
Variance Reduction in Monte-Carlo Tree Search

Joel Veness
University of Alberta

veness@cs.ualberta.ca

Marc Lanctot
University of Alberta

lanctot@cs.ualberta.ca

Michael Bowling
University of Alberta

bowling@cs.ualberta.ca

Abstract

Monte-Carlo Tree Search (MCTS) has proven to be a powerful, generic planning
technique for decision-making in single-agent and adversarial environments. The
stochastic nature of the Monte-Carlo simulations introduces errors in the value es-
timates, both in terms of bias and variance. Whilst reducing bias (typically through
the addition of domain knowledge) has been studied in the MCTS literature, com-
paratively little effort has focused on reducing variance. This is somewhat sur-
prising, since variance reduction techniques are a well-studied area in classical
statistics. In this paper, we examine the application of some standard techniques
for variance reduction in MCTS, including common random numbers, antithetic
variates and control variates. We demonstrate how these techniques can be applied
to MCTS and explore their efficacy on three different stochastic, single-agent set-
tings: Pig, Can’t Stop and Dominion.

1 Introduction

Monte-Carlo Tree Search (MCTS) has become a popular approach for decision making in large
domains. The fundamental idea is to iteratively construct a search tree, whose internal nodes contain
value estimates, by using Monte-Carlo simulations. These value estimates are used to direct the
growth of the search tree and to estimate the value under the optimal policy from each internal node.
This general approach [6] has been successfully adapted to a variety of challenging problem settings,
including Markov Decision Processes, Partially Observable Markov Decision Processes, Real-Time
Strategy games, Computer Go and General Game Playing [15, 22, 2, 9, 12, 10].

Due to its popularity, considerable effort has been made to improve the efficiency of Monte-Carlo
Tree Search. Noteworthy enhancements include the addition of domain knowledge [12, 13], paral-
lelization [7], Rapid Action Value Estimation (RAVE) [11], automated parameter tuning [8] and roll-
out policy optimization [21]. Somewhat surprisingly however, the application of classical variance
reduction techniques to MCTS has remained unexplored. In this paper we survey some common
variance reduction ideas and show how they can be used to improve the efficiency of MCTS.

For our investigation, we studied three stochastic games: Pig [16], Can’t Stop [19] and Dominion
[24]. We found that substantial increases in performance can be obtained by using the appropriate
combination of variance reduction techniques. To the best of our knowledge, our work constitutes
the first investigation of classical variance reduction techniques in the context of MCTS. By showing
some examples of these techniques working in practice, as well as discussing the issues involved in
their application, this paper aims to bring this useful set of techniques to the attention of the wider
MCTS community.

2 Background

We begin with a short overview of Markov Decision Processes and online planning using Monte-
Carlo Tree Search.

1

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a popular formalism [4, 23] for modeling sequential decision
making problems. Although more general setups exist, it will be sufficient to limit our attention to
the case of finite MDPs. Formally, a finite MDP is a triplet (S,A,P0), where S is a finite, non-
empty set of states, A is a finite, non-empty set of actions and P0 is the transition probability kernel
that assigns to each state-action pair (s, a) ∈ S×A a probability measure over S×R that we denote
by P0(· | s, a). S and A are known as the state space and action space respectively. Without loss
of generality, we assume that the state always contains the current time index t ∈ N. The transition
probability kernel gives rise to the state transition kernel P(s, a, s′) := P0({s′} × R | s, a), which
gives the probability of transitioning from state s to state s′ if action a is taken in s. An agent’s
behavior can be described by a policy that defines, for each state s ∈ S, a probability measure over
A denoted by π(· | s). At each time t, the agent communicates an actionAt ∼ π(· |St) to the system
in state St ∈ S. The system then responds with a state-reward pair (St+1, Rt+1) ∼ P0(· |St, At),
where St+1 ∈ S and Rt+1 ∈ R. We will assume that each reward lies within [rmin, rmax] ⊂ R and
that the system executes for only a finite number of steps n ∈ N so that t ≤ n. Given a sequence
of random variablesAt, St+1, Rt+1, . . . , An−1, Sn, Rn describing the execution of the system up to
time n from a state st, the return from st is defined as Xst :=

∑n
i=t+1Ri. The return Xst,at

with
respect to a state-action pair (st, at) ∈ S × A is defined similarly, with the added constraint that
At = at. An optimal policy, denoted by π∗, is a policy that maximizes the expected return E [Xst]
for all states st ∈ S. A deterministic optimal policy always exists for this class of MDPs.

