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Decision Process

Action Observation

a1, o1, a2, o2, . . . , an, on

General Form

Pr(on+1|a1, o1, . . . , an, on, an+1)
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Histories, Tests, and Predictions

Notation
History(h) a1, o1, a2, o2, . . . , an, on

Test(t) a1, o1, a2, o2, . . . , an, on (but in the future)
Prediction p(t|h)

p(a1, o1, . . . , an, on|h) ≡
n∏

i=1

Pr(oi|ha1, o1, . . . , ai)

π(a1, o1, . . . , an, on|h) ≡
n∏

i=1

Pr(ai|ha1, o1, . . . , ai−1, oi−1)

Pr(t|h) = p(t|h)π(t|h)
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System Dynamics Matrix

Countable number of
tests and histories.
Infinite matrix of all
predictions.
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POMDPs

Underlying states.

Histories correspond to
belief states.
History row is a linear
combination of state
rows.
∴ rank(SDM) ≤ |S|
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Predictive State Representations

Find linearly independent
tests.

“Core Tests”
Q
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Predictive State Representations

Find linearly independent
tests.

“Core Tests”
Q

Any test is a linear
combination of core tests.

p(t|h) = p(Q|h)mt
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Predictive State Representations

Find linearly independent
tests.

“Core Tests”
Q

Update predictions:

p(Q|hao) =
p(aoQ|h)

p(ao|h)

=
p(Q|h)MaoQ

p(Q|h)mao
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Extracting PSRs from Data
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What Data?

a1, o1, a2, o2, . . . , an, on

How are actions chosen?
Unknown policy.
Known policy.
Controlled policy.

Note
Existing algorithms require a particular control policy.
Either:

Exhaustively trying history-test pairs, or
Random actions.
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Extracting PSRs from Data

(James & Singh, 2004) (Rosencrantz et al., 2004)
(Wolfe et al., 2005) (Wiewiora, 2005)

(McCracken & Bowling, 2006)

The common formula:
Find core tests.
Find update parameters.

Estimate part of the
system dynamics matrix.
Estimate a subset of
predictions.

p̂•(t|h) =
#ha1o1 . . . anon

#ha1 . . . an
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Problem

E [p̂•(t|h)] = p(t|h)

∏n
i=1 Pr(ai|ha1o1 . . . ai−1oi−1)∏n

i=1 Pr(ai|ha1 . . . ai−1)

Definition
A policy is blind if actions are selected independent of
preceeding observations. I.e.,

Pr(an|a1, o1 . . . an−1, on−1) = Pr(an|a1, . . . , an)

Observation
p̂•(t|h) is only an unbiased estimator of p(t|h) if π is blind.
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What Data?

a1, o1, a2, o2, . . . , an, on

How are actions chosen?
Unknown policy.
Known policy.
Controlled policy.
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Prediction Estimators

Policy is Known

p̂π(t|h) =
#ht

#h

1

π(t|h)

Policy is Not Known

p̂π×(t|h) =
n∏

i=1

#ha1o1 . . . aioi

#ha1o1 . . . ai

Theorem
p̂π(t|h) and p̂π×(t|h) are unbiased estimators of p(t|h).
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Exploration

Goal
Choose actions to reduce error in the estimated system
dynamics matrix.

Approach
Add intelligent exploration to James & Singh’s “reset”
algorithm.
Since p̂π(t|h) is an unbiased estimator, we want to take
actions to reduce the variance.
Solve as an optimization problem.
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Estimator Variance

V
[
p̂π(t|h)

∣∣#h = n
]

=
p(t|h)

nπ(t|h)
− p(t|h)2

n

≤ 1

4nπ(t|h)2

E
[
V

[
p̂π(t|h)

∣∣#h = n
]∣∣k trajectories

]
≤ 1

4k p(h)π(h)π(t|h)2
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Exploration

Intuition
Find the policy that maximizes the worst-case (over all
predictions) bound on the root expected inverse variance.

Optimization Problem

Maximize: minh,t

(√
vi−1(h, t)−1 + 2

√
ki p(h)π(ht)

)
Subject to: Sequence form constraints on π(ht):

1 π(φ) = 1,
2 ∀h, o ∈ O π(h) =

∑
a π(hao), and

3 ∀h, a ∈ A, {o, o′} ⊆ O π(hao) = π(hao′).
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Results
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Summary

Contributions
Unbiased prediction estimators for non-blind policies.
Variance analysis in the case of a known policy.
Estimators used in“intelligent” exploration, which was
shown can speed learning.

Future Work
Better objective functions for exploration.
Investigate when non-blind exploration proves helpful.

Questions?
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