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Abstract
Autoregressive moving average (ARMA) models are a funda-
mental tool in time series analysis that offer intuitive model-
ing capability and efficient predictors. Unfortunately, the lack
of globally optimal parameter estimation strategies for these
models remains a problem: application studies often adopt
the simpler autoregressive model that can be easily estimated
by maximizing (a posteriori) likelihood. We develop a (reg-
ularized, imputed) maximum likelihood criterion that admits
efficient global estimation via structured matrix norm opti-
mization methods. An empirical evaluation demonstrates the
benefits of globally optimal parameter estimation over local
and moment matching approaches.

Introduction
A central problem in applied data analysis is time se-
ries modeling—estimating and forecasting a discrete-time
stochastic process—for which the autoregressive moving
average (ARMA) and stochastic ARMA (Thiesson et al.
2012) are fundamental models. An ARMA model de-
scribes the behavior of a linear dynamical system under
latent Gaussian perturbations (Brockwell and Davis 2002;
Lütkepohl 2007), which affords intuitive modeling capabil-
ity, efficient forecasting algorithms, and a close relation-
ship to linear Gaussian state-space models (Katayama 2006,
pp.5-6).

Unfortunately, estimating the parameters of an ARMA
model from an observed sequence is a computationally dif-
ficult problem: no efficient algorithm is known for comput-
ing the parameters that maximize the marginal likelihood of
the observed data in an ARMA, stochastic ARMA or linear
Gaussian state-space model. Consequently, heuristic local
estimators are currently deployed in practice (Hannan and
Kavalieris 1984; Durbin 1960; Bauer 2005; Lütkepohl 2007;
Thiesson et al. 2012), none of which provide a guarantee
of how well the globally optimal parameters are approxi-
mated. For estimating linear Gaussian state-space models,
it has been observed that local maximization of marginal
likelihood tends to find local optima that yield poor results
(Katayama 2006, Sec. 1.3).

In response to the difficulty of maximizing marginal like-
lihood, there has been growing interest in method of mo-
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ments based estimators for state-space models, which of-
fer computationally efficient estimation strategies and sound
consistency properties (Andersson 2009; Hsu, Kakade, and
Zhang 2012; Anandkumar, Hsu, and Kakade 2012). For
ARMA models, the most applicable such estimators are
the subspace identification methods for estimating state-
space models (Katayama 2006; Moonen and Ramos 1993;
Van Overschee and De Moor 1994; Viberg 1995; Song et al.
2010; Boots and Gordon 2012). The statistical efficiency of
moment matching, however, generally does not match that
of maximum likelihood, which is known to be asymptoti-
cally efficient under general conditions (Cramér 1946, Ch.
33). In fact, evidence suggests that the statistical efficiency
of current moment matching estimators is quite weak (Fos-
ter, Rodu, and Ungar 2012; Zhao and Poupart 2014).

In this paper, we develop a tractable approach to maxi-
mum likelihood parameter estimation for stochastic multi-
variate ARMA models. To efficiently compute a globally
optimal estimate, the problem is re-expressed as a regular-
ized loss minimization, which then allows recent algorith-
mic advances in sparse estimation to be applied (Shah et al.
2012; Candes et al. 2011; Bach, Mairal, and Ponce 2008;
Zhang et al. 2011; White et al. 2012). Although there has
been recent progress in global estimation for ARMA, such
approaches have either been restricted to single-input single-
output systems (Shah et al. 2012), estimating covariance ma-
trices for scalar ARMA (Wiesel, Bibi, and Globerson 2013)
or using AR to approximate a scalar ARMA model (Anava
et al. 2013). By contrast, this paper offers the first efficient
maximum likelihood approach to estimating the parameters
of a stochastic multivariate ARMA(p, q) model. This con-
vex optimization formulation is general, enabling general-
ized distributional assumptions and estimation on multivari-
ate data, which has been much less explored than scalar
ARMA. An experimental evaluation demonstrates that glob-
ally optimal parameters under the proposed criterion yield
superior forecasting performance to alternative estimates,
including local minimization for ARMA estimation and
moment-based estimation methods for state-space models.

Background
An ARMA model is a simple generative model of the form
depicted in Figure 1(a), where the innovation variables,
εt ∈ Rn, are assumed to be i.i.d. Gaussian, N (0,Σ), and
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Figure 1: Graphical models depicting the dependence
structure of (a) an ARMA(1, 2) model, (b) a state-
space model. These models are equivalent if the state-
space model is in observability canonical form (Ben-
veniste, Metivier, and Priouret 2012, Sec. 6.2.1). Dis-
tinct methods are used for estimation depending on
whether the variables are discrete or continuous.

the observable variables, xt ∈ Rn, are assumed to be gener-
ated by the linear relationship

xt =

p∑
i=1

A(i)xt−i +

q∑
j=1

B(j)εt−j + εt. (1)

An ARMA(p, q) model is thus parameterized by
A(1), ..., A(p) ∈ Rn×n, B(1), ..., B(q) ∈ Rn×n, and a
positive semi-definite matrix Σ; which we simply collect as
Θ = ({A(i)}, {B(j)},Σ).1

One classical motivation for ARMA models arises from
the Wold representation theorem (Wold 1938), which states
that any stationary process can be represented as an infi-
nite sum of innovations plus a deterministic process that is
a projection of a current observation onto past observations:
xt = p(xt|xt−1, . . .) +

∑∞
j=0B

(j)εt−j . Thus the autore-
gressive component of an ARMA model is often motivated
as a more parsimonious representation of this Wold repre-
sentation (Scargle 1981).

Time series models are used primarily for forecasting:
Given an ARMA model with parameters Θ, the value of a
future observation xT+h can be predicted from an observed
history x1:T by evaluating E[xT+h|x1:T ,Θ]. The key ad-
vantage of ARMA is that such forecasts can be computed
efficiently; see Appendix F for additional details.

