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Abstract. Options are important financial instruments, whose prices
are usually determined by computational methods. Computational fi-
nance is a compelling application area for reinforcement learning re-
search, where hard sequential decision making problems abound and have
great practical significance. In this paper, we investigate reinforcement
learning methods, in particular, least squares policy iteration (LSPI), for
the problem of learning an exercise policy for American options. We also
investigate TVR, another policy iteration method. We compare LSPI,
TVR with LSM, the standard least squares Monte Carlo method from
the finance community. We evaluate their performance on both real and
synthetic data. The results show that the exercise policies discovered by
LSPI and TVR gain larger payoffs than those discovered by LSM, on
both real and synthetic data. Furthermore, for LSPI, TVR and LSM,
policies learned from real data generally gain larger payoffs than policies
learned from simulated samples. Our work shows that solution methods
developed in reinforcement learning can advance the state of the art in
an important and challenging application area, and demonstrates fur-
thermore that computational finance remains an under-explored area for
deployment of reinforcement learning methods.

1 Introduction

Options are an essential financial instrument for hedging and risk management,
and therefore, options pricing and finding optimal exercise policies are important
problems in finance.1 Options pricing is usually approached by computational
methods. In general, computational finance is a compelling application area for
reinforcement learning research, where hard sequential decision making problems
abound and have great practical significance [11]. In this paper, we show solution
techniques from the reinforcement learning literature are superior to a standard
technique from the finance literature for pricing American options, a classical
sequential decision making problem in finance.

Options pricing is an optimal control problem, usually modeled as Markov
Decision Processes (MDP). Dynamic programming is a method to find an opti-
mal policy for an MDP [2, 12], usually with the model of the MDP. When the

1 A call/put option gives the holder the right, not the obligation, to buy/sell the
underlying asset, for example, a share of a stock, by a certain date (maturity date)
for a certain price (strike price). An American option can be exercised any time up
to the maturity date.



size of an MDP is large, for example, when the state space is continuous, we
encounter the “curse of dimensionality”. Reinforcement learning, also known as
neuro-dynamic programming, is an approach to addressing this scaling problem,
and can work without a model of the MDP [3, 13]. Successful investigations
include the application of reinforcement learning to playing backgammon, dy-
namic channel allocation, elevator dispatching, and so on. The key idea behind
these successes is to exploit effective approximation methods. Linear approxi-
mation has been most widely used. A reinforcement learning method can learn
an optimal policy for an MDP either from simulated samples or directly from
real data. One advantage of basing directly an approximation architecture on
the underlying MDP is that the error for the simulation model is eliminated.

In the community of computational finance, researchers have investigated
pricing methods using analytic models and numerical methods, including the
risk-neutral approach, the lattice and finite difference methods, and the Monte
Carlo methods. For example, Hull [8] provides an introduction to options and
other financial derivatives and their pricing methods, Broadie and Detemple [5]
survey option pricing methods, and Glasserman [7] provides a book length treat-
ment for Monte Carlo methods. Most of these methods follow the backward-
recursive approach of dynamic programming. Two examples that deploy ap-
proximate dynamic programming for the problem of pricing American options
are: the least squares Monte Carlo (LSM) method in [10] and the approximate
value iteration approach in [14].

Our goal is to investigate reinforcement learning type algorithms for pric-
ing American options. In this work, we extend an approximate policy iteration
method, namely, least squares policy iteration (LSPI) in [9], to the problem of
pricing American options. We also investigate the policy iteration method pro-
posed in [14], referred to as TVR. We empirically evaluate the performance of
LSPI, TVR and LSM, with respect to the payoffs the exercise policies gain. In
contrast, previous work evaluates pricing methods by measuring the accuracy
of the estimated prices. The results show that, on both real and synthetic data,
exercise policies discovered by LSPI and TVR can achieve larger payoffs than
those found by LSM. Furthermore, for LSPI, TVR and LSM, policies discovered
based on sample paths composed directly from real data gain larger payoffs than
the policies discovered based on sample paths generated by simulation models
with model parameters estimated from real data.

