
Learning Exercise Policies for American Options

Yuxi Li
Dept. of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2E8

Csaba Szepesvari
Dept. of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2E8

Dale Schuurmans
Dept. of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2E8

Abstract

Options are important instruments in mod-
ern finance. In this paper, we investi-
gate reinforcement learning (RL) methods—
in particular, least-squares policy iteration
(LSPI)—for the problem of learning exercise
policies for American options. We develop
finite-time bounds on the performance of the
policy obtained with LSPI and compare LSPI
and the fitted Q-iteration algorithm (FQI)
with the Longstaff-Schwartz method (LSM),
the standard least-squares Monte Carlo algo-
rithm from the finance community. Our em-
pirical results show that the exercise policies
discovered by LSPI and FQI gain larger pay-
offs than those discovered by LSM, on both
real and synthetic data. Furthermore, we
find that for all methods the policies learned
from real data generally gain similar pay-
offs to the policies learned from simulated
data. Our work shows that solution methods
developed in machine learning can advance
the state-of-the-art in an important and chal-
lenging application area, while demonstrat-
ing that computational finance remains a
promising area for future applications of ma-
chine learning methods.

1 Introduction

A call (put) option gives the holder the right, not the
obligation, to buy (respectively, sell) an underlying
asset—for example, a share of a stock—by a certain
date (the maturity date) for a certain price (the strike

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

price). An American option can be exercised at any
time up to the maturity date. A challenging prob-
lem that arises in connection to trading options is to
determine the option’s “fair” price, called option pric-
ing. This problem can be solved by finding an optimal
exercise policy, i.e., a feedback rule that determines
when to exercise the option given a strike price so as to
maximize expected total discounted return. This is an
optimal stopping problem that belongs to the general
class of Markov Decision Processes (MDP) (Puterman
1994; Bertsekas 1995). In theory, assuming perfect
knowledge of the MDP, dynamic programming can be
used to find the optimal policy (Bertsekas and Tsit-
siklis 1996). When the size of an MDP is large, one
encounters the “curse of dimensionality”, which calls
for effective approximate, sampling based techniques.
In cases when the MDP is unknown and no simulator
is available, only sample trajectories can be used to
infer a good policy. In this paper we will look into
reinforcement learning (RL) methods (Bertsekas and
Tsitsiklis 1996; Sutton and Barto 1998) that are able
to address these issues and study their suitability for
learning exercise policies for option pricing.

This paper makes two contributions: On the one hand
we derive a high-probability, finite-time bound on the
performance of least-squares policy iteration (LSPI) in
Lagoudakis and Parr (2003) for option pricing follow-
ing the work of Antos et al. (2008). This bound com-
plements the results of Tsitsiklis and Van Roy (2001),
who showed that it is crucial to use the distribution
of price trajectories in order to avoid an exponential
blow-up of the approximation error with the time-
horizon of the problem when considering one version
of fitted Q-iteration. Here we also find that it is crucial
to use this distribution and demonstrate a very mild
dependence on the horizon. In comparison with the
asymptotic results of Tsitsiklis and Van Roy (2001),
our results make both the dependence on the approxi-
mation and estimation errors (due to the finiteness of
the sample) explicit.

Learning Exercise Policies for American Options

The second contribution is an empirical comparison
of LSPI, fitted Q-iteration (FQI) as proposed under
the name of “approximate value iteration” by Tsit-
siklis and Van Roy (2001) and the Longstaff-Schwartz
method (LSM) (Longstaff and Schwartz 2001), the lat-
ter of which is a standard approach from the finance
literature for pricing American options. Our results
show that the RL techniques are superior to the stan-
dard approach: Exercise policies discovered by LSPI
and FQI can achieve larger payoffs than those found
by LSM. Furthermore, for LSPI, FQI and LSM, poli-
cies discovered based on sample paths composed di-
rectly from real data gain similar payoffs when tested
on separate data to policies discovered based on sam-
ple paths generated by simulation models whose model
parameters were estimated from the same dataset.

There is a vast literature on option pricing. For exam-
ple, Hull (2006) provides an introduction to options
and other financial derivatives and their pricing meth-
ods; Broadie and Detemple (2004) survey option pric-
ing methods; and Glasserman (2004) provides a book
length treatment for Monte Carlo methods. However,
most previous work focuses on obtaining the option
price, but not the exercise policy.

The remainder of this paper is organized as follows.
First, we introduce basic concepts and notations to
describe MDPs. Next, we present the option pric-
ing problem, followed by the presentation of the algo-
rithms, LSPI, FQI and LSM. We then develop finite-
time bounds on the performance of the policy obtained
with LSPI. After this we study empirically the perfor-
mance of the algorithms, followed by our conclusions.