2.2 Online Monte-Carlo Planning in MDPs

If the state space is small, an optimal action can be computed offline for each state using techniques
such as exhaustive Expectimax Search [18] or Q-Learning [23]. Unfortunately, state spaces too large
for these approaches are regularly encountered in practice. One way to deal with this is to use online
planning. This involves repeatedly using search to compute an approximation to the optimal action
from the current state. This effectively amortizes the planning effort across multiple time steps, and
implicitly focuses the approximation effort on the relevant parts of the state space.

A popular way to construct an online planning algorithm is to use a depth-limited version of an ex-
haustive search technique (such as Expectimax Search) in conjunction with iterative deepening [18].
Although this approach works well in domains with limited stochasticity, it scales poorly in highly
stochastic MDPs. This is because of the exhaustive enumeration of all possible successor states at
chance nodes. This enumeration severely limits the maximum search depth that can be obtained
given reasonable time constraints. Depth-limited exhaustive search is generally outperformed by
Monte-Carlo planning techniques in these situations.

A canonical example of online Monte-Carlo planning is 1-ply rollout-based planning [3]. It com-
bines a default policy π with a one-ply lookahead search. At each time t < n, given a starting
state st, for each at ∈ A and with t < i < n, E [Xst,at

|Ai ∼ π(· |Si)] is estimated by gen-
erating trajectories St+1, Rt+1, . . . , An−1, Sn, Rn of agent-system interaction. From these tra-
jectories, sample means X̄st,at are computed for all at ∈ A. The agent then selects the action
At := argmaxat∈A X̄st,a, and observes the system response (St+1, Rt+1). This process is then
repeated until time n. Under some mild assumptions, this technique is provably superior to exe-
cuting the default policy [3]. One of the main advantages of rollout based planning compared with
exhaustive depth-limited search is that a much larger search horizon can be used. The disadvan-
tage however is that if π is suboptimal, then E [Xst,a |Ai ∼ π(· |Si)] < E [Xst,a |Ai ∼ π∗(· |Si)]
for at least one state-action pair (st, a) ∈ S × A, which implies that at least some value estimates
constructed by 1-ply rollout-based planning are biased. This can lead to mistakes which cannot be
corrected through additional sampling. The bias can be reduced by incorporating more knowledge
into the default policy, however this can be both difficult and time consuming.

Monte-Carlo Tree Search algorithms improve on this procedure, by providing a means to construct
asymptotically consistent estimates of the return under the optimal policy from simulation trajecto-
ries. The UCT algorithm [15] in particular has been shown to work well in practice. Like rollout-
based planning, it uses a default policy to generate trajectories of agent-system interaction. However
now the construction of a search tree is also interleaved within this process, with nodes correspond-
ing to states and edge corresponding to a state-action pairs. Initially, the search tree consists of a

2

single node, which represents the current state st at time t. One or more simulations are then per-
formed. We will use Tm ⊂ S to denote the set of states contained within the search tree afterm ∈ N
simulations. Associated with each state-action pair (s, a) ∈ S ×A is an estimate X̄m

s,a of the return
under the optimal policy and a count Tm

s,a ∈ N representing the number of times this state-action
pair has been visited after m simulations, with T 0

s,a := 0 and X̄0
s,a := 0.

Each simulation can be broken down into four phases, selection, expansion, rollout and backup.
Selection involves traversing a path from the root node to a leaf node in the following manner: for
each non-leaf, internal node representing some state s on this path, the UCB [1] criterion is applied
to select an action until a leaf node corresponding to state sl is reached. If U(Bs) denotes the uniform
distribution over the set of unexplored actions Bms := {a ∈ A : Tm

s,a = 0}, and Tm
s :=

∑
a∈A T

m
s,a,

UCB at state s selects
Am+1

s := argmax
a∈A

X̄m
s,a + c

√
log(Tm

s)/Tm
s,a, (1)

if |Bms | = ∅, or Am+1
s ∼ U(Bms) otherwise. The ratio of exploration to exploitation is controlled

by the positive constant c ∈ R. In the case of more than one maximizing action, ties are broken
uniformly at random. Provided sl is non-terminal, the expansion phase is then executed, by selecting
an action Al ∼ π(· | sl), observing a successor state Sl+1 = sl+1, and then adding a node to the
search tree so that Tm+1 = Tm ∪ {sl+1}. Higher values of c increase the level of exploration,
which in turn leads to more shallow and symmetric tree growth. The rollout phase is then invoked,
which for l < i < n, executes actions Ai ∼ π(· |Si). At this point, a complete agent-system
execution trajectory (at, st+1, rt+1, . . . , an−1, sn, rn) from st has been realized. The backup phase
then assigns, for t ≤ k < n,