Although forecasting is efficient, the problem of estimat-
ing the parameters of an ARMA model raises significant
computational challenges, which provides the main focus of
this paper. To begin, consider the marginal log-likelihood of
an observed history x1:T given a set of parameters Θ:

log p(x1:T |Θ) =

T∑
t=1

log p(xt|x1:t−1,Θ). (2)

Despite the fact that the conditional expectation
E[xt|x1:t−1,Θ] can be computed efficiently, the quan-
tity log p(xt|x1:t−1,Θ) is not concave in Θ (Mauricio 1995;
Lütkepohl 2007, Sec. 12.2-3), which suggests that max-
imizing the marginal likelihood is a hard computational
problem. Another source of difficulty is that ARMA is
a latent variable model, hence marginalizing over the
unobserved innovations ε1:T might also be problem-
atic. Given innovations ε1:T = [ε1, . . . , εT ], however,
p(xt|x1:t−1, ε1:t−1,Θ) is a simple Gaussian with mean

µt =
∑p
i=1A

(i)xt−i +
∑q
j=1B

(j)εt−j (3)

and covariance Σ. To obtain such a simplified form, we will
first characterize the entire data likelihood in terms of the

1Note that we use the term ARMA to include vector ARMA,
with no restriction to scalar time series.

innovations which enables application of the widely used
expectation-maximization algorithm.
Lemma 1. For an auxiliary density q(·) over ε1:T , and en-
tropy H(q(·)), it follows that (proof given in Appendix A):

log p(x1:T |Θ) = log

∫
p(x1:T , ε1:T |Θ) dε1:T

= max
q(·)

∫
q(ε1:T ) log p(x1:Tε1:T |Θ) dε1:T +H(q(·)). (4)

The maximum likelihood problem can now be re-
expressed as minΘ min{q(·)}− log p(x1:T |Θ) where in a
standard EM algorithm, the M step would consist of opti-
mizing Θ given {q(·)}, and the E step would consist of (im-
plicitly) optimizing {q(·)} given Θ (Neal and Hinton 1998).
A standard variant of the log likelihood in (4) can then be ob-
tained simply by dropping the entropy regularizer H(q(·)).
This leads to the minimization selecting a Dirac delta dis-
tribution on ε1:T and a far simpler formulation, sometimes
known as “hard EM” or “Viterbi EM” (Brown et al. 1993):

min
Θ

min
ε1:T
− log p(x1:T , ε1:T |Θ)

= min
Θ

min
ε1:T
−

T∑
t=1

[
log p(εt|x1:t, ε1:t−1,Θ)

+ log p(xt|x1:t−1, ε1:t−1,Θ)
]
.(5)

This formulation suggests an approach where one suc-
cessively imputes values ε1:T for the unobserved innova-
tion variables, then optimizes the parameters. Interestingly,
p(εt|x1:t, ε1:T−1,Θ) is a Dirac delta distribution; εt must
be the residual, εt = xt−µt, otherwise the loss becomes un-
bounded. This distribution, therefore, imposes a constraint
on the minimization. To maximize likelihood under this
constraint, we optimize

min
Θ

min
ε1:T :εt=xt−µt

−
T∑
t=1

log p(xt|,x1:t−1, ε1:t−1,Θ) (6)

= min
Θ,ε1:T :
εt=xt−µt

T

2
log((2π)n|Σ|) +

1

2

T∑
t=1

∥∥∥Σ– 1
2 (xt − µt)

∥∥∥2

. (7)

Unfortunately, this optimization raises an important chal-
lenge. Due to the direct interaction between Σ, B and ε1:T

the final form of the problem (7) is still not convex in the
parameters Θ and ε1:T jointly. A typical strategy is there-
fore to first estimate the innovations ε1:T directly from data,
for example by using the errors of a learned autoregressive
model, then observing that with the innovation variables
fixed and Σ approximated from the innovations, the prob-
lem becomes convex in Θ (Hannan and Kavalieris 1984;
Lütkepohl 2007). Another more contemporary approach is
to convert the ARMA model into a state-space model (see



Figure 1(b)) and then solve for parameters in that model us-
ing system identification approaches (Bauer 2005). Though
this has been an important advance for efficient ARMA es-
timation, these approaches still result in local minima.

Regularized ARMA modeling
To develop a likelihood based criterion that admits effi-
cient global optimization, we begin by considering a num-
ber of extensions to the ARMA model. First, notice that the
ARMA model in (1) can be equivalently formulated by in-
troducing a B(0) and taking εt ∼ N (µ = 0,Σ = I), giving
B(0)εt ∼ N (0, B(0)B(0)′). Second, following Thiesson et
al. (2012), an independent noise term ηt can be added to (1)
to obtain the stochastic ARMA model

xt =

p∑
i=1

A(i)xt−i +

q∑
j=0

B(j)εt−j + ηt. (8)

A key challenge in estimating the parameters of a classical
ARMA model (1) is coping with the deterministic constraint
that ηt = 0, which forces the innovations εt to match the
residuals (7). The stochastic ARMA model (8) relaxes this
assumption by allowing ηt to be generated by a smooth ex-
ponential family distribution, such as ηt ∼ N (0, Qt) for co-
varianceQt; smallerQt yields a closer approximation to the
original ARMA model. Thiesson et al. (2012) have shown
that expectation-maximization (EM) updates are only mean-
ingful for non-zero Qt; else, EM stops after one iteration.
EM is not however guaranteed to find a globally optimal pa-
rameter estimate for the stochastic ARMA model. A key
advantage of this model, however, is that it allows a con-
venient re-expression of the marginal log-likelihood (6) by
applying the chain rule in the opposite order for xt and εt:

(6) = min
Θ

min
ε1:T

−
T∑
t=1

[
log p(xt|x1:t–1, ε1:t,Θ) + log p(εt|x1:t–1, ε1:t–1,Θ)

]
=min

Θ
min
ε1:T
−

T∑
t=1

[
log p(xt|x1:t–1, ε1:t,Θ) + log p(εt|Θ)

]
,

since εt is independent of past innovations and data without
xt. Furthermore, p(εt|Θ) = p(εt) since the covariance was
moved into B(0) to make εt ∼ N (0, I), yielding

−
T∑
t=1

log p(εt) =
nT

2
log(2π) +

1

2

T∑
t=1

‖εt‖22

=
nT

2
log(2π) +

1

2
||E||2F (9)

for E = ε1:T . The constant is ignored in the optimization.
Third, rather than merely consider a maximum likelihood

objective, we can consider the maximum a posteriori (MAP)
estimate given by the introduction of a prior log p(Θ) over
the model parameters Θ = (A,B,Σ). Since the parameters
A and B do not typically have distributional assumptions,
we view the choice of priors rather as regularizers:

− log p(Θ) = − log p(A)− log p(B) = R(A) +G(B),

for convex functions R and G. Any convex regularizer on A
is acceptable. The choice of regularizer onB is more subtle,

since for any s, BE = (Bs−1)(sE): G(B) is required to
prevent B from being scaled up, pushing ||E||2F to zero. We
consider G(B) = ||B||2F for B = [B(0); . . . ;B(q)], which
effectively controls the size of B and, importantly, also re-
sults in a global reformulation given in Theorem 2.

Finally, as noted, we can consider any natural exponen-
tial family distribution for ηt rather than merely assuming
Gaussian. The negative log-likelihood for such a distribu-
tion corresponds to a regular Bregman divergence (see Ap-
pendix D), allowing one to write the final estimation crite-
rion in terms of a convex loss function L(·|xt) as

min
A,B,E

T∑
t=1

L
( p∑
i=1

A(i)xt−i +

q∑
j=0

B(j)εt−j

∣∣∣ xt)
+α
(
||E||2F +G(B)

)
+ γR(A),

(10)

for regularization parameters α and γ.