2 Markov decision processes

The problem of sequential decision making is common
in economics, science and engineering. Many of these
problems can be modeled as MDPs. A (discounted)
MDP is defined by the 5-tuple (S,A,P , r, γ): S is a
set of states; A is a set of actions; P is the transition
probability kernel with P(.|s, a) specifying the prob-
ability of next states when the process is at state s
and action a is taken; r is a reward function, with
r(s′|s, a) being the reward received when transitioning
to state s′ starting from state s and taking action a;
and γ ∈ (0, 1) is a discount factor.

A (stationary) policy π is a rule for selecting actions
based on the last state visited: π(s, a) specifies the
probability of selecting action a in state s while fol-
lowing policy π. We shall also use the notation π(a|s)
to denote these quantities. When π(a|s) = 1 for some
action a in each state s, policy π is called determin-
istic. In this case we identify it with a mapping from
the states to the action set.

An optimal policy maximizes the total, expected, dis-
counted rewards obtained over the long run, for exam-
ple,

∑∞
t=0 γtrt, where rt is the reward obtained in the

tth time step. The action-value function of a policy π,
Qπ(s, a) = E [

∑∞
t=0 γtrt|s0 = s, a0 = a], assigns to the

state-action pair (s, a) the expected, discounted, total
reward achieved when the initial state is s, the first ac-
tion is a after which policy π is followed and where the
expectation is taken with respect to the measure gen-
erated by π and P . The optimal action-value function
satisfies Q∗(s, a) = supπ Qπ(s, a). A policy that in ev-
ery state s chooses an action maximizing Q∗(s, a) is op-
timal in the sense that for any state no other policy can
achieve a higher expected, discounted, total reward.
Q∗ can be found by either policy iteration or value it-
eration, at least in finite, known MDPs (Bertsekas and
Tsitsiklis 1996). Value-function based reinforcement
learning techniques mimic these basic algorithms to
learn Q∗ (or Qπ) but perform the calculations based on
sampled trajectories instead of the exact calculations
and employ function approximation to allow general-
ization to unseen states. One function approximation
method that is both simple, yet powerful is to use a
linear architecture, i.e., a linear combination of some
basis functions: Q(s, a; w) =

∑d
i=1 ϕi(s, a)wi, where d

is the number of basis functions, ϕi(·, ·) is the ith basis
function and wi ∈ R is its weight, w = (w1, . . . , wd)

T.
If we define ϕ(s, a) = (ϕ1(s, a), . . . , ϕd(s, a))T then we
can write Q(s, a; w) = wTϕ(s, a).

3 Learning exercise policies for

American options

The problem of learning an exercise policy (in discrete
time) can be formulated as an MDP, more specifi-
cally as a finite-horizon optimal stopping problem as
follows:1 Let T denote the number of stages which
will be indexed by t = 0, 1, 2, . . . , T − 1. We as-
sume that the stock price St at time t underlying
the option evolves according to a Markov process:
St+1 ∼ Pt(·|St) (t = 0, 1, . . . , T − 2). Here St ∈ St,
S0 ∼ P0(·), where P0(·) is a stochastic kernel over S0,
and for St ∈ St, Pt(·|St) is a stochastic kernel over
St+1. Let S∗ = ∪T−1

t=0 St × {t} and S = {e} ∪ S∗,
where e is a special state, called the exit state. Any
f with domain S∗ can also be viewed as a sequence
(f0, . . . , fT−1) of functions, where the domain of ft is
St, and ft(St) = f((St, t)). This equivalent represen-
tation will be used when convenient.

The exercise policy is a mapping π from S to the two-

1We discretize the time, thus, strictly speaking, the op-
tions become Bermudan. As the number of time steps
approaches infinity, the solution approaches that for an
American option.

Li, Szepesvari, Schuurmans

element action set, A = {0, 1}. (For simplicity we deal
with deterministic, Markov policies only as this class
of policies is sufficiently large to contain an optimal
policy.) Policy π = (π0, . . . , πT−1) determines when to
exercise the option: Exercising happens when πt(St) =
1. In this case the next state becomes the exit state e,
which is an absorbing state. Otherwise, the next state
is obtained from the stochastic kernel Pt(·|St).

The rewards, r : S×A → R are determined as follows:
When the option is exercised at time step t in state
s ∈ St, the reward is r((s, t), 1) = g(s). In all other
cases the reward is zero. For an American stock put
options, the reward is g(s) = max(0, K − s), where
K > 0 is the strike price. The returns are discounted
with a discount factor γ ∈ (0, 1).

4 Algorithms

We present the algorithms, LSPI, FQI and LSM.