X̄m+1
sk,ak

← X̄m
sk,ak

+ 1
Tm
sk,ak

+1

(
n∑

i=t+1

ri − X̄m
sk,ak

)
, Tm+1

sk,ak
← Tm

sk,ak
+ 1,

to each (sk, ak) ∈ Tm+1 occurring on the realized trajectory. Notice that for all (s, a) ∈ S ×A, the
value estimate X̄m

s,a corresponds to the average return of the realized simulation trajectories passing
through state-action pair (s, a). After the desired number of simulations k has been performed in
state st, the action with the highest expected return at := argmaxa∈A X̄

k
st,a is selected. With an

appropriate [15] value of c, as m → ∞, the value estimates converge to the expected return under
the optimal policy. However, due to the stochastic nature of the UCT algorithm, each value estimate
X̄m

s,a is subject to error, in terms of both bias and variance, for finite m. While previous work (see
Section 1) has focused on improving these estimates by reducing bias, little attention has been given
to improvements via variance reduction. The next section describes how the accuracy of UCT’s
value estimates can be improved by adapting classical variance reduction techniques to MCTS.

3 Variance Reduction in MCTS

This section describes how three variance reduction techniques — control variates, common random
numbers and antithetic variates — can be applied to the UCT algorithm. Each subsection begins with
a short overview of each variance reduction technique, followed by a description of how UCT can be
modified to efficiently incorporate it. Whilst we restrict our attention to planning in MDPs using the
UCT algorithm, the ideas and techniques we present are quite general. For example, similar modifi-
cations could be made to the Sparse Sampling [14] or AMS [5] algorithms for planning in MDPs, or
to the POMCP algorithm [22] for planning in POMDPs. In what follows, given an independent and
identically distributed sample (X1, X2, . . . Xn), the sample mean is denoted by X̄ := 1

n

∑n
i=1Xi.

Provided E [X] exists, X̄ is an unbiased estimator of E [X] with variance Var[X]/n.

3.1 Control Variates

An improved estimate of E[X] can be constructed if we have access to an additional statistic Y
that is correlated with X , provided that µY := E[Y] exists and is known. To see this, note that if
Z := X + c(Y − E[Y]), then Z̄ is an unbiased estimator of E[X], for any c ∈ R. Y is called the
control variate. One can show that Var[Z] is minimised for c∗ := −Cov[X,Y]/Var[Y]. Given a
sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and setting c = c∗, the control variate enhanced estimator

X̄cv :=
1

n

n∑
i=1

[Xi + c∗(Yi − µY)] (2)

3

is obtained, with variance

Var[X̄cv] =
1

n

(
Var[X]− Cov[X,Y]2

Var[Y]

)
.

Thus the total variance reduction is dependent on the strength of correlation between X and Y . For
the optimal value of c, the variance reduction obtained by usingZ in place ofX is 100×Corr[X,Y]2

percent. In practice, both Var[Y] and Cov[X,Y] are unknown and need to be estimated from data.
One solution is to use the plug-in estimator Cn := −Ĉov[X,Y]/V̂ar(Y), where Ĉov[·, ·] and V̂ar(·)
denote the sample covariance and sample variance respectively. This estimate can be constructed
offline using an independent sample or be estimated online. Although replacing c∗ with an online
estimate of Cn in Equation 2 introduces bias, this modified estimator is still consistent [17]. Thus
online estimation is a reasonable choice for large n; we revisit the issue of small n later. Note
that X̄cv can be efficiently computed with respect to Cn by maintaining X̄ and Ȳ online, since
X̄cv = X̄ + Cn(Ȳ − µY).

