Learning Predictive State Representations Using Non-Blind Policies

Michael Bowling Peter McCracken Michael James James Neufeld Dana Wilkinson

University of Alberta
Toyota Technical Center
University of Waterloo

ICML 2006

Outline

(What is a PSR?

Very Brief Tutorial

(2) Extracting PSRs from Data.
(3) Prediction Estimators:

Problem and Solution

Short
Punchline

Bonus

Decision Process

General Form

$$
\operatorname{Pr}\left(o_{n+1} \mid a_{1}, o_{1}, \ldots, a_{n}, o_{n}, a_{n+1}\right)
$$

Decision Process

Markov Decision Process

$$
\operatorname{Pr}\left(o_{n+1} \mid a_{1}, o_{1}, \ldots, a_{n}, o_{n}, a_{n+1}\right)=\operatorname{Pr}\left(o_{n+1} \mid o_{n}, a_{n+1}\right)
$$

Decision Process

General Form

$$
\operatorname{Pr}\left(o_{n+1} \mid a_{1}, o_{1}, \ldots, a_{n}, o_{n}, a_{n+1}\right)
$$

Histories, Tests, and Predictions

Notation

History $(h) \quad a_{1}, o_{1}, a_{2}, o_{2}, \ldots, a_{n}, o_{n}$
Test (t)
$a_{1}, o_{1}, a_{2}, o_{2}, \ldots, a_{n}, o_{n}$
(but in the future)
Prediction $p(t \mid h)$

$$
\begin{aligned}
p\left(a_{1}, o_{1}, \ldots, a_{n}, o_{n} \mid h\right) & \equiv \prod_{i=1}^{n} \operatorname{Pr}\left(o_{i} \mid h a_{1}, o_{1}, \ldots, a_{i}\right) \\
\pi\left(a_{1}, o_{1}, \ldots, a_{n}, o_{n} \mid h\right) & \equiv \prod_{i=1}^{n} \operatorname{Pr}\left(a_{i} \mid h a_{1}, o_{1}, \ldots, a_{i-1}, o_{i-1}\right) \\
\operatorname{Pr}(t \mid h) & =p(t \mid h) \pi(t \mid h)
\end{aligned}
$$

System Dynamics Matrix

- Countable number of tests and histories.
- Infinite matrix of all predictions.

POMDPs

- Underlying states.

Tests

POMDPs

- Underlying states.

POMDPs

- Underlying states.
- Histories correspond to belief states.

POMDPs

- Underlying states.
- Histories correspond to belief states.
- History row is a linear

Tests

POMDPs

- Underlying states.
- Histories correspond to belief states.
- History row is a linear

Tests

Predictive State Representations

- Find linearly independent tests.

Tests

Predictive State Representations

- Find linearly independent tests.

"Core Tests" Q

Predictive State Representations

- Find linearly independent tests.

"Core Tests" Q

- Any test is a linear combination of core tests.

$$
p(t \mid h)=p(Q \mid h) m_{t}
$$

Tests

Predictive State Representations

- Find linearly independent tests.

"Core Tests" Q

- Update predictions:

$$
\begin{aligned}
p(Q \mid h a o) & =\frac{p(a o Q \mid h)}{p(a o \mid h)} \\
& =\frac{p(Q \mid h) M_{a o Q}}{p(Q \mid h) m_{a o}}
\end{aligned}
$$

Tests

Extracting PSRs from Data

What Data?

$$
a_{1}, o_{1}, a_{2}, o_{2}, \ldots, a_{n}, o_{n}
$$

What Data?

$$
a_{1}, o_{1}, a_{2}, o_{2}, \ldots, a_{n}, o_{n}
$$

- How are actions chosen?
- Unknown policy.
- Known policy.
- Controlled policy.

What Data?

$$
a_{1}, o_{1}, a_{2}, o_{2}, \ldots, a_{n}, o_{n}
$$

- How are actions chosen?
- Unknown policy.
- Known policy.
- Controlled policy.

Note

Existing algorithms require a particular control policy. Either:

- Exhaustively trying history-test pairs, or
- Random actions.

Extracting PSRs from Data

(James \& Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005)
(McCracken \& Bowling, 2006)

- The common formula:

Tests

- Find core tests.
- Find update parameters.

Extracting PSRs from Data

(James \& Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005)
(McCracken \& Bowling, 2006)

- The common formula:

Tests

- Find core tests.
- Find update parameters.
- Estimate part of the system dynamics matrix.