4.1 LSPI for learning exercise policies

Policy iteration is a method of discovering an opti-
mal solution for an MDP. LSPI combines the data effi-
ciency of the least squares temporal difference (LSTD)
method (Bradtke and Barto 1996) and the policy
search efficiency of policy iteration. The algorithm
uses a linear architecture for representing action-value
functions, as described in Section 2. The linear ar-
chitecture is initialized by choosing w0 arbitrarily.
In iteration i ≥ 0, we are given w(i), which im-
plicitly defines π(i), the policy that selects in each
state s the action a that maximizes Q(i)(s, a) =
(w(i))Tϕ(s, a). Then LSTD is used to compute an ap-
proximation to the action-value function of this pol-
icy. This is done as follows: The data is assumed to
be a trajectory (or a set of trajectories) of the form
s1, a1, R1, s2, a2, R2, Given the data, one computes
A(i) =

∑

t ϕ(st, at)(ϕ(st, at) − γϕ(st+1, π
(i)(st+1)))

T

and b =
∑

t ϕ(st, at)Rt (b can be computed at
the beginning of the iterations) and then solves
A(i)w(i+1) = b to obtain the next weight vector. In
this way LSTD finds the solution of the TD(0) equi-
librium equation

∑

t(Rt + γQ(st+1, π
(i)(st+1); w) −

Q(st, at; w))ϕ(st, at) = 0. The iteration is typically
continued until the changes in the weight vector be-
come small. The boundedness property of LSPI with
respect to the L∞-norm was established in Lagoudakis
and Parr (2003). More recently, tighter finite-time
bounds were obtained in Antos et al. (2008) for contin-
uous state spaces who gave an interpretation of LSTD
in terms of empirical loss minimization. Below we will
derive a finite-time bound for our proposed algorithm
using the techniques developed in Antos et al. (2008).

We need to consider the peculiarities of option pric-
ing when applying LSPI to it. Since this problem is
an episodic, optimal stopping problem we must in-
corporate time as a component in the state space.
The action space has two elements: exercise (stop)
and continue. The state-action value function of exer-
cising the option, that is, the intrinsic value of the
option, can be calculated exactly. Hence, we only
need to learn the state-action value function for con-
tinuation. Since the states in this case are price-
time pairs of the form (s, t), we let Q((s, t), 0; w) =
wTϕ(s, t) and let Q((s, t), 1; w) = g(s). Let us as-
sume that the data consists of sample trajectories
(Sj

t ; j = 1, . . . , N, t = 0, . . . , T − 1), where Sj
t is the

value of the tth stock price St in the j-th trajectory.
Solving the TD(0) equilibrium equation for the weights
of the redefined action-value function we get that
w(i+1) is defined by A(i)w(i+1) = b(i), where A(i) =
∑

t,j ϕ(S
(j)
t , t)(ϕ(S

(j)
t , t) − γI

{π(i)(S
(j)
t+1)=0}

ϕ(S
(j)
t+1, t +

1))T and b(i) = γ
∑

t,j ϕ(S
(j)
t , t)I

{π(i)(S
(j)
t+1)=1}

g(S
(j)
t+1).

Here we exploited that the immediate rewards are al-
ways zero. Further, I{L} denotes the indicator function
that is 1 when the argument L is true, and otherwise
it is zero.

4.2 FQI for learning exercise policies

In Section 6 of their paper (Tsitsiklis and Van
Roy 2001), the authors proposed the following al-
gorithm: Let Q(i)((s, t), 0) = (w(i))Tϕ(s, t) be the
estimate of the value of the continuation action
obtained in the ith step of the algorithm, where
ϕ(s, t), w ∈ R

d. Let A(i) =
∑

t,j ϕ(Sj
t , t)ϕ(Sj

t , t)T

and b(i) = γ
∑

t,j ϕ(Sj
t , t) max(g(Sj

t+1), Q
(i)((S

(j)
t+1, t +

1), 0)). Then w(i+1) = (A(i))−1b(i). In fact,
w(i+1) is the solution of the least-squares prob-

lem
∑

t,j [Q((S
(j)
t , t), 0; w) − γ maxa∈A Q(i)((S

(j)
t+1, t +

1), a)]2
w→ min, where we used Q(i)((s, t), 1) = g(s) for

the sake of uniformity. Hence, this algorithm can be
seen to implement a least-squares approach to fitted
Q-iteration.

4.3 Least squares Monte Carlo

LSM (Longstaff and Schwartz 2001) follows the
backward-recursive dynamic programming approach:
Let ϕ : R → R

d be the basis functions used.
The continuation value at stage t is estimated
using Q((s, t), 0; w) = wTϕ(s), except for the
last stage t = T − 1, when we set Q((s, T −
1), 0; w) = g(s). The continuation value at stage
t < T − 1 is then estimated by finding the
minimizer wt of Lt(w) =

∑M
j=1[Q((s, t), 0; w) −

max(g(Sj
t+1), γQ((Sj

t+1, t + 1); wt+1))]
2. Note that

Learning Exercise Policies for American Options

this is an ordinary least squares problem in w and
the method can indeed be interpreted as solving the
backward-recursive dynamic programming equations
in a recursive manner. While Longstaff and Schwartz
(2001) obtained asymptotic results as the number of
basis functions is increased, Tsitsiklis and Van Roy
(2001) obtained (in the first part of their paper)
asymptotic error bounds for this algorithm when the
number of samples grows to infinity but the number
of basis function is kept fixed.