Efficient parameter estimation
Although L(·|xt) is convex, (10) is not jointly convex due
to the coupling between B and E . However, using recent in-
sights from matrix factorization (Bach, Mairal, and Ponce
2008; Dudik, Harchaoui, and Malick 2012; White et al.
2012) one can reformulate (10) as a convex optimization.

For fixed autoregressive parameters, A, let LA,t(z) =

L(z +
∑p
i=1A

(i)xt−i | xt) + γR(A), which is still con-
vex in z.2 By introducing the change of variables, Z = BE ,
the optimization over B and E given A can be written as

min
A,B,E

T∑
t=1

LA,t

( q∑
j=0

B(j)E:,t−j
)

+ α
(
||E||2F +G(B)

)
(11)

= min
A,Z

T∑
t=1

LA,t

( q∑
j=0

Z
(j)
:,t−j

)
+ α min

B,E
BE=Z

(
||E||2F +G(B)

)
.

Surprisingly, this objective can be re-expressed in a convex
form since

|||Z||| = min
B,E:BE=Z

(
||E||2F +G(B)

)
(12)

defines an induced norm on Z (established in Theorems 2
and 3 below) allowing (11) to be equivalently expressed as:3

T∑
t=1

L
( p∑
i=1

A(i)xt−i +

q∑
j=0

Z
(j)
:,t−j

∣∣∣ xt)+ α|||Z|||+ γR(A)

Therefore, one can alternate between A and Z to obtain a
globally optimal solution, then recover B and E from Z, as
discussed in the next section. Proofs for the following two
theorems are provided in Appendix B.
Theorem 2. The regularized ARMA(p, q) estimation prob-
lem for G(B) = ||B||2F is equivalent to

(11) = min
A,Z

T∑
t=1

LA,t

( q∑
j=0

Z
(j)
:,t−j

)
+ 2α||Z||tr

with a singular value decomposition recovery: Z = UΣV ′

giving B = U
√

Σ and E =
√

ΣV ′.
2Proved in Lemma 4, Appendix B for completeness
3Proved in Corollary 5, Appendix B for completeness.



The estimation problem is more difficult with the second
choice of regularizer; to get an exact formulation, we need
to restrict q = 1, giving Z =

[
B(0)

B(1)

]
E .

Theorem 3. The regularized ARMA(p, 1) estimation prob-
lem for G(B) = maxj=0,...,q ||B(j)||2F is equivalent to

(11) = min
A,Z

T∑
t=1

LA,t

( q∑
j=0

Z
(j)
:,t−j

)
+ max

0≤ρ≤1
||W –1

ρ Z||tr (13)

where Wρ :=
[

1/
√
ρ In 0

0 1/
√

1−ρ In

]
. Moreover ||W−1

ρ Z||tr
is concave in ρ over [0, 1], enabling an efficient line-search.

Identifiability and optimal parameter recovery
One desirable ideal for estimation is identifiability: being
able to “identify” parameters uniquely. For a strictly convex
loss function, L, the convex regularized ARMA optimiza-
tion in (13) produces a unique moving average variable, Z.
This identifiable matrix is sufficient for correctly estimating
the autoregressive parameters for the ARMA model, which
can be all that is required for forecasting in expectation.

It might be desirable, however, to recover the factors B
and E to gain further insight into the nature of the time series.
Unfortunately, unlike Z, the factors that satisfy BE = Z
are not unique. Worse, if one simply recovers any B and E
that satisfies BE = Z, the recovered innovations E need not
be Gaussian distributed. This issue can be addressed via a
careful recovery procedure that finds a particular pair B and
E with the same regularization penalty as Z. Let

Factors(Z)=
{

(B, E) : BE = Z and G(B) + ||E||2F = |||Z|||
}

This set of solutions satisfies the desired distributional prop-
erties, but is invariant under scaling and orthogonal trans-
formations: for any (B, E) ∈ Factors(Z), (i) for s =
G(B)/||E||F , (B(1/s), sE) ∈ Factors(Z) and (ii) for any
orthogonal matrix P ∈ Rn×n, (BP,P ′E) ∈ Factors(Z)
since the Frobenius norm is invariant under orthogonal
transformations. When G(B) = ||E||F , a solution from
Factors(Z) can be computed from the singular value decom-
position of Z, as shown in Theorem 2. When G(B) =
maxj ||B(j)||2F , a boosting approach can be used for recov-
ery; see Appendix C for details as well as a discussion on
recovering Laplacian instead of Gaussian innovations.

Computational complexity
The overall estimation procedure is outlined in Algorithm 1
for G(B) = ||B||2F ; the approach is similar for the other
regularizer, but with an outer line search over ρ. The compu-
tational complexity is governed by the matrix multiplication
to compute the autoregressive and moving average compo-
nents, and by the use of the singular value decomposition.
The matrix multiplication forAXp isO(Tpn2), which dom-
inates the cost of computing the autoregressive loss, corre-
sponding to ARloss in Algorithm 1. For the moving average
loss, MALoss in Algorithm 1, the thin SVD of Z ∈ Rqn×T
has complexity O(Tq2n2) and the multiplication of UV ′ is
also O(Tq2n2). Thus, each call to ARloss is O(Tpn2) and

Algorithm 1 RARMA(p, q)
Input: X, p, q, α, γ
Output: A,B, E

1: Xp = 0 // History matrix, Xp ∈ Rnp×T
2: for i = 1, . . . , p,Xp(:, t) = [X(:, t−1); . . . ;X(:, t−p)]
3: [f,g] = MAloss(Z,A):
4: [U,Σ, V ] = svd(Z)
5: Y = AXp +

∑q
j=1 Z(j : n(j + 1)− 1, :)

6: f = L(Y ;X) + α sum(diag(Σ))
7: g = repmat(∇Y L(Y ;X), q, 1)
8: // Zero out unused parts of Z
9: for j = 1, . . . , q, g(j :n(j+1), (t−j+1): t) = 0

10: g = g +αUV ′

11: [f,g] = ARloss(A,Z):
12: Y = AXp +

∑q
j=1 Z(j : n(j + 1)− 1, :)

13: f = L(Y ;X) + αR(A)
14: g = (∇Y L(Y ;X))Xp + γ∇R(A)
15: Initialize Z = 0, A = 0
16: // Apply your favourite optimizer to the AR search
17: A = lbfgs(ARloss(·, Z), A)
18: // Iterate between A and Z
19: [A,Z] = iterate(ARloss, MAloss, A, Z)
20: // Recover the optimal B and E
21: [U,Σ, V ] = svd(Z)
Return: A,B = UΣ1/2, E = Σ1/2V ′

each call to MAloss is O(Tq2n2). The initial solution of A,
which involves solving a basic vector autoregressive model,
is i1O(Tpn2) where i1 is the number of iterations (typically
small). For i2 the number of iterations between A and B:
RARMA cost = VAR cost + i2(O(Tpn2) + O(Tq2n2)) =
(i1 + i2)O(Tpn2) + i2O(Tq2n2) ≈ O(T (p+ q2)n2).