Application to UCT. Control variates can be applied recursively, by redefining the returnXs,a for
every state-action pair (s, a) ∈ S ×A to

Zs,a := Xs,a + cs,a (Ys,a − E[Ys,a]) , (3)
provided E [Ys,a] exists and is known for all (s, a) ∈ S × A, and Ys,a is a function of the random
variablesAt, St+1, Rt+1, . . . , An−1, Sn, Rn that describe the complete execution of the system after
action a is performed in state s. Notice that a separate control variate will be introduced for each
state-action pair. Furthermore, as E [Zst,at |Ai ∼ π(· |Si)] = E [Xst,at |Ai ∼ π(· |Si)], for all
policies π, for all (st, at) ∈ S × A and for all t < i < n, the inductive argument [15] used to
establish the asymptotic consistency of UCT still applies when control variates are introduced in
this fashion.

Finding appropriate control variates whose expectations are known in advance can prove difficult.
This situation is further complicated in UCT where we seek a set of control variates {Ys,a} for all
(s, a) ∈ S×A. Drawing inspiration from advantage sum estimators [25], we now provide a general
class of control variates designed for application in UCT. Given a realization of a random simulation
trajectory St = st, At = at, St+1 = st+1, At+1 = at+1, . . . , Sn = sn, consider control
variates of the form

Yst,at
:=
∑n−1

i=t I[b(Si+1)]− P[b(Si+1) |Si=si, Ai=ai], (4)
where b : S → {true, false} denotes a boolean function of state and I denotes the binary indicator
function. In this case, the expectation

E[Yst,at
] =

∑n−1
i=t

(
E [I [b(Si+1)] | Si=si, Ai=ai]− P [b(Si+1) |Si=si, Ai=ai]

)
= 0,

for all (st, at) ∈ S × A. Thus, using control variates of this form simplifies the task to specifying
a state property that is strongly correlated with the return, such that P[b(Si+1) |Si =si, Ai =ai] is
known for all (si, ai) ∈ (S,A), for all t ≤ i < n. This considerably reduces the effort required to
find an appropriate set of control variates for UCT.

3.2 Common Random Numbers

Consider comparing the expectation of E[Y] to E[Z], where both Y := g(X) and Z := h(X) are
functions of a common random variable X . This can be framed as estimating the value of δY,Z ,
where δY,Z := E[g(X)]− E[h(X)]. If the expectations E[g(X)] and E[h(X)] were estimated from
two independent samples X1 and X2, the estimator ĝ(X1)−ĥ(X2) would be obtained, with variance
Var[ĝ(X1) − ĥ(X2)] = Var[ĝ(X1)] + Var[ĥ(X2)]. Note that no covariance term appears since
X1 and X2 are independent samples. The technique of common random numbers suggests setting
X1 = X2 if Cov[ĝ(X1), ĥ(X2)] is positive. This gives the estimator δ̂Y,Z(X1) := ĝ(X1)− ĥ(X1),
with variance Var[ĝ(X1)]+Var[ĥ(X1)]−2Cov[ĝ(X1), ĥ(X1)], which is an improvement whenever
Cov[ĝ(X1), ĥ(X1)] is positive. This technique cannot be applied indiscriminately however, since a
variance increase will result if the estimates are negatively correlated.

Application to UCT. Rather than directly reducing the variance of the individual return estimates,
common random numbers can instead be applied to reduce the variance of the estimated differences

4

in return X̄m
s,a − X̄m

s,a′ , for each pair of distinct actions a, a′ ∈ A in a state s. This has the benefit
of reducing the effect of variance in both determining the action at := argmaxa∈A X̄

m
s,a selected

by UCT in state st and the actions argmaxa∈A X̄
m
s,a + c

√
log(Tm

s)/Tm
s,a selected by UCB as the

search tree is constructed.

As each estimate X̄m
s,a is a function of realized simulation trajectories originating from state-action

pair (s, a), a carefully chosen subset of the stochastic events determining the realized state transitions
now needs to be shared across future trajectories originating from s so that Cov[X̄m

s,a, X̄
m
s,a′] is

positive for allm ∈ N and for all distinct pairs of actions a, a′ ∈ A. Our approach is to use the same
chance outcomes to determine the trajectories originating from state-action pairs (s, a) and (s, a′) if
T i
s,a = T j

s,a′ , for any a, a′ ∈ A and i, j ∈ N. This can be implemented by using Tm
s,a to index into

a list of stored stochastic outcomes Es defined for each state s. By only adding a new outcome to
Es when Ts,a exceeds the number of elements in Es, the list of common chance outcomes can be
efficiently generated online. This idea can be applied recursively, provided that the shared chance
events from the current state do not conflict with those defined at any possible ancestor state.