5 Theoretical results

In this section we develop finite-time bounds on the
performance of the policy obtained with LSPI. Similar
bounds can be developed for other algorithms with
similar arguments, which is left as future work.

Let Qmax = Rmax/(1 − γ), where Rmax is an upper
bound on the reward function r. Let νt denote the dis-
tribution of prices at stage t and let ν = (ν0, . . . , νT−1).
We assume that the training sample consists of a num-
ber of independently sampled price trajectories (corre-
lation between the subsequent trajectories is not con-
sidered for the sake of simplicity, but can be handled
without any difficulties). Let N be the number of these
trajectories. Hence, the total number of training sam-
ples is N T .

The bound will depend on the so-called total inher-
ent Bellman-error associated with the function space
F = {h : S × A → R : h(s, 1) = r(s, 1), h(s, 0) =
θTϕ(s), θ ∈ R

d, h(e) = 0 }, where ϕ : S → R
d is the

feature extraction method used in the procedure and e
is the “exit state” of the process. Let π′

Q be the policy
that is greedy w.r.t. a bounded action value function
Q (in the case when multiple such policies exist, we
choose one in a systematic way). Define

E∞(F) = sup
Q′∈F

inf
Q∈F

‖Q− T π′

Q′ Q‖ν

and

E1(F) = sup
Q′,Q′′∈F

inf
Q∈F

‖Q − T π′

Q′Q′′‖ν ,

where ‖ · ‖ν denotes the L2(ν) norm. In Antos et al.
(2008) the first quantity is called the inherent Bellman-
error of F , while the second is called the inherent
one-step Bellman-error. They characterize the suit-
ability of the features for representing (i) the fixed
points of policies that can be obtained in a policy it-
eration procedure (the set of accessible policies) and
(ii) the one-step Bellman-image of the available func-
tions under the Bellman operator of accessible poli-
cies. We let E(F) = (E2

∞(F) + E2
1 (F))1/2. Fol-

lowing an argument in Munos and Szepesvári (2008)

one can show that when the power of the feature
set, ϕ, is increased the total inherent Bellman-error
will converge to zero when the kernels Pt(·|St) de-
pend smoothly on St. In the result below we need
Sc = { (s, 0) : s ∈ S } ⊂ S ×A.

Our main result is as follows:

Theorem 1 (Bound on the Performance of LSPI
for Pricing). Execute LSPI with a training set of size
n = NT . Consider the policy πM,n that is greedy policy
with respect to the action-value function obtained by
LSPI after M > 0 iterations. Then, for any 0 < δ < 1,
with probability at least 1 − δ,

‖(Q∗ − QπM,n)|Sc
‖ν

≤ 2γ

(1 − γ)2

(

E(F) + ∆n + γM/2Rmax

)

.

Here ∆n = C(Λ max(Λ, 1)/n)1/4, where Λ =
d log(n/(1 − γ)) + log(M/δ) + T and where C > 0
is a universal constant.

The theorem follows by some adjustments to the proof
of Theorem 4 of Antos et al. (2008) and some calcu-
lations where we estimate constants in the bound of
Theorem 4. In the following, we explain the bound
in the result. We give highlights of the proof in the
Appendix.

First, note that when n → ∞,

‖(Q∗−QπM,∞)|Sc
‖ν ≤ 2γ

(1 − γ)2

(

E(F) + γM/2Rmax

)

.

Here we see the factor 2γ/(1 − γ)2 that is usual in
results that use contraction arguments to bound the
performance of a policy that is greedy with respect
to an approximate value function (see Bertsekas and
Tsitsiklis (1996)). The term E(F), as explained above,
depends only on the features and bounds the approx-
imation error. The two terms contributing to E(F)
arise from rewriting the LSTD fixed point equation
in terms of an empirical loss function that has two
corresponding terms. The supremum over Q′ in the
definition of these quantities arises because after the
first iteration all we can know about the policy to be
evaluated is that it is greedy w.r.t. some function in
our chosen function set. The reason for the supre-
mum over Q′′ is similar in the definition of E2

1(F).
Finally, γM/2Rmax bounds the error due to running
the algorithm only for a finite number of iterations.
We also see that the rate of convergence as a function
of the number of samples is n−1/4, which, considering
the squared-error, gives the familiar rate n−1/2. The
nice property of this bound compared to the general
bound of Antos et al. (2008) is that in their bound
a so-called concentration coefficient (denoted there by