Experimental evaluation
In this section, regularized ARMA is compared to a wide
range of time series methods for the task of forecasting fu-
ture observations on both synthetic and real-world data. As
discussed in Appendix F, forecasts are performed using only
the autoregressive parameters. In the final section, there is
also a comparison on estimating the underlying autoregres-
sive parameters of RARMA using q = 0 versus q > 0.

Several algorithms are compared: MEAN, which uses the
mean of the training sequence as the prediction, a popu-
lar subspace identification method (N4SID) (Van Overschee
and De Moor 1994), expectation-maximization to learn the
parameters for a Kalman filter (EM-Kalman), Hilbert space
embeddings of hidden Markov models (HSE-HMM) (Song
et al. 2010; Boots and Gordon 2012),4 maximum likeli-
hood estimation of vector AR (AR), the Hannan-Rissanen
method for ARMA (ARMA) (Hannan and Kavalieris 1984)
and global estimation of regularized ARMA (RARMA). We
also compared to local alternation of the RARMA objective

4In addition to the two method-of-moments approaches, N4SID
and HSE-HMM, we tried a third state-space technique (Anandku-
mar, Hsu, and Kakade 2012), with no previous published empirical
demonstrations. It performed poorly and so is omitted.



Table 1: For each dataset, the first column contains the test MSE (with standard error in parentheses) and the second the
percentage of trials that were stable. The stability rates are measured using a threshold: eigenvalues < 1+ ε = 1.01. The
method(s) with the most t-test wins with significance level of 5% are bold for each dataset. Stable rates are key for iterated
prediction performance; large MSE is mainly due to unstable trials.

ALGORITHM N6-P2-Q2 N9-P3-Q3 N12-P3-Q3 N15-P3-Q3 N12-P4-Q4 CAC ATLANTIC
MEAN 2.85(0.13) 1.00 6.64(0.27) 1.00 12.5(0.44) 1.00 21.2(1.06) 1.00 6.81(0.19) 1.00 4.92(0.17) 1.00 5.03(0.39) 1.00
N4SID 3.23(0.21) 1.00 6.82(0.30) 1.00 12.9(0.58) 1.00 24.7(1.46) 1.00 6.85(0.19) 1.00 2.60(0.35) 1.00 2.10(0.98) 1.00

EM-KALMAN 4.27(0.30) 0.97 11.7(1.17) 0.94 19.0(1.19) 0.95 32.8(3.03) 0.89 15.9(1.45) 0.88 2.43(0.26) 1.00 2.33(0.66) 1.00
HSE-HMM 13.5(12.8) 0.95 1070(1469) 0.95 353(514) 0.95 2017(3290) 0.95 31.8(28.6) 0.91 7637(1433) 0.88 1.63(0.53) 1.00
AR(AICC) 1.83(0.29) 0.96 8.99(2.38) 0.88 16.9(2.69) 0.84 80.2(24.7) 0.69 24.8(29.6) 0.69 1.71(0.31) 1.00 0.85(0.37) 1.00
AR(BIC) 1.67(0.25) 0.97 6.42(1.27) 0.91 10.7(1.22) 0.93 34.0(5.20) 0.85 5.25(0.54) 0.82 3.00(0.27) 1.00 2.99(0.81) 1.00

ARMA(AICC) 1.63(0.2) 0.98 4.93(0.62) 0.93 8.52(0.73) 0.96 27.7(3.64) 0.86 5.49(0.48) 0.88 101(42.9) 1.00 6.80(2.85) 1.00
ARMA(BIC) 1.68(0.25) 0.98 4.81(0.58) 0.95 8.40(0.59) 0.97 29.4(5.76) 0.91 5.26(0.48) 0.97 107(49.3) 1.00 6.80(2.85) 1.00

RARMA 1.29(0.08) 1.00 4.10(0.30) 0.97 7.49(0.41) 0.99 15.7(0.92) 0.98 4.69(0.21) 0.99 1.53(0.27) 1.00 0.80(0.35) 1.00
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Figure 2: Cumulative test MSE in
log scale on two real-world datasets.
Each model is iterated for (a) 40 and
(b) 60 steps, respectively. AR(BIC)
and AR(AICc) have significantly dif-
ferent performance, indicating the im-
portance in selecting a good lag length
for AR. HSE-HMM is unstable for
CAC, but performs reasonably well
for Atlantic. The best performing
methods are AR(AICc) and RARMA.
RARMA has strong first step predic-
tion in both cases and has very good
early predictions in CAC.

(11); for both the best and worst random initializations, how-
ever, the results were always worse that global RARMA,
slower by more than an order of magnitude and often pro-
duced unstable results. Therefore, these local alternator re-
sults are omitted, with the focus instead on the comparison
between the RARMA objective and the other approaches.
The HR method is used for the ARMA implementation, be-
cause a recent study (Kascha 2012) shows that HR is reason-
ably stable compared to other vector ARMA learning algo-
rithms. A third step was added for further stability, in which
the A(i) are re-learned from the observations with the MA
component (from the second step) removed. The built-in
Matlab implementations were used for AR and N4SID.

The lag parameters p and q were selected according to
standard criteria in time series. For AR and ARMA, the
parameters p and q are chosen using BIC and AICc, and re-
ported separately due to interesting differences in their per-
formance. For N4SID, the built-in Matlab implementation
chose the best order. For RARMA, because of the temporal
structure in the data, parameters were chosen by perform-
ing estimation on the first 90% of the training sequence and
evaluating model performance on the last 10% of the train-
ing sequence. We use a robust loss, the Huber loss, for
RARMA, which is easily incorporated due to the general-
ity of RARMA. Autoregressive models can also easily use
the Huber loss; we therefore directly compare RARMA to

only using an autoregressive component in the last section.

Synthetic experiments: Synthetic data sets are generated
from an ARMA(p, q) model. An ARMA model is called un-
stable if the spectra of the AR matrices exceeds the unit cir-
cle on the complex plane (Lütkepohl 2007); intuitively, iter-
ating a dynamics matrixA = UΣV ′ that has any Σ(i, i) > 1
for t steps, At = UΣtV ′, is expansive. See Appendix E
for details about the procedure for generating stable ARMA
models. For each (p, q, n) configuration, 500 data sequences
are generated, each with 300 samples partitioned into 200
training points followed by 100 test points.

Table 1 shows the results, including the test mean squared
error (MSE) and the stability rates over all trials. RARMA
with global optimization is the best model on each data set
in terms of MSE. Learning is generally more difficult as the
dimension increases, but RARMA performs well even when
most algorithms fail to beat the baseline (MEAN) and main-
tains a reasonably stable rate.