Extracting PSRs from Data

(James \& Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005)
(McCracken \& Bowling, 2006)

- The common formula:
- Find core tests.
- Find update parameters.
- Estimate part of the system dynamics matrix.
- Estimate a subset of predictions.

Tests

Extracting PSRs from Data

(James \& Singh, 2004) (Rosencrantz et al., 2004) (Wolfe et al., 2005) (Wiewiora, 2005)
(McCracken \& Bowling, 2006)

- The common formula:
- Find core tests.
- Find update parameters.
- Estimate part of the system dynamics matrix.
- Estimate a subset of predictions.

$$
\hat{p}_{\bullet}(t \mid h)=\frac{\# h a_{1} o_{1} \ldots a_{n} o_{n}}{\# h a_{1} \ldots a_{n}}
$$

Tests

Problem

$$
E\left[\hat{p}_{\bullet}(t \mid h)\right]=p(t \mid h) \frac{\prod_{i=1}^{n} \operatorname{Pr}\left(a_{i} \mid h a_{1} o_{1} \ldots a_{i-1} o_{i-1}\right)}{\prod_{i=1}^{n} \operatorname{Pr}\left(a_{i} \mid h a_{1} \ldots a_{i-1}\right)}
$$

Definition

A policy is blind if actions are selected independent of preceeding observations. I.e.,

$$
\operatorname{Pr}\left(a_{n} \mid a_{1}, o_{1} \ldots a_{n-1}, o_{n-1}\right)=\operatorname{Pr}\left(a_{n} \mid a_{1}, \ldots, a_{n}\right)
$$

Observation

$\hat{p}_{\bullet}(t \mid h)$ is only an unbiased estimator of $p(t \mid h)$ if π is blind.

What Data?

$$
a_{1}, o_{1}, a_{2}, o_{2}, \ldots, a_{n}, o_{n}
$$

- How are actions chosen?
- Unknown policy.
- Known policy.
- Controlled policy.

Prediction Estimators

Policy is Known

$$
\hat{p}_{\pi}(t \mid h)=\frac{\# h t}{\# h} \frac{1}{\pi(t \mid h)}
$$

Policy is Not Known

$$
\hat{p}_{\text {x }}(t \mid h)=\prod_{i=1}^{n} \frac{\# h a_{1} o_{1} \ldots a_{i} o_{i}}{\# h a_{1} o_{1} \ldots a_{i}}
$$

Theorem

$\hat{p}_{\pi}(t \mid h)$ and $\hat{p}_{x^{x}}(t \mid h)$ are unbiased estimators of $p(t \mid h)$.

Exploration

Goal

Choose actions to reduce error in the estimated system dynamics matrix.

Approach

- Add intelligent exploration to James \& Singh's "reset" algorithm.
- Since $\hat{p}_{\pi}(t \mid h)$ is an unbiased estimator, we want to take actions to reduce the variance.
- Solve as an optimization problem.

Estimator Variance

$$
\begin{aligned}
V\left[\hat{p}_{\pi}(t \mid h) \mid \# h=n\right] & =\frac{p(t \mid h)}{n \pi(t \mid h)}-\frac{p(t \mid h)^{2}}{n} \\
& \leq \frac{1}{4 n \pi(t \mid h)^{2}}
\end{aligned}
$$

$E\left[V\left[\hat{p}_{\pi}(t \mid h) \mid \# h=n\right] \mid k\right.$ trajectories $] \leq \frac{1}{4 k p(h) \pi(h) \pi(t \mid h)^{2}}$

Exploration

Intuition

Find the policy that maximizes the worst-case (over all predictions) bound on the root expected inverse variance.

Optimization Problem

Maximize: $\min _{h, t}\left(\sqrt{v_{i-1}(h, t)^{-1}}+2 \sqrt{k_{i} p(h)} \pi(h t)\right)$ Subject to: Sequence form constraints on $\pi(h t)$:
(1) $\pi(\phi)=1$,
(2) $\forall h, o \in \mathcal{O} \quad \pi(h)=\sum_{a} \pi(h a o)$, and
(3) $\forall h, a \in \mathcal{A},\left\{o, o^{\prime}\right\} \subseteq \mathcal{O} \quad \pi(h a o)=\pi\left(h a o^{\prime}\right)$.

Results

Float-reset

Summary

- Contributions
- Unbiased prediction estimators for non-blind policies.
- Variance analysis in the case of a known policy.
- Estimators used in"intelligent" exploration, which was shown can speed learning.
- Future Work
- Better objective functions for exploration.
- Investigate when non-blind exploration proves helpful.

Questions?