Li, Szepesvari, Schuurmans

Cρ,ν) appears in a multiplicative manner. This quan-
tity depends on the MDP and is typically difficult to
control. The role of this quantity is to bound the error
resulting from changing measures, which arises since
typically the distribution of the training samples is
different from both the “test” distribution and the sta-
tionary distributions of the policies encountered during
the iterations of the algorithm. Interestingly, in our
case we are able to bound this constant by 1. This is
because the special nature of stopping problems: Con-
sider a stochastic policy π and the distribution µπ de-
fined over the state-action pairs that is obtained for a
given t by sampling the prices from their underlying
distribution (not caring about if π could have stopped
before) and then sampling the actions from π. Imag-
ine that we follow the process for one step from µπ

(thus the action probabilities come from π) and upon
reaching the next state we generate actions at random
from some other stochastic policy π′. Let µπ,π′ be
the resulting distribution. Then, since π either exits
or stays in, i.e., it can only decrease the probability
masses carried to the next stage, the marginal of µπ,π′

on the price-time pairs can be upper bounded by the
corresponding marginal of µπ′ . Hence, if the distri-
bution used to sample the prices and to evaluate the
performance of the policy are the same, as in all the
procedures described above, the concentration coeffi-
cient can be upper bounded by 1.

Note that the result, just like the one for the LSM al-
gorithm by Tsitsiklis and Van Roy (2001) bounds the
L2 error. However, our bound is for the value func-
tion of the policy, while the bound in Tsitsiklis and
Van Roy (2001) is for the action-value function esti-
mate. Further, the bound in Tsitsiklis and Van Roy
(2001) considers only the approximation error (i.e.,
when n → ∞) and the proof is considerably simpler
given that the solutions in LSM are defined with a
backward recursion. In fact, the bounding technique
in Tsitsiklis and Van Roy (2001) can possibly used to
bound E(F).

6 Empirical study

We study empirically the performance of LSPI, FQI
and LSM. We study the plain American put stock
options. We focus on at-the-money options, that is,
the strike price is equal to the initial stock price. For
simplicity, we assume the risk-free interest rate r is
constant and stocks are non-dividend-paying. We as-
sume 252 trading days in each year. We study op-
tions with quarterly, semi-annual and annual maturity
terms, with 63, 126 and 252 days duration respectively.
Each time step is one trading day, that is, 1/252 trad-
ing year. We set the discount factor to γ = e−r/252,
corresponding to the daily interest rate. LSPI and

FQI iterate on the sample paths until the difference
between two successive policies is sufficiently small, or
when it has run 15 iterations (LSPI and FQI usually
converge in 4 or 5 iterations). We obtain five years’
daily stock prices from January 2002 to December 2006
for Dow Jones 30 companies from WRDS, Wharton
Research Data Services.

6.1 Simulation models

In our experiments when a simulation model is used,
synthetic data may be generated from either a ge-
ometric Brownian motion (GBM) model or a gen-
eralized autoregressive conditional heteroskedasticity
(GARCH) model, two of the most widely used models
for stock price movement (Hull 2006).

Geometric Brownian motion model. Suppose
St, the stock price at time t, follows a GBM: dSt =
µStdt + σStdWt, where µ is the risk-neutral expected
stock return, σ is the stock volatility and W is a stan-
dard Brownian motion. For a non-dividend-paying
stock, µ = r, the risk-free interest rate. It is usu-
ally more accurate to simulate lnSt in practice. Using
Itô’s lemma, the process followed by lnSt is: dlnSt =
(µ − σ2/2)dt + σdWt. We can obtain the following
discretized version and use it to generate stock price
sample paths: St+1 = Stexp{(µ−σ2/2)∆t + σ

√
∆tε},

where ∆t is a small time step, and ε ∼ N(0, 1), the
standard normal distribution. To estimate the con-
stant σ from real data, we use the method of maximum
likelihood estimation (MLE).

GARCH model. In a GBM, the volatility is assumed
to be a constant. In reality, the volatility may itself
be stochastic. We use GARCH(1,1) as a stochastic
volatility model: σ2

t = ω + αu2
t−1 + βσ2

t−1, where ut =
ln(St/St−1), and α and β are weights for u2

t−1 and
σ2

t−1 respectively. It is required that α + β < 1 for the
stability of GARCH(1,1). The constant ω is related to
the long term average volatility σL by ω = (1 − α −
β)σL. The discretized version is: St+1 = Stexp{(µ −
σ2

t /2)∆t + σt

√
∆tε}. To estimate the parameters for

a GARCH model and to generate sample paths, we
use the MATLAB GARCH toolbox functions ’garchfit’
and ’garchsim’.