Figure 3(a) illustrates a runtime comparison, in CPU sec-
onds. The synthetic model is fixed to n = 9 and p = q = 3,
with an increasing number of training points. RARMA
is comparable to other methods in terms of efficiency and
scales well with increasing number of samples T .

Experiments on real time series: To see how our method
performs on real-world data, we experimented on two real-
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(b) Parameter recovery for q = 0 vs. q > 0
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(c) Forecasting for q = 0 vs. q > 0

Figure 3: (a) Runtimes for an increasing number of samples, for multivariate series with n = 9 and p = q = 3. For (b) and (c), the relative
error is reported between RARMA(p, q) and the best RARMA(m,0) model, with m = p, p+q (with results for each m separately in Appendix
E, Figure 4). The plot is symmetric, where at 4, RARMA(p, q) has 4x lower error (good), and at 0.25, has 4x higher error (bad). The x-axis
shows increasing lag and the y-axis increasing moving average variance. As the variance is increased beyond exp(−3), using the MEAN
as a predictor begins to outperform all three methods and the moving average component begins to dominate the autoregressive component.
For (b), the comparison is the `1 error between the recovered A parameters and the true parameters, cut-off at p for RARMA(p + q, 0). As
p, q increase, RARMA(p + q,0) becomes the dominant method for obtaining the underlying parameters, despite the fact that only the first
p components of the learned A are used. For (c), the comparison is with forecasting accuracy for a horizon of 10, measured with `1 error.
Using q > 0 clearly improves performance for lower variance levels; the mean predictor begins to outperform all three at e−2.

world datasets from IRI.5 These climate datasets consist
of monthly sea surface temperature on the tropical Pacific
Ocean (CAC) and the tropical Atlantic Ocean (Atlantic).
The area size of CAC is 84 × 30 with 399 points, while the
area of Atlantic is 22× 11 with 564 points. We use the first
30×30 locations for CAC and the first 9×9 locations for At-
lantic. These areas are further partitioned into grids of size
3 × 3 and vectorized to obtain observations xt ∈ R9. The
data for each location is normalized to have sample mean
of zero and sample standard deviation of one in the experi-
ments. The first 90% of the sequence is used as training set,
the last 10% as the test set.

Table 1 shows the test MSE and Figure 2 shows the cu-
mulative MSE in log scale. As in the synthetic experiments,
RARMA is consistently among the best models in terms of
MSE. Moreover, when examining iterated forecasting ac-
curacy in Figure 2, RARMA is better for early predictions
(about the first 30 predictions) on the real datasets.

Investigating the moving average component: The final
comparison is an investigation into the importance of the
moving average component, versus simply using an AR
model. RARMA(p, q) is compared to RARMA(p, 0) and
RARMA(p+q, 0) for two settings: recovering the true au-
toregressive parameters,A, and accuracy in forecasting. The
same code is run for all three methods, simply with different
p, q settings. The comparison is over increasing lag and in-
creasing variance of the moving average component. The re-
sults are presented in Figure 3, with a more complete figure
in Figure 4, Appendix E. The heat map presents the relative
error between RARMA(p, q) and the best of RARMA(p, 0)
and RARMA(p+q, 0); values greater than 1 indicate superior
performance for RARMA(p, q).

These results indicate two interesting phenomena. First,
including the moving average component significantly im-
proves forecasting performance when the variance is rel-

5http://iridl.ldeo.columbia.edu/SOURCES/

atively small. As the variance reached levels where the
MEAN began to outperform all three techniques, the mod-
els with q = 0 were slightly better. Second, RARMA with
q > 0 performs noticeably better for forecasting but typi-
cally performed about the same or worse for extracting the
underlying autoregressive parameters. This result suggests
that, if the ultimate goal is forecasting, we need not focus so
much on identification. Importantly, because vector ARMA
models can now be solved globally and efficiently, there is
little disadvantage in using this more powerful model, and
strong benefits in some cases.

Conclusion
This paper tackles a long-standing problem in time se-
ries modeling: tractable maximum likelihood estimation of
multivariate ARMA models. The approach involves three
key components: (1) estimating stochastic ARMA models,
which relaxes the requirement that the innovations exactly
equal the residuals, (2) characterizing the independent Gaus-
sian structure of the innovations using a regularizer and (3)
developing a theoretically sound convex reformulation of the
resulting stochastic multivariate ARMA objective. Solving
this convex optimization is efficient, guarantees global so-
lutions and outperformed previous ARMA and state-space
methods in forecasting on synthetic and real datasets.

These results suggest stochastic regularized ARMA is a
promising direction for time series modeling, over conven-
tional (deterministic) ARMA. Stochastic ARMA is similarly
motivated by the Wold representation, but is amenable to op-
timization, unlike deterministic ARMA. Moreover, the reg-
ularized ARMA objective facilitates development of estima-
tion algorithms under generalized innovations. Though the
focus in this work was on a convex formulation for Gaus-
sian innovations, it extends to Laplacian innovations for a
(2, 1)-block norm regularizer. Advances in optimizing struc-
tured norm objectives advance global estimation of regular-
ized ARMA models for novel innovation properties.
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Optimal Estimation of Multivariate ARMA
Models Appendix

A Proof of Lemma 1
Proof: A standard argument follows (Neal and Hinton
1998). First note that a lower bound on log p(x1:T |Θ) can
be easily obtained:

log p(x1:T |Θ) = log

∫
p(x1:T , ε1:T |Θ) dε1:T

= log

∫
q(ε1:T )

p(x1:T , ε1:T |Θ)

q(ε1:T )
dε1:T

. for any density q(·)

≥
∫
q(ε1:T )

(
log

p(x1:T , ε1:T |Θ)

q(ε1:T )

)
dε1:T

. by Jensen’s inequality (since log is concave)

=

∫
q(ε1:T ) log p(x1:T , ε1:T |Θ) dε1:T

−
∫
q(ε1:T ) log q(ε1:T ) dε1:T

=

∫
q(ε1:T ) log p(x1:T , ε1:T |Θ) dε1:T +H(q(·)). (14)

It remains to show that the maximization of the lower
bound attains the original value; that is:

logp(x1:T |Θ) =

max
q(·)

∫
q(ε1:T ) log p(x1:T , ε1:T |Θ) dε1:T +H(q(·))

over densities q(·). This can be verified merely by choosing
the particular density q(ε1:T ) = p(ε1:T |x1:T ,Θ) and

(14) =

∫
p(ε1:T |x1:T ,Θ) log p(x1:T , ε1:T |Θ) dε1:T

−
∫
p(ε1:T |x1:T ,Θ) log p(ε1:T |x1:T ,Θ) dε1:T (15)

=

∫
p(ε1:T |x1:T ,Θ) log

p(x1:T , ε1:T |Θ)

p(ε1:T |x1:T ,Θ)
dε1:T

=

∫
p(ε1:T |x1:T ,Θ) log p(x1:T |Θ) dε1:T

= log p(x1:T |Θ)

∫
p(ε1:T |x1:T ,Θ) dε1:T

= log p(x1:T |Θ), (16)

implying that the upper bound can always be attained by
q(ε1:T ) = p(ε1:T |x1:T ,Θ). �

B Proof of Theorems 2 and 3
Lemma 4. Given a convex loss function L(·,x) and convex
regularizer R(·) with γ ≥ 0, the following loss is convex in

Z for all xt ∈ Rn

LA

 q∑
j=0

Z(j)
:,t−j ,xt

 =

L

 q∑
j=0

Z(j)
:,t−j ,+

p∑
i=1

A(i)xt−i,xt

+ γR(A)

Proof: Let gt((Z,A)) =
∑q
j=0 Z

(j)
:,t−j +

∑p
i=1A

(i)xt−i.
We need to show that L(gt((Z,A)),xt) is convex for any
xt.