3.3 Antithetic Variates

Consider estimating E[X] with ĥ(X,Y) := 1
2 [ĥ1(X) + ĥ2(Y)], the average of two unbi-

ased estimates ĥ1(X) and ĥ2(Y), computed from two identically distributed samples X =

(X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn). The variance of ĥ(X,Y) is
1
4 (Var[ĥ1(X)] + Var[ĥ2(Y)]) + 1

2Cov[ĥ1(X), ĥ2(Y)]. (5)
The method of antithetic variates exploits this identity, by deliberately introducing a negative cor-
relation between ĥ1(X) and ĥ2(Y). The usual way to do this is to construct X and Y from pairs of
sample points (Xi, Yi) such that Cov[h1(Xi), h2(Yi)] < 0 for all i ≤ n. So that ĥ2(Y) remains an
unbiased estimate of E[X], care needs to be taken when making Y depend on X.

Application to UCT. Like the technique of common random numbers, antithetic variates can
be applied to UCT by modifying the way simulation trajectories are sampled. Whenever a node
representing (si, ai) ∈ S × A is visited during the backup phase of UCT, the realized trajectory
si+1, ri+1, ai+1, . . . , sn, rn from (si, ai) is now stored in memory if Tm

si,ai
mod 2 ≡ 0. The next

time this node is visited during the selection phase, the previous trajectory is used to predetermine
one or more antithetic events that will (partially) drive subsequent state transitions for the current
simulation trajectory. After this, the memory used to store the previous simulation trajectory is
reclaimed. This technique can be applied to all state-action pairs inside the tree, provided that the
antithetic events determined by any state-action pair do not overlap with the antithetic events defined
by any possible ancestor.

4 Empirical Results

This section begins with a description of our test domains, and how our various variance reduction
ideas can be applied to them. We then investigate the performance of UCT when enhanced with
various combinations of these techniques.

4.1 Test Domains

Pig is a turn-based jeopardy dice game that can be played with one or more players [20]. Players
roll two dice each turn and keep a turn total. At each decision point, they have two actions, roll and
stop. If they decide to stop, they add their turn total to their total score. Normally, dice rolls add to
the players turn total, with the following exceptions: if a single is rolled the turn total will be reset
and the turn ended; if a is rolled then the players turn will end along with their total score being
reset to 0. These possibilities make the game highly stochastic.

Can’t Stop is a dice game where the goal is to obtain three complete columns by reaching the
highest level in each of the 2-12 columns [19]. This done by repeatedly rolling 4 dice and playing
zero or more pairing combinations. Once a pairing combination is played, a marker is placed on
the associated column and moved upwards. Only three distinct columns can be used during any

5

given turn. If the dice are rolled and no legal pairing combination can be made, the player loses
all of the progress made towards completing columns on this turn. After rolling and making a legal
pairing, a player can chose to lock in their progress by ending their turn. A key component of the
game involves correctly assessing the risk associated with not being able to make a legal dice pairing
given the current board configuration.

Dominion is a popular turn-based, deck-building card game [24]. It involves acquiring cards by
spending the money cards in your current deck. Bought cards have certain effects that allow you to
buy more cards, get more money, draw more cards, and earn victory points. The goal is to get as
many victory points as possible.

In all cases, we used solitaire variants of the games where the aim is to maximize the number of
points given a fixed number of turns. All of our domains can be represented as finite MDPs. The
game of Pig contains approximately 2.4 × 106 states. Can’t Stop and Dominion are significantly
more challenging, containing in excess of 1024 and 1030 states respectively.

4.2 Application of Variance Reduction Techniques

We now describe the application of each technique to the games of Pig, Can’t Stop and Dominion.