In this work, we present a successful application of reinforcement learning
research, the policy iteration method, for learning an exercise policy for American
options, and show its superiority to LSM, the standard option pricing method in
finance. As well, we introduce a new performance measure, the payoff a pricing
method gains, for comparing option pricing methods in the empirical study.

The reminder of this paper is organized as follows. First, we introduce MDPs
and LSPI. Then, we present the extension of LSPI to pricing American options,
and introduce TVR and LSM. After that, we study empirically the performance
of LSPI, TVR and LSM on both real and synthetic data. Finally, we conclude.



2 Markov decision processes

The problem of sequential decision making is common in economics, science and
engineering. Many of these problems can be modeled as MDPs. An MDP is
defined by the 5-tuple (S, A, P, R, γ). S is a set of states; A is a set of actions;
P is a transition model, with P (s, a, s′) specifying the conditional probability of
transitioning to state s′ starting from state s and taking action a; R is a reward
function, with R(s, a, s′) being the reward for transition to state s′ starting from
state s and taking action a; and γ is a discount factor.

A policy π is a rule for selecting actions based on observed states. π(s, a)
specifies the probability of selecting action a in state s by following policy π.
An optimal policy maximizes the rewards obtained over the long run. We de-
fine the long run reward in an MDP as maximizing the infinite horizon dis-
counted reward

∑∞
t=0 γtrt obtained over an infinite run of the MDP, given

a discount factor 0 < γ < 1. A policy π is associated with a value func-
tion for each state-action pair (s, a), Qπ(s, a), which represents the expected,
discounted, total reward starting from state s taking action a and following
policy π thereafter. That is, Qπ(s, a) = E(

∑∞
t=0 γtrt|s0 = s, a0 = a), where

the expectation is taken with respect to policy π and the transition model
P . Qπ can be found by solving the following linear system of Bellman equa-
tions: Qπ(s, a) = R(s, a) + γ

∑

s′∈S P (s, a, s′)
∑

a′∈A π(s′, a′)Qπ(s′, a′), where
R(s, a) =

∑

s′ P (s, a, s′)R(s, a, s′) is the expected reward for state-action pair
(s, a). Qπ is the fixed point of the Bellman operator Tπ: (TπQ)(s, a) = R(s, a) +
γ
∑

s′∈S P (s, a, s′)
∑

a′∈A π(s′, a′)Q(s′, a′). Tπ is a monotonic operator and a
contraction mapping in the L∞-norm. The implication is that successive appli-
cation of Tπ for any initial Q converges to Qπ. This is value iteration, a principle
method for computing Qπ.

When the size of an MDP becomes large, its solution methods encounter
the “curse of dimensionality”. Approximation architecture is an approach to
addressing the scalability concern. The linear architecture is an efficient and
effective approach. In the linear architecture, the approximate value function is
represented by:2 Q̂π(s, a; w) =

∑k
i=1 φi(s, a)wi, where φi(·, ·) is a basis function,

wi is its weight, and k is the number of basis functions. Define
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where T denotes matrix transpose. Q̂π then can be represented as Q̂π = Φwπ.

Least squares policy iteration. Policy iteration is a method of discovering
an optimal solution for an MDP. LSPI [9] combines the data efficiency of the
least squares temporal difference method [4] and the policy search efficiency of

2 Following the conventional notation, an approximate representation is denoted with
theˆsymbol, and a learned estimate is denoted with the˜symbol.



policy iteration. Next, we give a brief introduction of LSPI.3 The matrix form
of the Bellman equation is: Qπ = R + γPΠπQπ, where P is a |S||A| × |A|
matrix, with P((s, a), s′) = P (s, a, s′), and Π is a |S| × |S||A| matrix, with
Π(s′, (s′, a′)) = π(s′, a′).

The state-action value function Qπ is the fixed point of the Bellman opera-
tor: TπQπ = Qπ. An approach to finding a good approximation is to force Q̂π

to be a fixed point of the Bellman operator: TπQ̂π ≈ Q̂π. Q̂π is in the space
spanned by the basis functions. However, TπQ̂π may not be in this space. LSPI
requires that, Q̂π = Φ(ΦTΦ)−1ΦT(TπQ̂π) = Φ(ΦTΦ)−1ΦT(R + γPΠπQπ),
where, Φ(ΦTΦ)−1ΦT is the orthogonal projection which minimizes the L2-norm.