1. Clearly gt((Z,A)) is linear in (Z,A).

2. Since L(·,xt) is convex, and the composition of a convex
function with a linear function is convex, thenL(gt(·),xt)
is convex.

�

Corollary 5. The parameter estimation problem with a con-
vex regularizer R(·) on the autoregressive parameters, A,

min
A

min
Z

T∑
t=1

L

(
Z

(j)
:,t−j +

p∑
i=1

A(i)xt−i,xt

)
+

α|||Z|||+ γR(A)

is jointly convex in A and Z for α, γ ≥ 0.

Theorem 2 The regularized ARMA estimation problem
for G(B) = ||B||2F is equivalent to the following convex
optimization problem

min
A,B,E

T∑
t=1

LAt

 q∑
j=0

B(j)E:,t−j

+ α||E||2F + α||B||2F

= min
A,Z

T∑
t=1

LA,t

 q∑
j=0

Z
(j)
:,t−j

+ 2α||Z||tr

with a singular value decomposition recovery: Z = UΣV ′

giving B = U
√

Σ and E =
√

ΣV ′.
Proof: This result is well known (Bach, Mairal, and Ponce
2008; Zhang et al. 2011), but we include some details here
for completeness. First, ||Z||tr = minB,E:BE=Z

1
2 (||B||2F +

||E||2F ) because the induced norm is equal to the dual of the
spectral norm, which is the trace norm. For the recovery,

||B||2F + ||E||2F = ||U
√

Σ||2F + ||
√

ΣV ′||2F
= ||
√

Σ||2F + ||
√

Σ||2F = 2||
√

Σ||2F = 2 tr Σ = 2||Z||tr
�

For Theorem 3, we will first proof the following lemma.

Lemma 6.

min
B,E:Z=BE

1

2

(
||E||2F + max

j=0,...,q
||B(j)||22

)
= min
B,E:Z=BE∀i,j‖B(j)

:,i‖2≤1
||E||2,1



Proof: From Equations 2,3 and 4 in (Bach, Mairal,
and Ponce 2008), we know that the induced norm on
Z = BE can be written in either of these two forms.
This results follows from the fact that for ||B:,i||2C =

maxj=0,...,q ||B(j)
:,i||22 and ||Ei,:||2R = ||Ei,:||22, any (B, E),

can be rescaled by si =
‖E:,i‖R
‖B:,i‖C to get:

1

2

n∑
i=1

||B:,isi||2C + ||s−1
i Ei,:||

2
R

=
1

2

n∑
i=1

||B:,i||2C
‖E:,i‖R
‖B:,i‖C

+ ||Ei,:||2R
‖B:,i‖C
‖E:,i‖R

=
1

2

n∑
i=1

||B:,i||C‖E:,i‖R + ||Ei,:||R‖B:,i‖C

=

n∑
i=1

||B:,i||C ||E||R

Then, the norm of B can be scaled to 1, with the scale being
pushed into the other parameter, Z, giving the final form. �

Theorem 3 The regularized ARMA estimation problem
for G(B) = maxj=0,...,q ||B(j)||2F is equivalent to the fol-
lowing convex optimization problem

min
A,B,E

T∑
t=1

LAt

 q∑
j=0

B(j)E:,t−j


+ α||E||2F + α max

j=0,...,q
||B(j)||2F

= min
A,Z

T∑
t=1

LA,t

 q∑
j=0

Z
(j)
:,t−j

+ max
0≤ρ≤1

||W−1
ρ Z||tr

where

Wρ :=

[
1/
√
ρ In 0

0 1/
√

1− ρ In

]
.

Moreover, ||W−1
ρ Z||tr is concave in ρ over [0, 1].

Proof: From Lemma 6, we find an equivalent definition for
the induced norm on Z

|||Z||| = min
B,E:Z=BE

1

2

n∑
i=1

(
‖Ei,:‖22 + max

j=0,...,q
‖B:,i‖22

)
= min

B,E:Z=BE
∀i,j‖B(j)

:,i‖2≤1

||E||2,1

Usefully, this equivalent form with (2, 1)-block norm reg-
ularizer and constraint on B has recently been convexly re-
formulated for q = 1 (White et al. 2012). Therefore, since
our main loss is convex by Lemma 4, we can directly ap-
ply their proof; see Proposition 2, Lemma 3, Lemma 4 and
Theorem 5 in (White et al. 2012) for the result. In our case,
the weights on each of the views is simply β1 = β2 = 1.
Therefore, we obtain

|||Z||| = max
0≤ρ≤1

||W−1
ρ Z||tr

From (White et al. 2012, Lemma 4), we know that
||W−1

ρ Z||tr is concave in ρ over [0, 1], for any Z.
�

C Boosting recovery procedure for
regularized ARMA

For the goal of recovering Gaussian distributed innovation
variables, we provide the following boosting procedure that
iteratively generates columns ofB and rows of E untilBE =
Z.

1. First rescale Z such that |||Z||| = 1, since after recover-
ing B and E we can simply multiply them both by

√
|||Z|||.

2. For any matrices B and E , we can write B =
[b1, . . . ,bn] diag(s1) and E = diag(s2)[ε1; . . . ; εn] for
‖bi‖2 = 1 and ‖εi‖2 = 1 and scale vectors s1, s2 ≥ 0.

3. Generate unit vectors and scales to optimize f(K) =
‖Z −K‖2F , i.e.,

min
B,E
‖Z −BE‖2F = min

b1,b2,...,s1,s2,ε1,ε2,...,s2
‖Z −BE‖2F

in a repeated two step boosting approach, starting withK0 =
0:

3.1 Weak learning step: greedily pick (bt, εt) ∈
argmin‖b‖2=1,‖ε‖2=1 〈∇f(Kt−1),btε

′
t〉 . This step can be

computed efficiently by using the procedure in (White et al.
2012).

3.2 “Totally corrective” step: µ(t) =

argmin
µ≥0,

∑
i µi=1

f
( t∑
i=1

µibiε
′
i

)
, then Kt =

t∑
i=1

µ
(t)
i biε

′
i.