6.2 Basis functions

LSPI, FQI and LSM need to choose basis functions
to approximate the expected continuation value. As
suggested in Longstaff and Schwartz (2001),we use
ϕ0(S) = 1 and the following Laguerre polynomi-
als to generalize over the stock price: ϕ1(S) =
exp(−S′/2), ϕ2(S) = exp(−S′/2)(1−S′), and ϕ3(S) =
exp(−S′/2)(1−2S′+S′2/2). We use S′ = S/K instead
of S in the basis functions, where K is the strike price,

Learning Exercise Policies for American Options

since the function exp(−S/2) goes to zero fast. LSPI
and FQI also generalize over time t. We use the follow-
ing functions for time t: ϕt

0(t) = sin(−tπ/2T + π/2),
ϕt

1(t) = ln(T − t), ϕt
2(t) = (t/T)2, guided by the ob-

servation that the optimal exercise boundary for an
American put option is a monotonic increasing func-
tion, as shown in Duffie (2001).

American put options. As we already noted, the
intrinsic value of an American stock put option is
g(S) = max(0, K−S). LSM uses the functions ϕ0(S),
ϕ1(S), ϕ2(S), and ϕ3(S). LSM computes different
sets of weight vectors for the basis functions for dif-
ferent time steps. LSPI and FQI use the functions:
ϕ0(S, t) = ϕ0(S), ϕ1(S, t) = ϕ1(S), ϕ2(S, t) = ϕ2(S),
ϕ3(S, t) = ϕ3(S), ϕ4(S, t) = ϕt

0(t), ϕ5(S, t) = ϕt
1(t),

and ϕ6(S, t) = ϕt
2(t). LSPI (FQI) determines a sin-

gle weight vector over all time steps to calculate the
continuation value.

LSM only uses the 4 features over the prices (giving
altogether 4(T −2) weights), while LSPI and FQI uses
both sets of basis functions (i.e., 7 weights). Note that
neither LSPI, nor FQI models correlations directly be-
tween time and stock prices, i.e., the decomposition of
the continuation values corresponds to the first level
of an ANOVA decomposition.

6.3 Results for American put options

For real data, a pricing method can learn an exercise
policy either 1) from sample paths generated from a
simulation model; or, 2) from sample paths composed
from real data directly. The testing sample paths are
from real data and separate from data used in train-
ings. We scale the stock prices, so that, for each com-
pany, the initial price for each training path and each
testing path is the same as the first price of the whole
price series of the company.

Now we proceed with the first approach. The simula-
tion model for the underlying stock process follows a
GBM model or a GARCH model, with parameters es-
timated from real data. For options with quarterly,
semi-annual and annual maturities respectively, the
first 662, 625 and 751 stock prices are used for estimat-
ing parameters. Then LSPI, FQI and LSM learn exer-
cise policies with (the same) 50,000 sample paths. We
call this approach of generating sample paths from a
simulation model with parameters estimated from real
data as LSPI gbm, LSPI garch, FQI gbm, FQI garch,
LSM gbm and LSM garch, respectively.

In the second approach, a pricing method learns the
exercise policy from sample paths composed from real
data directly. Due to the scarcity of real data, as
there is only a single trajectory of stock price time
series for each company, we construct multiple tra-

jectories following a windowing technique. For each
company, for quarterly, semi-annual, annual maturity
terms, we obtain 600, 500, 500 training paths, each
with duration = 63, 126, 252 prices. The first path
is the first duration days of stock prices. Then we
move one day ahead and obtain the second path, and
so on. LSPI and LSM then learn exercise policies on
these training paths. We call this approach of generat-
ing sample paths from real data directly as LSPI data,
FQI data and LSM data, respectively.

After the exercise policies are found, we compare their
performances on the test paths. For each company,
for the quarterly, semi-annual and annual maturity
terms, we obtain 500, 450, 250 testing paths, each with
duration = 63, 126, 252 prices, as follows. The first
path is the last duration days of stock prices. Then we
move one day back and obtain the second path, and
so on.

For each maturity term of each of the Dow Jones 30
companies, we average payoffs over the testing paths.
Then we average the average payoffs over the 30 com-
panies. Table 1 presents the average results. These
results show that LSPI and FQI gain larger average
payoffs than LSM. These results are (highly) signifi-
cant when test by a paired two-tailed t-test. The dif-
ferences between the performances of LSPI and FQI
are not significant.

A likely explanation for why LSPI and FQI are gaining
larger payoffs than LSM is that LSPI and FQI gener-
alize across all time steps and use a parsimonious rep-
resentation, whereas LSM uses many weights and does
not attempt to generalize across time. Since the train-
ing data is typically limited, the parsimonious repre-
sentation can reduce estimation errors, even though
the approximation error of this representation might
be larger (see Theorem 1 for the tradeoff between the
two terms).

The results in Table 1 also show that LSPI data
slightly outperforms both LSPI gbm and LSPI garch.
The same holds for FQI. However, a paired t-test indi-
cates that the observed differences are not significant
(in the case of annual maturity term the difference in
the results obtained on the MLE data and the real data
is “marginal”, but still not significant). The differ-
ences in the performance obtained with LSM when it
is trained with the real data and when it is trained with
models is closer to be significant in all cases (p ≈ 0.25).
Hence, in this case it seems that the models do not in-
troduce significant biases, or these biases are compen-
sated by the larger number of trajectories available for
training the exercise policies.