From this, we can obtain, wπ =
(

ΦT(Φ − γPΠπΦ)
)−1

ΦTR. The weighted least

squares fixed point solution is: wπ =
(

ΦT∆µ(Φ − γPΠπΦ)
)−1

ΦT∆µR, where
∆µ is the diagonal matrix with the entries of µ(s, a), which is a probability dis-
tribution over state-action pairs (S×A). This can be written as Awπ = b, where
A = ΦT∆µ(Φ − γPΠπΦ) and b = ΦT∆µR.

Without a model of the MDP, that is, without the full knowledge of P, Ππ

and R, we need a learning method to discover an optimal policy. It is shown
in [9] that A and b can be learned incrementally as, at iteration t + 1:

Ã(t+1) = Ã(t) + φ(st)(φ(st) − γφ(st+1))
T and b̃(t+1) = b̃(t) + φ(st)Rt (1)

The boundedness property of LSPI is established in [9] with respect to the
L∞-norm. Recently, a tighter bound is given in [1] for policy iteration with
continuous state spaces on a single sample path.

3 Learning an exercise policy for American options

We first discuss the application of LSPI for the problem of learning an exer-
cise policy for American options. Next we give a brief review of TVR [14] and
LSM [10]. We discretize the time, thus the options become Bermudan.

3.1 LSPI for learning an exercise policy for American options

We need to consider several peculiarities of the problem of learning an exercise
policy for American options, when applying LSPI for it. First, it is an episodic,
optimal stopping problem. It may terminate any time between the starting date
and the maturity date of the option. Usually, after a termination decision is
made, LSPI needs to start over from a new sample path. This is data inefficient.
We use the whole sample path, even in the case the option is exercised at an
intermediate time step following the current policy. Second, in option pricing,
the continuation value of an option may be different at different time, even
with the same underlying asset price and other factors. Thus we incorporate

3 This is the LPSI with least-squares fixed-point approximation. LSPI can also work
with Bellman residual minimizing approximation, which we do not discuss here.



time as a component in the state space. Third, there are two actions for each
state, exercise and continue. The state-action value function of exercising the
option, that is, the intrinsic value of the option, can be calculated exactly. We
only need to consider the state-action value function for continuation, that is,
Q(s, a = continue). Fourth, before exercising an option, there is no reward to
the option holder, that is, R = 0. When the option is exercised, the reward is
the payoff.

3.2 TVR: the policy iteration approach in [14]

We introduce TVR [14] in the following. We use Q(S, t) to denote Q({S, t}, a =
continue), where S is the stock price. We want to find a projection Π of
Q = (Q(S, 0), Q(S, 1), . . . , Q(S, T − 1)) in the form Φw, where w is to minimize
∑T−1

t=0 E[(Φ(St, t)w−Q(St, t))
2], where the expectation E[(Φ(St, t)w−Q(St, t))

2]
is with respect to the probability measure of St. The weight w is given by

w =

(

T−1
∑

t=0

E[Φ(St, t)Φ
T(St, t)]

)−1

E[Φ(St, t)Q(St, t)] (2)

Define g(S) as the intrinsic value of the option when the stock price is S,
and Jt(S) as the price of the option at time t when St = S: JT = g and
Jt = max(g, γPJt+1), t = T − 1, T − 2, . . . , 0, where (PJ)(S) = E[J(St+1)|St =
S]. Define FJ = γP max(g, J). We have (Q(·, 0), Q(·, 1), . . . , Q(·, T − 1)) =
(FQ(·, 1), FQ(·, 2), . . . , FQ(·, T )), which is denoted compactly as Q = HQ. The
above solution of w is thus the fixed point of the equation HQ∗ = Q∗. It is
difficult to solve this function, since Q∗ is unknown. We resort to the fixed point
of equation Q = ΠHQ. Suppose wi is the weight vector computed at iteration
i (w0 can be arbitrarily initialized),

wi+1 =

(

T−1
∑

t=0

E[Φ(St, t)Φ
T(St, t)]