Notice that the scales are reoptimized after each ba-
sis is added, meaning that unuseful bases will have their
scale set to zero. This procedure will find a Kt satisfying
‖Z−Kt‖2F < εwithinO(1/ε) iterations (White et al. 2012).

4. Set s1 = s2 =
√
|||Z|||√µ, B = [b1, . . . ,bt] diag(s1).

and E = diag(s2)[ε1; . . . ; εt]. Then we can see that

1

2
( max
j=0,...q

||B(j)||22 + ||E||2F )

=
1

2
(|||Z|||||[√µ1b1, . . . ,

√
µtbt]||2F

+ |||Z|||||[√µ1ε1; . . . ;
√
µtεt]||2F )

=
|||Z|||

2
(||
√

diagµ||2F + ||
√

diagµ||2F )

= |||Z|||‖√µ‖22 = |||Z|||

since ‖√µ‖22 = 1 by the constraints in step 3.2.
To recover Laplacian innovations instead of Gaussian

innovations, the only difference is the rescaling. For the first
setting, G(B) = ||B||2F , the recovery for Z = UΣV ′ is
B = U and E = ΣV ′, to obtain Laplacian distributed E . For
the second setting, we simply set s1 = 1 and s2 = |||Z|||µ.
See the last section in Appendix D to see how the ||E||2,1
regularizer corresponds to a Laplacian distribution on inno-
vations across time.

D Generalizations for regularized ARMA
There are many generalizations to ARMA models that are
important for practical applications. Of particular impor-
tance is generalizing the Gaussian distributional assump-
tions on xt in the estimation of ARMA models (Ben-
jamin, Rigby, and Stasinopoulos 2003), the generalization



to ARMA with exogenous, input variables (ARMAX) and
the generalization to non-stationary series (ARIMA). In this
section, we indicate how the regularized ARMA formulation
can be generalized to include these three important settings.

Generalized distributional assumptions
We can relax the Gaussian assumption on observations
xt by moving to natural exponential family distributions.6
A natural exponential family distribution is a distribution
parametrized by θ as follows

PF (x|θ) = exp(xTθ − F (θ))p0(x) (17)

where F is commonly thought of as the cumulant function.
Examples of natural exponential families include the Gaus-
sian, gamma, chi-square, beta, Weibull, Bernoulli and Pois-
son distributions (Banerjee et al. 2005). Many distributions
can be approximated with exponential families, further gen-
eralizing the distributional assumptions.

With this generalized (noise) model, we can write the log
likelihood as

logPF (xt|θ) = xTt θt − F (θt) + log p0(xt) (18)
= −DF (θt||xt) + F (xt) + log p0(xt)

where DF is a Bregman divergence for strictly convex po-
tential function F : Rn→R

DF (θt||xt) = F (θt)− F (xt)−∇F (xt)
′(θt − xt).

Bregman divergences are not true metrics: they do not gen-
erally satisfy the triangle inequality nor symmetry. They are,
however, convex in the first argument and encompass many
useful losses, including the Euclidean loss (Gaussian distri-
bution with F (x) = 1

2x
′x), relative entropy loss (Poisson

distribution with F (x) = ln(1′ exp(x))) and Itakura-Saito
distance (exponential distribution for scalar variables x with
F (λ) = log(λ)) (Banerjee et al. 2005).

The resulting minimization of the negative log likelihood
with respect to θt now corresponds to a minimization of the
Bregman divergence7, since the terms F (xt)+log p0(xt) in
(18) do not affect the minimization over parameter θt. Previ-
ously, we restricted ourselves to F (x) = 1

2x
′x, which gives

the Bregman divergenceDF (θt||xt) = ||θt−xt||22. Though
the Euclidean loss is symmetric, in general, Bregman diver-
gences are only convex in the first argument. Therefore, it
is crucial that we minimize DF (θt||xt) with θt as the first
argument to achieve a convex formulation of the parameter
estimation problem.

Generalization to ARMAX
We can trivially add exogenous variables because, like the
autoregressive part, they are included in the loss additively:

L

 p∑
i=1

A(i)xt−i +

q∑
j=0

Z
(j)
:,t−j +

s∑
i=1

C(i)ut−i ; xt


6This equates to generalizing the assumptions on the noise.
7Banerjee et al. (2005) proved there is an isomorphic equiva-

lence between regular Bregman divergences and natural (regular)
exponential family distributions.

where ut ∈ Rd is an input control vector or exogenous vec-
tor. As with the autoregressive component, we can add a
convex regularizer on C ∈ Rn×ds to avoid overfitting. The
resulting optimization is an alternation over the three param-
eters, A, Z and C.

Generalization to ARIMA models
This generalization is similarly simple, because an autore-
gressive integrated moving average, ARIMA(p,d,q), model
is simply an ARMA(p,q) model of the time series differ-
enced d times. Differencing is a form of taking the deriva-
tive, with the assumption that the time lag is appropriately
small. As a result, the more times the differencing is applied,
the more likely we are to reach a stationary distribution.

Regularized ARMA models with other regularizers
In Lemma 6 and Theorem 3, we indicated that we can also
solve the following objective:

min
B,E,∀i,j‖B(j)

:,i‖2≤1

T∑
t=1

LA

 q∑
j=1

B(j)E:,t−j ,xt

+ α||E||2,1

Below, we show that this block 2, 1-norm corresponds to
assuming a prior on the innovations that is a Laplacian dis-
tribution across time.

There are several multivariate extensions of Laplace dis-
tributions; we choose a multivariate Laplace, parametrized
by a mean, µi, and scatter matrix Σi, with the convenient
pdf (Arslan 2010):

pL(Ei,:|µi,Σi) =
|Σi|−1/2

2Tπ
T−1

2 Γ(T+1
2 )

e−
√

(Ei,:−µi)Σ
−1
i (Ei,:−µi)′

As before, where the covariance was pushed into the B pa-
rameters, we assume µ = 0 and Σ = I , giving

− log pL(Ei,:|µi,Σi) = 1
2 log (|Σi|) + T log(2) + T−1

2 log(π)

+ log Γ

(
T + 1

2

)
+

√
(Ei,: − µi)Σ−1

i (Ei,: − µi)′

=⇒ min
E

n∑
i=1

− log pL(Ei,:|µi = 0,Σi = I)

= min
E

n∑
i=1

√
Ei,:E ′i,: = min

E
‖E‖2,1

We can now simplify the relationship between the hidden
variables because this multivariate Laplace distribution de-
composes nicely into the multiplication of a scalar gamma-
distributed variable, Si ∼ G( t+1

2 , β = 1
2 ) the covariance

matrix Σ ∈ Rt×t and independent, standard normal vari-
ables, εi ∼ N (0, I) (Arslan 2010):

Ei,: =
√
SiΣεi . pSi

(s) = 1

Γ( t+1
2 )2

t+1
2

s
t−1
2 exp

(
− s2
)
.