In Figure 1, we present the exercise boundaries dis-
covered by LSPI, FQI and LSM for the real data of

Li, Szepesvari, Schuurmans

LSPI FQI LSM
maturity gbm garch data gbm garch data gbm garch data

quarterly 1.310 1.333 1.339 1.321 1.341 1.331 0.573 0.572 0.719
semi-annual 1.681 1.663 1.739 1.718 1.749 1.797 0.693 0.687 0.887

annual 1.599 1.496 1.677 1.832 1.797 2.015 0.717 0.685 0.860

Table 1: Average payoffs of LSPI, FQI and LSM on real data for Dow Jones 30 companies.

0 20 40 60 80 100 120 140
26

27

28

29

30

31

32

33

Time (trading days)

St
oc

k
Pr

ice

LSPI
FQI
LSM

Figure 1: Exercise boundaries.

Intel, with semi-annual maturity and r = 0.03. The
optimal exercise boundary for an American put option
is a monotonic increasing function, as shown in Duffie
(2001). Figure 1 shows that unlike the boundary dis-
covered by LSM, the exercise boundaries discovered by
LSPI and FQI are smooth and (mostly) respect mono-
tonicity. The scarcity of sample paths may explain
this non-monotonicity. The boundary of FQI is lower
than that of LSPI, which is typical according to our ex-
perience and we are currently investigating the cause
of this. With 50,000 training paths (with simulated
data), the exercise boundaries discovered by LSM will
be much smoother, but still choppy.

We also evaluate LSPI, FQI and LSM with synthetic
sample paths, with the parameters for the GBM model
and the GARCH model estimated from real data.
For each company, we generate 50,000 training paths
10,000 testing paths. The results in Table 2 indicate
that LSPI and FQI gain larger payoffs than LSM, both
in the GBM model and in the GARCH model (the in-
terest rate is r = 0.03). Also, in the GBM model
the difference between LSM and the two methods is
smaller.

Besides American put stock options, we also study
American Asian stock options, which are complex, ex-
otic, path-dependent options, whose payoffs are deter-
mined by the average of past stock prices. The results
are similar.

7 Conclusions

Options are important financial instruments and pric-
ing of complex options is a non-trivial problem. Our
empirical results show that methods developed in RL
can advance the state-of-the-art in this challenging ap-
plication area and demonstrates that computational
finance remains a promising area for future applica-
tions of RL methods. However, much remains to be
done. The theoretical analysis presented leaves open
the question of how to choose the function approxima-
tion technique. When data is scarce, controlling both
the estimation and the approximation error becomes
important. This calls for model-selection technique.
A simple solution is to generate policies with differ-
ent function approximators and compare their perfor-
mance. Unlike in a general MDP this is possible be-
cause given the price trajectories one can simulate any
policy on real data. Hence, separating some test data
should make it possible to do model-selection in an
efficient way. However, this is left as future work.

Appendix

Here we sketch the proof for Theorem 1, which refines
the proof of Theorem 4 in Antos et al. (2008) for the
LSPI option pricing algorithm.

First note that in the light of Proposition 2 of Antos
et al. (2008), this theorem can indeed be applied to
LSPI. The major modification is that due to the fi-
nite horizon nature of the problem all the work has
to be done with sequences of sub-probability measures
(of length T) instead of working with probability mea-
sures over S. Accordingly, the stochastic kernels, Pπ,
associated with policies must be redefined. In partic-
ular, Pπ, as a left-linear operator will assign the sub-
probability measure sequence (µ′

0, . . . , µ
′
T−1) to a sub-

probability measure sequence (µ0, . . . , µT−1) as fol-
lows: Here measures µt, µ

′
t are over St ×A. First, let

µ̃t = µt/µt(St×A). Let U ⊂ St+1×A be an arbitrary
measurable set. Then µ′

t+1(U) = P ((S′′
t , A′′

t) ∈ U).
Here the random variables S ′′

t , A′′
t are defined as fol-

lows: Let (St, At) ∼ µ̃t(·), S′
t ∼ Pt(·|St), S′′

t = S′
t iff

At = 0, S′′
t = e, otherwise, and A′′

t = π(S′′
t). Fur-

ther, µ′
0(U) = P ((S0, A0) ∈ U), where S0 ∼ P0(·),

A0 = π(S0). The kernel Pπ is also interpreted as a

Learning Exercise Policies for American Options

maturity GBM model GARCH model
term LSPI FQI LSM LSPI FQI LSM

quarterly 2.071 2.054 2.044 1.889 1.866 0.785
semi-annual 2.771 2.758 2.742 2.546 2.530 0.997

annual 3.615 3.645 3.580 3.286 3.311 1.241

Table 2: Average payoffs on synthetic data with parameters estimated from real data.