)−1

E[Φ(St, t) max(g(St+1),Φ(Sj
t+1, t)wi)]

(3)
The expectation with respect to the underlying probability measure can be

replaced with an expectation with respect to the empirical measure provided
by unbiased samples. The following is an implementable version with sample
trajectories Sj

t , j = 1, . . . , m, where Sj
t is the value of St in the j-th trajectory:

ŵi+1 =





T−1
∑

t=0

m
∑

j=1

Φ(Sj
t , t)ΦT(Sj

t , t)





−1
T−1
∑

t=0

m
∑

j=1

Φ(Sj
t , t) max(g(Sj

t+1),Φ(Sj
t+1, t)ŵi)

(4)

3.3 Least squares Monte Carlo

LSM in [10] follows the backward-recursive dynamic programming approach with
function approximation of expected continuation value. It estimates the expected



continuation value from the second-to-last time step backward until the first time
step, on the sample paths. At each time step, LSM fits the expected continuation
value on the set of basis functions with least squares regression, using the cross-
sectional information from the sample paths and the previous iterations (or the
last time step). Specifically, at time step t, assuming the option is not exercised,
the continuation values for the sample paths (LSM uses only in-the-money paths)
can be computed, since in a backward-recursive approach, LSM has already
considered time steps after t until the maturity. As well, values of the basis
functions can be evaluated for the asset prices at time step t. Then, LSM regresses
the continuation values on the values of the basis functions with least squares, to
obtain the weights for the basis functions for time step t. When LSM reaches the
first time step, it obtains the price of the option. LSM also obtains the weights
for the basis functions for each time step. These weights represent implicitly the
exercising policy. The approximate value iteration method in [14] is conceptually
similar to LSM. (TVR is also proposed in [14].)

4 Empirical study

We study empirically the performance of LSPI, TVR and LSM on learning an
exercise policy for American options. We study the plain vanilla American put
stock options and American Asian options. We focus on at-the-money options,
that is, the strike price is equal to the initial stock price. For simplicity, we as-
sume the risk-free interest rate r is constant and stocks are non-dividend-paying.
We assume 252 trading days in each year. We study options with quarterly,
semi-annual and annual maturity terms, with 63, 126 and 252 days duration
respectively. Each time step is one trading day, that is, 1/252 trading year. In
LSPI, we set the discount factor γ = e−r/252. LSPI and TVR iterate on the
sample paths until the difference between two successive policies is sufficiently
small, or when it has run 15 iterations (LSPI and TVR usually converge in 4
or 5 iterations). We obtain five years’ daily stock prices from January 2002 to
December 2006 for Dow Jones 30 companies from WRDS, Wharton Research
Data Services. We study the payoff a policy gain, which is the intrinsic value of
an option when the option is exercised.

4.1 Simulation models

In our experiments when a simulation model is used, synthetic data may be gen-
erated from either the geometric Brownian Motion (GBM) model or a stochastic
volatility (SV) model, two of the most widely used models for stock price move-
ment. See [8] for detail.

Geometric Brownian motion model. Suppose St, the stock price at time
t, follows a GBM:

dSt = µStdt + σStdWt, (5)

where, µ is the risk-neutral expected stock return, σ is the stock volatility and
W is a standard Brownian motion. For a non-dividend-paying stock, µ = r, the



risk-free interest rate. It is usually more accurate to simulate lnSt in practice.
Using Itô’s lemma, the process followed by lnSt is:

dlnSt = (µ − σ2/2)dt + σdWt. (6)

We can obtain the following discretized version for (6), and use it to generate
stock price sample paths:

St+1 = Stexp{(µ − σ2/2)∆t + σ
√

∆tε}, (7)

where ∆t is a small time step, and ε ∼ N(0, 1), the standard normal distribution.
To estimate the constant σ from real data, we use the method of maximum

likelihood estimation (MLE).
Stochastic volatility model. In the GBM, the volatility is assumed to be a

constant. In reality, the volatility may itself be stochastic. We use GARCH(1,1)
as a stochastic volatility model:

σ2
t = ω + αu2

t−1 + βσ2
t−1, (8)

where ut = ln(St/St−1), and α and β are weights for u2
t−1 and σ2

t−1 respectively.
It is required that α + β < 1 for the stability of GARCH(1,1). The constant
ω is related to the long term average volatility σL by ω = (1 − α − β)σL. The
discretized version is:

St+1 = Stexp{(µ − σ2
t /2)∆t + σt

√
∆tε}. (9)

To estimate the parameters for the SV model in (8) and to generate sample
paths, we use the MATLAB GARCH toolbox functions ’garchfit’ and ’garchsim’.

4.2 Basis functions

LSPI, TVR and LSM need to choose basis functions to approximate the expected
continuation value. As suggested in [10],we use the constant φ0(S) = 1 and
the following Laguerre polynomials to generalize over the stock price: φ1(S) =
exp(−S′/2), φ2(S) = exp(−S′/2)(1 − S′), and φ3(S) = exp(−S′/2)(1 − 2S′ +
S′2/2). We use S′ = S/K instead of S in the basis functions, where K is the
strike price, since the function exp(−S/2) goes to zero fast. LSPI and TVR
also generalize over time t. We use the following functions for time t: φt

0(t) =
sin(−tπ/2T +π/2), φt

1(t) = ln(T − t), φt
2(t) = (t/T )2, guided by the observation

that the optimal exercise boundary for an American put option is a monotonic
increasing function, as shown in [6].

American stock put options. The intrinsic value of an American stock
put options is g(S) = max(0, K − S). LSM uses the functions φ0(S), φ1(S),
φ2(S), and φ3(S). LSM computes different sets of weight vectors for the basis
functions for different time steps. LSPI and TVR use the functions: φ0(S, t) =
φ0(S), φ1(S, t) = φ1(S), φ2(S, t) = φ2(S), φ3(S, t) = φ3(S), φ4(S, t) = φt

0(t),
φ5(S, t) = φt

1(t), and φ6(S, t) = φt
2(t). LSPI (TVR) determines a single weight

vector over all time steps to calculate the continuation value.



American Asian call options. Asian options are exotic, path-dependent
options. We consider a call option whose payoff is determined by the average
price Avg of a stock over some time horizon, and the option can be exercised at
any time after some initial lockout time period. The intrinsic value is g(Avg) =
max(0, Avg − K). The choice of the eight basis functions for a stock price and
the average of stock price follows the suggestion in [10]: a constant, the first two
Laguerre polynomials for the stock price, the first two Laguerre polynomials for
the average stock price, and the cross products of these Laguerre polynomials
up to third order terms. LSPI and TVR take time as a component in the state
space. We use the same set of basis functions for time t as those used for the
American stock put options.

4.3 Results for American put options: real data

For real data, a pricing method can learn an exercise policy either 1) from sample
paths generated from a simulation model; or, 2) from sample paths composed
from real data directly. The testing sample paths are from real data. We scale
the stock prices, so that, for each company, the initial price for each training
path and each testing path is the same as the first price of the whole price series
of the company.

Now we proceed with the first approach. The simulation model for the under-
lying stock process follows the GBM in (5) or the SV model in (8). For the GBM
model, the constant volatility σ is estimated from the training data with MLE.
For the SV model, we use the popular GARCH(1,1) to estimate the parameters,
ω, α and β in (8). In this case, for options with quarterly, semi-annual and annual
maturities respectively, the first 662, 625 and 751 stock prices are used for esti-
mating parameters in (5) and in (8). Then LSPI, TVR and LSM learn exercise
policies with 50,000 sample paths, generated using the models in (5) or in (8)
with the estimated parameters. We call this approach of generating sample paths
from a simulation model with parameters estimated from real data as LSPI mle,
LSPI garch, TVR mle, TVR garch, LSM mle and LSM garch, respectively.

