Learning Predictive State Representations Using Non-Blind Policies

Michael Bowling Peter McCracken Michael James James Neufeld Dana Wilkinson

> University of Alberta Toyota Technical Center University of Waterloo

> > ICML 2006

1 / 18

ICML 2006

Bowling et al.

PSRs and Non-Blind Policies

Outline

- Extracting PSRs from Data.
- Prediction Estimators: Problem and Solution
- On-Blind Exploration

Very Brief Tutorial

Decision Process

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

General Form

$$\Pr(o_{n+1}|a_1, o_1, \dots, a_n, o_n, a_{n+1})$$

Decision Process

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

Markov Decision Process

$$\Pr(o_{n+1}|a_1, o_1, \dots, a_n, o_n, a_{n+1}) = \Pr(o_{n+1}|o_n, a_{n+1})$$

Decision Process

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

General Form

$$\Pr(o_{n+1}|a_1, o_1, \dots, a_n, o_n, a_{n+1})$$

Histories, Tests, and Predictions

Notation

 $\begin{array}{lll} \mbox{History}(h) & a_1, o_1, a_2, o_2, \dots, a_n, o_n \\ \mbox{Test}(t) & a_1, o_1, a_2, o_2, \dots, a_n, o_n \\ \mbox{Prediction} & p(t|h) \end{array} \mbox{(but in the future)}$

$$p(a_{1}, o_{1}, \dots, a_{n}, o_{n}|h) \equiv \prod_{i=1}^{n} \Pr(o_{i}|ha_{1}, o_{1}, \dots, a_{i})$$

$$\pi(a_{1}, o_{1}, \dots, a_{n}, o_{n}|h) \equiv \prod_{i=1}^{n} \Pr(a_{i}|ha_{1}, o_{1}, \dots, a_{i-1}, o_{i-1})$$

$$\Pr(t|h) = p(t|h)\pi(t|h)$$

ALBERTA

System Dynamics Matrix

- Countable number of tests and histories.
- Infinite matrix of all predictions.

• Underlying states.

Tests

• Underlying states.

- Underlying states.
- Histories correspond to belief states.

- Underlying states.
- Histories correspond to belief states.
- History row is a linear combination of state rows.

- Underlying states.
- Histories correspond to belief states.
- History row is a linear combination of state rows.
- : rank(SDM) $\leq |\mathcal{S}|$

• Find linearly independent tests.

Tests

ALBERTA

• Find linearly independent tests.

Find linearly independent tests.

"Core Tests" Q • Any test is a linear

combination of core tests.

$$p(t|h) = p(Q|h)m_t$$

Bowling et al.

PSRs and Non-Blind Policies

ICML 2006 8 / 18

What Data?

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

Bowling et al.

PSRs and Non-Blind Policies

ICML 2006 9 / 18

What Data?

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

How are actions chosen?

- Unknown policy.
- Known policy.
- Controlled policy.

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

How are actions chosen?

- Unknown policy.
- Known policy.
- Controlled policy.

Note

Existing algorithms require a particular control policy. Either:

- Exhaustively trying history-test pairs, or
- Random actions.

(James & Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005) (McCracken & Bowling, 2006)

- The common formula:
 - Find core tests.
 - Find update parameters.

Histories

Tests

(James & Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005) (McCracken & Bowling, 2006)

- The common formula:
 - Find core tests.
 - Find update parameters.
 - Estimate part of the system dynamics matrix.

Tests

(James & Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005) (McCracken & Bowling, 2006)

- The common formula:
 - Find core tests.
 - Find update parameters.
 - Estimate part of the system dynamics matrix.
 - Estimate a subset of predictions.

(James & Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005) (McCracken & Bowling, 2006)

- The common formula:
 - Find core tests.
 - Find update parameters.
 - Estimate part of the system dynamics matrix.
 - Estimate a subset of predictions.

$$\hat{p}_{\bullet}(t|h) = \frac{\#ha_1o_1\dots a_no_n}{\#ha_1\dots a_n}$$

Problem

$$E[\hat{p}_{\bullet}(t|h)] = p(t|h) \frac{\prod_{i=1}^{n} \Pr(a_i|ha_1o_1\dots a_{i-1}o_{i-1})}{\prod_{i=1}^{n} \Pr(a_i|ha_1\dots a_{i-1})}$$

Definition

A policy is **blind** if actions are selected independent of preceeding observations. *I.e.*,

$$\Pr(a_n | a_1, o_1 \dots a_{n-1}, o_{n-1}) = \Pr(a_n | a_1, \dots, a_n)$$

Observation

 $\hat{p}_{\bullet}(t|h)$ is only an unbiased estimator of p(t|h) if π is blind.

What Data?

 $a_1, o_1, a_2, o_2, \ldots, a_n, o_n$

How are actions chosen?

- Unknown policy.
- Known policy.
- Controlled policy.

Prediction Estimators

Theorem

 $\hat{p}_{\pi}(t|h)$ and $\hat{p}_{\mathbf{x}}(t|h)$ are unbiased estimators of p(t|h).

Exploration

Goal

Choose actions to reduce error in the estimated system dynamics matrix.

Approach

- Add intelligent exploration to James & Singh's "reset" algorithm.
- Since $\hat{p}_{\pi}(t|h)$ is an unbiased estimator, we want to take actions to reduce the variance.
- Solve as an optimization problem.

Estimator Variance

$$V\left[\hat{p}_{\pi}(t|h)\big|\#h=n\right] = \frac{p(t|h)}{n\pi(t|h)} - \frac{p(t|h)^{2}}{n}$$
$$\leq \frac{1}{4n\pi(t|h)^{2}}$$

$$E\left[V\left[\hat{p}_{\pi}(t|h)\big|\#h=n\right]\big|k \text{ trajectories}\right] \leq \frac{1}{4k \ p(h)\pi(h)\pi(t|h)^2}$$

ICML 2006

Exploration

Intuition

Find the policy that maximizes the worst-case (over all predictions) bound on the root expected inverse variance.

Optimization Problem

Maximize:
$$\min_{h,t} \left(\sqrt{v_{i-1}(h,t)^{-1}} + 2\sqrt{k_i p(h)} \pi(ht) \right)$$

Subject to: **Sequence form** constraints on $\pi(ht)$:

16 / 18

ICML 2006

Results

Summary

Contributions

- Unbiased prediction estimators for non-blind policies.
- Variance analysis in the case of a known policy.
- Estimators used in "intelligent" exploration, which was shown can speed learning.
- Future Work
 - Better objective functions for exploration.
 - Investigate when non-blind exploration proves helpful.

ALBERTA