right linear operator acting on value functions. For
this, first define the “integral” of Q ∈ B(S × A) with
respect to µ, where µ = (µ0, . . . , µT−1) as above. Then
µQ = (µ0Q0, . . . , µT−1QT−1), where, as usual, for a
measure µt over St × At and a function Qt over the
same domain µtQt =

∫

Qt(s, a)µt(ds, da). Then Q′ =
PπQ ∈ B(S × A) is defined as follows: Q′(e, a) = 0,
Q′((s, t), a) = δs,aQt, s ∈ St, t = 0, . . . , T − 1. These
definitions allow us to repeat the proof of Theorem 4 of
Antos et al. (2008) (in particular, it makes Lemma 12
of Antos et al. (2008) hold). One more change that is
required is to redefine the m-step future-state concen-
trability coefficients cρ,ν(m) (needed in the proof of
Lemma 12 and influencing the bound of Theorem 4
of Antos et al. (2008)). The modified definition is
cρ,ν(m) = supπ1,...,πm

d/dν(ρPπ1 . . . Pπm
)Sc

, where ρ
is a distribution sequence over the state-action pairs,
ν is a distribution sequence over S, and Sc = { (s, 0) :
s ∈ S } ⊂ S ×A, which can be (and is) identified with
the set S.

The main observation is the following: Let π be a pol-
icy and let µ̂π be such that µ̂π,t(U) = P ((St, At) ∈ U),
where St is a price process obtained with the ker-
nels (Pt)t≥0 and At = π(·|St). Then for any poli-
cies π, π′, as it follows directly from the definitions,
µ̂πPπ′ ≤ µ̂π′ , where for the sequences the compari-
son happens componentwise and for measures ν, ρ de-
fined over a common domain, ν ≤ ρ if ν(U) ≤ ρ(U)
holds for all measurable set U in the common domain.
Hence, if ν = ρ = µ̂πc

, where πc always selects action
0, ρPπ1 = µ̂πc

Pπ1 ≤ µ̂π1 , thus ρPπ1Pπ2 ≤ µ̂π1Pπ2 ≤
µ̂π2 . Continuing this way we get ρPπ1 . . . Pπm

≤ µ̂πm
.

Hence, (ρPπ1 . . . Pπm
≤ µ̂πm

)|Sc
≤ µ̂πc

. Hence, with
this choice, cρ,ν(m) ≤ 1. This gives Cρ,ν = (1 −
γ)2

∑

m≥1 mγm−1cρ,µ(m) ≤ 1. Further, one can show
that the β-mixing condition of Theorem 4 is satisfied
by choosing κ = 1, b = 1 and β such that log(β) = T
(this is the origin of T in Λ). The pseudo-dimension of
the function spaces and their VC-crossing dimension
(by Proposition 3 of Antos et al. (2008)) are equal to
d, again appearing in Λ.

References

Andras Antos, Csaba Szepesvari, and Remi Munos.
Learning near-optimal policies with bellman-

residual minimization based fitted policy iteration
and a single sample path. Machine Learning Jour-
nal, 71:89–129, 2008.

Dimitri P. Bertsekas. Dynamic programming and opti-
mal control. Athena Scientific, Massachusetts, USA,
1995.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scientific, Mas-
sachusetts, USA, 1996.

Steven J. Bradtke and Andrew G. Barto. Linear least-
squares algorithms for temporal difference learning.
Machine Learning, 22(1-3):33–57, March 1996.

Mark Broadie and Jerome B. Detemple. Option pric-
ing: valuation models and applications. Manage-
ment Science, 50(9):1145–1177, September 2004.

Darrell Duffie. Dynamic asset pricing theory. Prince-
ton University Press, 2001.

Paul Glasserman. Monte Carlo Methods in Financial
Engineering. Springer-Verlag, New York, 2004.

John C. Hull. Options, Futures and Other Derivatives
(6th edition). Prentice Hall, 2006.

Michail G. Lagoudakis and Ronald Parr. Least-squares
policy iteration. The Journal of Machine Learning
Research, 4:1107 – 1149, December 2003.

Francis A Longstaff and Eduardo S Schwartz. Valu-
ing American options by simulation: a simple least-
squares approach. The Review of Financial Studies,
14(1):113–147, Spring 2001.

R. Munos and Cs. Szepesvári. Finite time bounds for
fitted value iteration. Journal of Machine Learning
Research, 9:815–857, 2008.

Martin L. Puterman. Markov decision processes : dis-
crete stochastic dynamic programming. John Wiley
& Sons, New York, 1994.

Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, 1998.

John. N. Tsitsiklis and Benjamin Van Roy. Regres-
sion methods for pricing complex American-style op-
tions. IEEE Transactions on Neural Networks (spe-
cial issue on computational finance), 12(4):694–703,
July 2001.