In the second approach, a pricing method learns the exercise policy from
sample paths composed from real data directly. Due to the scarcity of real data,
as there is only a single trajectory of stock price time series for each company,
we construct multiple trajectories following a windowing technique. For each
company, for quarterly, semi-annual, annual maturity terms, we obtain 600, 500,
500 training paths, each with duration = 63, 126, 252 prices. The first path is
the first duration days of stock prices. Then we move one day ahead and obtain
the second path, and so on. LSPI and LSM then learn exercise policies on these
training paths. We call this approach of generating sample paths from real data
directly as LSPI data, TVR data and LSM data, respectively.

After the exercise policies are found by LSPI, TVR and LSM, we com-
pare their performance on testing paths. For each company, for quarterly, semi-
annual, annual maturity terms, we obtain 500, 450, 250 testing paths, each with
duration = 63, 126, 252 prices, as follows. The first path is the last duration



days of stock prices. Then we move one day back and obtain the second path,
and so on.

For each maturity term of each of the Dow Jones 30 companies, we average
payoffs over the testing paths. Then we average the average payoffs over the 30
companies. Table 1 shows the results for each company and the average over 30
companies for semi-annual maturity. Table 2 presents the average results. These
results show that LSPI and TVR gain larger average payoffs than LSM.

An explanation for LSPI and TVR gaining larger payoffs is, LSPI and TVR
optimize weights across all time steps, whereas LSM is a value iteration procedure
that makes a single backward pass through time. Thus, LSPI and TVR are able
to eliminate some of the local errors. With the same sample paths, LSPI and
TVR have the chance to improve a policy in an iterative approach. Thus, the
policy learned by LSPI and TVR will ultimately converge to an optimal policy
supported by the basis functions. However, LSM works in the backward-recursive
approach. After LSM determines a policy with the least squares regression, it
does not improve it.

LSM computes different sets of weights for the basis functions for different
time steps; thus it generalizes over the space for asset prices. In contrast, LSPI
and TVR deploy function approximation for both stock price and time, so that
they generalize over both the space for asset prices and the space for time.
Therefore LSM has a stronger representation than LSPI and TVR. However,
LSPI and TVR outperform LSM.

The results in Table 1 and Table 2 also show that LSPI data outperforms
both LSPI mle and LSPI garch. That is, in the studied cases, an exercise pol-
icy learned by LSPI with sample paths composed directly from real data gains
larger payoffs on average than an exercise policy learned by LSPI with sample
paths generated from either the GBM model in (5) or the SV model in (8),
with model parameters estimated from real data. Note, the set of real data to
generate sample paths for LSPI data is the same as the set of real data to es-
timated parameters for either the GBM model or the SV model. As well, the
results also show that LSM data outperforms both LSM mle and LSM garch.
For TVR, except the quarterly case, TVR data outperforms both TVR mle and
TVR garch.

We believe the key reason that LSPI data outperforms LSPI mle and LSPI garch
is that LSPI data learns the exercise policy from real data directly, without esti-
mating parameters for a simulation model first. In this way, LSPI data eliminates
the errors in estimating the model parameters, as encountered by LSPI mle and
LSPI garch. This explanation applies similarly to the results for LSM and TVR.

4.4 Results for American put options: synthetic data

We evaluate the performance of LSPI, TVR and LSM with synthetic sample
paths. The parameters for the GBM model in (5) and the SV model in (8) can
either 1) be estimated from real data; or, 2) be set in some arbitrary manner.
The training sample paths and the testing sample paths are generated using the
same model with the same parameters.