Interestingly, this makes the connection with the Frobenius
norm formulation more clear, since once the scale is fixed,
we have independent innovations. The scalar across time
acts like a shared scale on the covariance of the innovations.



Algorithm 2 ARMA synthetic data generation
Input: p, q, dimension of series n, number of samples T
Output: A, B, x1, . . . ,xT

1: m← n/p // Size of partition in x
2: s0 ← 0.999 // Scale s0 < 1
3: τ ← floor(T/3) // Permutation period
4: for i = 1 : p do
5: d← [] // Eigenvalues of permutation matrix Ã(i)

6: V = [] // Eigenvectors of permutation matrix Ã(i)

7: count← 0
8: if m is odd then
9: d← s0

10: V = randn(m, 1)
11: count← 1
12: end if
13: while count < m do
14: d new← s0 · exp(2π

√
−1/τ)

15: d← [d, d new, conj(d new)]
16: v1 ← randn(m, 1),v2 ← randn(m, 1)
17: V = [V, v1 +

√
−1v2, v1 −

√
−1v2]

18: count← count + 2
19: end while
20: A(i) = 0
21: D = diag(d)
22: A(i)

((i−1)m+1:im),((i−1)m+1:im) = real(V DV −1)
23: end for
24: B ← randn(qn, n), B:j ← B:j/

√∑qn
i=1B

2
ij

25: E ← ν · randn(n, T ) // Draw E with variance ν
26: (x1, . . . ,xT ) ← simulate(A,B, E) // Simulate data

from generated A, B and E
Return: A,B, (x1, . . . ,xT )

In general, there are potentially many other distributional
assumptions we can make on the innovation variables that
could be efficiently solvable, depending on advances in con-
vex reformulations of matrix factorization.

E Details for the algorithms and experiments
For the autoregressive part, we need to choose the pa-

rameters A(i) carefully, otherwise the system will be un-
stable and the generated sequences will diverge (Lütkepohl
2007). For vector ARMA in particular, there are not many
approaches to generating stable ARMA models and most ex-
periments involve small, specific known systems. We use an
approach where each A(i) acts as a permutation matrix on a
sub-part of x. The observation x is partitioned into p sub-
vectors of size m = n/p. Each A(i) permutes the ith block
in x, with a slow decay for numerical stability. Therefore,
A(i) has zeros in entries corresponding to blocks 1, . . . , i−1
and i + 1, . . . , n and a slowly decaying permutation matrix
at row and columns entries (i−1)m+ 1 to im. This permu-
tation matrix is generated using randomly generated eigen-
vectors and eigenvalues, as well as their conjugates, to give
Ã(i) = V DV −1. The conjugates are used to ensure that
the generated matrix A is a real matrix. The decay rate s0

is set to 0.999 for numerical stability and the period of the
permutation matrix determine by τ .

For the moving average part, the entries of B(j) and εt
are drawn from standard normal, N (0, I). The matrix B is
normalized to have unit variance. To generate data from this
model, the initial x−p, . . . ,x0 are sampled from the unit ball
in Rn. Then the model is iterated from this initial sample.
See Algorithm 2 for the complete generation procedure.

F Forecasting in ARMA models
A main use of ARMA models is for forecasting, once the
model parameters have been estimated. In particular, given
the parameters, Θ, we would like to predict the value of
a future observation, xt+h, given observations of a history
x1, . . . ,xt. Under the Gaussian assumption (and exponen-
tial family distributions more generally, see Appendix D) the
optimal point predictor, x̂t+h, is given by the conditional ex-
pectation x̃t+h = E[xt+h|x1, . . . ,xt,Θ], (19)
which can be easily computed from the observed history and
the parameters. To understand ARMA forecasting in a little
more detail, first consider the one step prediction case. If
the innovation variables are included in the observed history,
then from the conditional independence properties depicted
in Figure 1(a) and (1) the one step conditional expectation is
easily determined to be

x̂t+1 = E[xt+1|x1, . . . ,xt, ε1, . . . , εt,Θ]

=

p∑
i=1

A(i)xt+1−i +

q∑
j=1

B(j)εt+1−j .

For the h step forecast, since the expected innovations for
xt+1, . . . ,xt+h−1 are zero given previous innovations, we
obtain x̂t+h = E[xt+h|x1, . . . ,xt, ε1, . . . , εt,Θ]

=

p∑
i=1

A(i)x̂t+h−i +

q∑
j=h

B(j)εt+h−j

where for h > q, the moving average term is no longer used,
and x̂t+h−j = xt+h−j for t+ h− j ≤ t.

If, however, the innovation variables ε1, . . . , εt are not
observed, then xt+1 becomes dependent on the entire his-
tory x1, . . . ,xt. The one step conditional expectation then
becomesx̃t+1 = E[xt+1|x1, . . . ,xt,Θ]

=

p∑
i=1

A(i)xt+1−i +

q∑
j=1

B̃
(j)
(t) ε̃t+1−j

where ε̃t = xt − x̃t, and the B̃(j)
(t) can be efficiently com-

puted, recursively, from the previous B̃(k)
(n) and the original

parameters; see for example (Brockwell and Davis 2002,
Sec. 3.3) for details. This leads to the optimal h step pre-
dictor that can be efficiently computed using the same recur-
sively updated quantities

x̃t+h = E[xt+h|x1, . . . ,xt,Θ]

=

p∑
i=1

A(i)x̃t+h−i +

t+h−1∑
j=h

B̃
(j)
(t+h−1)ε̃t+h−j .
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(a) Forecasting accuracy for RARMA(p, 0)
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(b) Forecasting accuracy for RARMA(p+ q, 0)
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(c) Parameter recovery for RARMA(p, 0)
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(d) Parameter recovery for RARMA(p+ q, 0)

Figure 4: The relative error is reported between RARMA(p, q) and the RARMA(p,0) and RARMA(p + q,0): err(RARMA(q = 0)) /
err(RARMA(q > 0)). The plot is symmetric, where at 4, RARMA(p, q) has 4x lower error (good), and at 0.25, has 4x higher error (bad).
The dimension is set to n = p and 50 + p + q training samples. The x-axis shows increasing lag and the y-axis increasing moving average
variance. As the variance is increased beyond exp(−3), using the MEAN as a predictor begins to outperform all three methods and the
moving average component begins to dominate the autoregressive component. For (a) and (b), the comparison is with respect to forecasting
accuracy for a horizon of 10, measured with `1 error. For (c) and (d), the comparison is with respect to the `1 error between the recovered
A parameters and the true parameters, cut-off at p for RARMA(p + q, 0). Interestingly, it appears that the accuracy of A is not crucial for
forecasting performance, as RARMA(p, q) outperforms RARMA(p, 0) for most reasonable innovation variance in terms of forecasting error,
but not in terms of accuracy of the underlying A.