Control Variates. The control variates used for all domains were of the form specified by Equation
4 in Section 3.1. In Pig, we used a boolean function that returned true if we had just performed the
roll action and obtained at least one . This control variate has an intuitive interpretation, since we
would expect the return from a single trajectory to be an underestimate if it contained more rolls
with a than expected, and an overestimate if it contained less rolls with a than expected. In
Can’t Stop, we used similarly inspired boolean function that returned true if we could not make
a legal pairing from our most recent roll of the 4 dice. In Dominion, we used a boolean function
that returned whether we had just played an action that let us randomly draw a hand with 8 or more
money to spend. This is a significant occurrence, as 8 money is needed to buy a Province, the highest
scoring card in the game. Strong play invariably requires purchasing as many Provinces as possible.

We used a mixture of online and offline estimation to determine the values of cs,a to use in Equation
3. When Tm

s,a ≥ 50, the online estimate −Ĉov[Xs,a, Ys,a]/V̂ar[Ys,a] was used. If Tm
s,a < 50,

the constants 6.0, 6.0 and −0.7 were used for Pig, Can’t Stop and Dominion respectively. These
constants were obtained by computing offline estimates of −Ĉov[Xs,a, Ys,a]/V̂ar[Ys,a] across a
representative sample of game situations. This combination gave better performance than either
scheme in isolation.

Common Random Numbers. To apply the ideas in Section 3.2, we need to specify the future
chance events to be shared across all of the trajectories originating from each state. Since a player’s
final score in Pig is strongly dependent on their dice rolls, it is natural to consider sharing one or
more future dice roll outcomes. By exploiting the property in Pig that each roll event is independent
of the current state, our implementation shares a batch of roll outcomes large enough to drive a
complete simulation trajectory. So that these chance events don’t conflict, we limited the sharing of
roll events to just the root node. A similar technique was used in Can’t Stop. We found this scheme
to be superior to sharing a smaller number of future roll outcomes and applying the ideas in Section
3.2 recursively. In Dominion, stochasticity is caused by drawing cards from the top of a deck that is
periodically shuffled. Here we implemented common random numbers by recursively sharing pre-
shuffled deck configurations across the actions at each state. The motivation for this kind of sharing
is that it should reduce the chance of one action appearing better than another simply because of
“luckier” shuffles.

Antithetic Variates. To apply the ideas in Section 3.3, we need to describe how the antithetic
events are constructed from previous simulation trajectories. In Pig, a negative correlation between
the returns of pairs of simulation trajectories can be induced by forcing the roll outcomes in the
second trajectory to oppose those occurring in the first trajectory. Exploiting the property that the
relative worth of each pair of dice outcomes is independent of state, a list of antithetic roll outcomes
can be constructed by mapping each individual roll outcome in the first trajectory to its antithetic
partner. For example, a lucky roll of was paired with the unlucky roll of . A similar idea
is used in Can’t Stop, however the situation is more complicated, since the relative worth of each

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 5 6 7 8 9 10 11 12 13 14 15

M
S

E
 a

nd
 B

ia
s2

log2(Simulations)

MSE and Bias2 of Roll Value Estimator vs. Simulations in UCT

MSE
Bias2

 0

 50

 100

 150

 200

 250

 300

 4 5 6 7 8 9 10 11 12 13 14 15

M
S

E
 a

nd
 B

ia
s2

log2(Simulations)

MSE and Bias2 in Value Difference Estimator vs. Simulations in UCT

MSE
Bias2

Figure 1: The estimated variance of the value estimates for the Roll action and estimated differences between
actions on turn 1 in Pig.

chance event varies from state to state. Our solution was to develop a state-dependent heuristic
ranking function, which would assign an index between 0 and 1295 to the 64 distinct chance events
for a given state. Chance events that are favorable in the current state are assigned low indexes, while
unfavorable events are assigned high index values. When simulating a non-antithetic trajectory, the
ranking for each chance event is recorded. Later when the antithetic trajectory needs to be simulated,
the previously recorded rank indexes are used to compute the relevant antithetic event for the current
state. This approach can be applied in a wide variety of domains where the stochastic outcomes can
be ordered by how “lucky” they are e.g., suppliers’ price fluctuations, rare catastrophic events, or
higher than average click-through-rates. For Dominion, a number of antithetic mappings were tried,
but none provided any substantial reduction in variance. The complexity of how cards can be played
to draw more cards from one’s deck makes a good or bad shuffle intricately dependent on the exact
composition of cards in one’s deck, of which there are intractably many possibilities with no obvious
symmetries.

