance measured in terms of the focal length is ( L, 
in the .r (IJ) direction. When focal length is increased the discretization error, 
relative to the focal length, is decreased. 

J z  I y  

length increases. Note that the error in the estimates obtained 
by Strategy B does not drop off rapidly with increasing focal 
length-as is the case for the other method. This demonstrates 
that Strategy B is theoretically less accurate than Strategy A, 
because more terms need to be ignored to derive the equations. 

When Gaussian noise was added to the image points, 
Strategy A performed quite poorly: it produced estimates with 
20, 28, and 40 percent errors when the noise had standard 
deviation (a) of 3, 4, and 5 ,  respectively. For (T of 6 and 
higher, the estimates were quite unreliable (greater than 50 
percent error). Strategy B, on the other hand, showed high 
robustness to noise. The variation of the error in the estimates 
with increasing noise is shown in Fig. 5.  As can be seen 
from this figure, the second method generates reasonably good 
estimates (less than 8 percent error) even when (T is as large 
as 15. 

The robustness of Strategy B follows from Proposition 5.  
When the camera pans by a small angle (e.g. 2-3 degrees) 
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Fig. 9. Initial image 

Fig. IO. Image after pan 

(pi> - 3) typically had values less than 2 pixels; (7 - 7,) on 
the other hand was large as 3040  pixels. Strategy A uses terms 
like ( g p  - p) which are affected much more by a few pixel 
noi5e than terms like (:T - S p ) ,  that are used by Strategy B. 

B. Trucking Contours 

In order to perform the calibration procedure automatically, 
it is necessary to match contours of interest during pan/tilt 
motions of a camera. This was achieved by tracking image 
contours for small rotations. The tracking was done in two 
steps. First, edges in the original image, within a central 
window, was thickened using the morphological operation 
of “dilation” [ 191. Then, edges after padtilt was AND-ed 

Fig. 11. Edges of initial image. 

31 n 
J 

Fig. 12. Edges after pan. 

with the dilated image to extract corresponding contours after 
camera rotation. During pan (tilt) motion of a camera, contours 
move mainly horizontally (vertically). This observation was 
taken into account in designing accurate contour matching 
techniques. Fig. 6 shows a sequence of images for small 
pan movements of a camera. Fig. 7 shows the corresponding 
edge images. Contours within a pre-specified window in the 
initial image (top left) were considered, and tracked over the 
sequence of images (Fig. 8). 

C. Culibrution With Real Imuges 

Finally, the calibration algorithm was tested on a real 
system. The active platform in our laboratory was used to 
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"2 

Fig. 13. Contours of initial image 

acquire images of three different scenes. For each scene, three 
images (initial, after pan, and after tilt) were taken. Figs. 9 and 
10 show the the initial and panned images for one scene. The 
corresponding edges are shown in Figs. 11 and 12. The other 
images are not shown here due to lack of space. Contours 
were tracked, for every step of padtilt camera rotation, using 
the procedure described above. The matching contours for the 
images in Figs. 9 and 10 are shown in Figs. 13 and 14. Using 
Strategy A, the estimates of f z  and f, obtained by the active 
calibration procedure were 693 and 98 1. The corresponding 
values, obtained by presenting a known pattern and refining 
the initial estimates by trial and error, were 890 and 1109.* For 
Strategy B, the estimates for fz and f y  were 917 and 1142 
respectively. Thus the average relative error for these estimates 
was around 3 percent. This error can be attributed in part to 
the inaccuracies in measurements of the pan and tilt angles. 
The results demonstrate that the automatic active calibration 
procedure (using Strategy B) produces estimates fairly close 
to the true values. 

Figs. 15 and 16 show two other environments for which the 
algorithms were tested (images after padtilt are not shown 
here). For the first example the estimates produced by Strategy 
B were 902 and 1 123; in the other case 905 and 1099 were 
obtained as the calibration parameters. The average relative 
error in these examples was less than 1.5 percent. Strategy A 
on the other hand produced very inaccurate estimates. Note 
that (?E - ? E p )  was slightly over 30 pixels; and ( j j  - l jt) was 
around 40 pixels. On the other hand, both (G - &) and 
(y - y P )  were less than 1 pixel. Thus Strategy B produced 
stable estimates, while Strategy A produced unstable ones. 
For the last two examples the pan and tilt angles were both 
around 2 degrees; the angles were measured by transforming 

'These estimates were obtained by a variation of standard photogrammetric 
procedures outlined in [I] .  Starting with an initial estimate, results were 
refined by corresponding a collection of points after padtilt movements. A 
least squares method was used to minimize the error between observed and 
predicted locations of the points. 

Fig. 14. Contours tracked for panned image. 

Fig. 15. Second environment. 

a potentiometer reading. This produced a small error in the 
estimated angle-less than 0.05 degrees. 

Lens center estimates were not very accurate for both 
strategies since they depend on terms like (Z, - C )  (Le. 
purely perspective distortions) which are not robust to noise. 
At present we are working on developing a simple, reliable 
technique for estimating lens center using torsional (or roll) 
movements of the camera. 

VI. CONCLUSION AND FUTURE WORK 

This work describes a unique way of calibrating a camera 
mounted on an active platform. The algorithms described 
do not require any predefined calibrating pattern. All that is 
needed are scenes with strong and stable edges. Not only 
are the techniques mathematically simple, they also produce 
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Fig. 16. Third environment 

results with high accuracy when synthetic data are used. Of 
the two algorithms discussed, Strategy A gives almost perfect 
estimates in an ideal environment4ontours detected without 
any noise, and a negligible effect of discretization error. For 
noisy synthetic images or real scenes, however, Strategy B is 
shown to be far superior. 

In future work, we intend to simplify our algorithm further 
by considering roll movements of the camera (rotation around 
the z-axis) and designing a simple method to obtain the optical 
center of the lens. Recently, researchers have developed mod- 
els for computer-controlled zoom lenses, and fish-eye lenses 
[26], [7]. It will be interesting to develop active calibration 
procedures for special lenses by integrating the theoretical 
models with the algorithm presented here. For some systems 
the pan (tilt) axis may not be parallel to the y (x) axis 
of the camera. Error resulting from such deviations needs 
to be modeled. Generalization of our method to solving the 
calibration problem for stereo, also needs to be studied [lo]. 

Finally, the author wishes to thank Steve Sutphen and Sergio 
Licardie for developing the software involved in accurately 
controlling the active platform and obtaining estimates of the 
various parameters of the system. 
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