4.3 Experimental Setup

Each variance reduction technique is evaluated in combination with the UCT algorithm, with vary-
ing levels of search effort. In Pig, the default (rollout) policy plays the roll and stop actions with
probability 0.8 and 0.2 respectively. In Can’t Stop, the default policy will end the turn if a column
has just been finished, otherwise it will choose to re-roll with probability 0.85. In Dominion, the
default policy incorporates some simple domain knowledge that favors obtaining higher cost cards
and avoiding redundant actions. The UCB constant c in Equation 1 was set to 100.0 for both Pig
and Dominion and 5500.0 for Can’t Stop.

4.4 Evaluation

We performed two sets of experiments. The first is used to gain a deeper understanding of the role
of bias and variance in UCT. The next set of results is used to assess the overall performance of UCT
when augmented with our variance reduction techniques.

Bias versus Variance. When assessing the quality of an estimator using mean squared error
(MSE), it is well known that the estimation error can be decomposed into two terms, bias and vari-
ance. Therefore, when assessing the potential impact of variance reduction, it is important to know
just how much of the estimation error is caused by variance as opposed to bias. Since the game
of Pig has ≈ 2.4 × 106 states, we can solve it offline using Expectimax Search. This allows us to
compute the expected return E[Xs1 |π∗] of the optimal action (roll) at the starting state s1. We use
this value to compute both the bias-squared and variance component of the MSE for the estimated
return of the roll action at s1 when using UCT without variance reduction. This is shown in the
leftmost graph of Figure 1. It seems that the dominating term in the MSE is the bias-squared. This
is misleading however, since the absolute error is not the only factor in determining which action
is selected by UCT. More important instead is the difference between the estimated returns for each
action, since UCT ultimately ends up choosing the action with the largest estimated return. As Pig
has just two actions, we can also compute the MSE of the estimated difference in return between
rolling and stopping using UCT without variance reduction. This is shown by the rightmost graph

7

 40

 45

 50

 55

 60

16 32 64 128 256 512 1,024

Simulations

Pig MCTS Performance Results

Base
AV
CRN
CV
CVCRN

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

 2,200

16 32 64 128 256 512 1,024

Simulations

Cant Stop MCTS Performance Results

Base
AV
CRN
CV
CVCRN

 10

 20

 30

 40

 50

128 256 512 1,024 2,048

Simulations

Dominion MCTS Performance Results

Base
CRN
CV
CVCRN

Figure 2: Performance Results for Pig, Can’t Stop, and Dominion with 95% confidence intervals shown.
Values on the vertical axis of each graph represent the average score.

in Figure 1. Here we see that variance is the dominating component (the bias is within ±2) when
the number of simulations is less than 1024. The role of bias and variance will of course vary from
domain to domain, but this result suggests that variance reduction may play an important role when
trying to determine the best action.

Search Performance. Figure 2 shows the results of our variance reduction methods on Pig, Can’t
Stop and Dominion. Each data point for Pig, Can’t Stop and Dominion is obtained by averaging
the scores obtained across 50, 000, 10, 000 and 10, 000 games respectively. Such a large number
of games is needed to obtain statistically significant results due to the highly stochastic nature of
each domain. 95% confidence intervals are shown for each data point. In Pig, the best approach
consistently outperforms the base version of UCT, even when given twice the number of simulations.
In Can’t Stop, the best approach gave a performance increase roughly equivalent to using base UCT
with 50-60% more simulations. The results also show a clear benefit to using variance reduction
techniques in the challenging game of Dominion. Here the best combination of variance reduction
techniques leads to an improvement roughly equivalent to using 25-40% more simulations. The use
of antithetic variates in both Pig and Can’t Stop gave a measurable increase in performance, however
the technique was less effective than either control variates or common random numbers. Control
variates was particularly helpful across all domains, and even more effective when combined with
common random numbers.

5 Discussion

Although our UCT modifications are designed to be lightweight, some additional overhead is un-
avoidable. Common random numbers and antithetic variates increase the space complexity of UCT
by a multiplicative constant. Control variates typically increase the time complexity of each value
backup by a constant. These factors need to be taken into consideration when evaluating the ben-
efits of variance reduction for a particular domain. Note that surprising results are possible; for
example, if generating the underlying chance events is expensive, using common random numbers
or antithetic variates can even reduce the computational cost of each simulation. Ultimately, the
effectiveness of variance reduction in MCTS is both domain and implementation specific. That said,
we would expect our techniques to be useful in many situations, especially in noisy domains or if
each simulation is computationally expensive. In our experiments, the overhead of every technique
was dominated by the cost of simulating to the end of the game.

6 Conclusion

This paper describes how control variates, common random numbers and antithetic variates can
be used to improve the performance of Monte-Carlo Tree Search by reducing variance. Our main
contribution is to describe how the UCT algorithm can be modified to efficiently incorporate these
techniques in practice. In particular, we provide a general approach that significantly reduces the
effort needed recursively apply control variates. Using these methods, we demonstrated substantial
performance improvements on the highly stochastic games of Pig, Can’t Stop and Dominion. Our
work should be of particular interest to those using Monte-Carlo planning in highly stochastic or
resource limited settings.

8

References

[1] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. JMLR, 3:397–
422, 2002.

[2] Radha-Krishna Balla and Alan Fern. UCT for Tactical Assault Planning in Real-Time Strategy
Games. In IJCAI, pages 40–45, 2009.

[3] Dimitri P. Bertsekas and David A. Castanon. Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5(1):89–108, 1999.

[4] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1st edition, 1996.

[5] Hyeong S. Chang, Michael C. Fu, Jiaqiao Hu, and Steven I. Marcus. An Adaptive Sampling
Algorithm for Solving Markov Decision Processes. Operations Research, 53(1):126–139, Jan-
uary 2005.

[6] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-Carlo Tree
Search: A New Framework for Game AI. In Fourth Artificial Intelligence and Interactive
Digital Entertainment Conference (AIIDE 2008), 2008.

[7] Guillaume M. Chaslot, Mark H. Winands, and H. Jaap Herik. Parallel Monte-Carlo Tree
Search. In Proceedings of the 6th International Conference on Computers and Games, pages
60–71, Berlin, Heidelberg, 2008. Springer-Verlag.

[8] Guillaume M.J-B. Chaslot, Mark H.M. Winands, Istvan Szita, and H. Jaap van den Herik.
Cross-entropy for Monte-Carlo Tree Search. ICGA, 31(3):145–156, 2008.

[9] Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Pro-
ceedings Computers and Games 2006. Springer-Verlag, 2006.

[10] Hilmar Finnsson and Yngvi Bjornsson. Simulation-based Approach to General Game Play-
ing. In Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), pages 259–264,
2008.

[11] S. Gelly and D. Silver. Combining online and offline learning in UCT. In Proceedings of the
17th International Conference on Machine Learning, pages 273–280, 2007.

[12] Sylvain Gelly and Yizao Wang. Exploration exploitation in Go: UCT for Monte-Carlo Go. In
NIPS Workshop on On-line trading of Exploration and Exploitation, 2006.

[13] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modification of UCT with
patterns in Monte-Carlo Go. Technical Report 6062, INRIA, France, November 2006.

[14] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markov Decision Processes. In IJCAI, pages 1324–1331, 1999.

[15] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In ECML, pages
282–293, 2006.

[16] Todd W. Neller and Clifton G.M. Presser. Practical play of the dice game pig. Undergraduate
Mathematics and Its Applications, 26(4):443–458, 2010.

[17] Barry L. Nelson. Control variate remedies. Operations Research, 38(6):pp. 974–992, 1990.
[18] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,

Englewood Cliffs, NJ, 2nd edition edition, 2003.
[19] Sid Sackson. Can’t Stop. Ravensburger, 1980.
[20] John Scarne. Scarne on dice. Harrisburg, PA: Military Service Publishing Co, 1945.
[21] David Silver and Gerald Tesauro. Monte-Carlo simulation balancing. In ICML, page 119,

2009.
[22] David Silver and Joel Veness. Monte-Carlo Planning in Large POMDPs. In Advances in

Neural Information Processing Systems 23, pages 2164–2172, 2010.
[23] Csaba Szepesvári. Reinforcement learning algorithms for MDPs, 2009.
[24] Donald X. Vaccarino. Dominion. Rio Grande Games, 2008.
[25] Martha White and Michael Bowling. Learning a value analysis tool for agent evaluation.

In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence
(IJCAI), pages 1976–1981, 2009.

9