Name LSPI TVR LSM
mle garch data mle garch data mle garch data

3M 2.448 2.404 3.329 2.852 2.370 3.477 0.944 0.944 1.194

Alcoa 2.403 2.400 2.361 2.414 2.403 2.362 0.952 0.943 0.943

Altria 0.213 0.212 0.212 0.214 0.212 0.212 0.277 0.277 0.314

American Express 0.722 0.721 0.730 0.723 0.807 1.029 0.375 0.375 0.539

American Intl Group 4.359 4.298 4.475 4.892 5.364 5.723 1.733 1.733 2.186

AT&T 0.700 0.703 0.703 0.702 0.703 0.702 0.326 0.326 0.497

Boeing 0.118 0.117 0.112 0.117 0.118 0.117 0.324 0.274 0.274

Caterpillar 0.782 0.809 0.791 0.791 0.745 0.754 0.385 0.386 0.518

Citigroup 0.634 0.635 0.632 0.634 0.635 0.635 0.350 0.364 0.488

du Pont 2.244 2.266 2.174 2.181 2.119 2.081 0.855 0.784 0.784

Exxon Mobile 0.216 0.218 0.216 0.218 0.460 0.217 0.317 0.317 0.317

GE 0.846 0.863 0.844 0.849 0.854 0.844 0.331 0.331 0.340

GM 6.414 6.205 6.663 5.911 6.795 6.548 2.045 1.972 3.205

Hewlett-Packard 2.732 2.721 2.639 2.704 2.684 2.663 1.163 1.120 1.545

Honeywell 0.007 0.007 0.007 0.007 0.007 0.007 0.145 0.145 0.173

IBM 0.362 0.369 0.361 0.362 0.361 0.361 0.309 0.309 0.309

Intel 2.572 2.468 2.567 2.515 2.322 2.559 0.920 0.961 0.961

Johnson & Johnson 7.482 7.256 7.513 7.516 6.967 7.257 2.540 2.540 3.480

J. P. Morgan 0.818 0.820 0.818 0.817 0.818 0.816 0.366 0.366 0.366

McDonalds 1.862 1.846 1.893 1.886 1.850 1.873 0.574 0.574 0.868

Merck 0.519 0.518 0.516 0.525 0.517 0.519 0.321 0.321 0.389

Microsoft 0.312 0.308 0.309 0.326 0.309 0.309 0.230 0.230 0.326

Pfizer 1.989 1.895 1.815 1.859 3.029 1.830 1.014 1.014 1.343

Coca Cola 1.471 1.524 1.730 1.995 1.572 1.771 0.614 0.614 0.839

Home Depot 1.853 1.923 1.951 2.013 2.117 2.821 0.786 0.786 0.862

Procter & Gamble 0.372 0.377 0.825 0.434 0.367 0.389 0.280 0.280 0.280

United Technologies 2.685 2.686 2.685 2.693 2.685 2.685 0.867 0.862 1.415

Verizon 0.668 0.668 0.669 0.669 0.666 0.667 0.268 0.280 0.389

WalMart 2.611 2.612 2.597 2.691 2.597 2.650 1.030 1.030 1.314

Walt Disney 0.030 0.030 0.030 0.030 0.030 0.030 0.160 0.160 0.160

average 1.681 1.663 1.739 1.718 1.749 1.797 0.693 0.687 0.887
Table 1. Payoffs of LSPI mle, LSPI garch, LSPI data, TVR mle, TVR garch,
TVR data, LSM mle, LSM garch, and LSM data, for American put stock options of
Dow Jones 30 companies, with semi-annual maturity. Interest rate r = 0.03. 500 sam-
ple paths are composed for the discovery of exercise policies. The results are averaged
over 450 testing paths.

LSPI TVR LSM
maturity mle garch data mle garch data mle garch data

quarterly 1.310 1.333 1.339 1.321 1.341 1.331 0.573 0.572 0.719

semi-annual 1.681 1.663 1.739 1.718 1.749 1.797 0.693 0.687 0.887

annual 1.599 1.496 1.677 1.832 1.797 2.015 0.717 0.685 0.860
Table 2. Average payoffs of LSPI, TVR and LSM on real data for Dow Jones 30
companies, with quarterly, semi-annual (repeated from Table 1) and annual maturities.



Now we proceed with the case in which model parameters are estimated from
real data. For each company, after estimating parameters for either the GBM
model or the SV model from real data, we generate 50,000 sample paths with
these parameters. LSPI, TVR and LSM discover the exercise policies with these
sample paths. For each company, we evaluate the performance of the discovered
policies on 10,000 testing paths, generated with the estimated parameters. The
initial stock price in each of the sample path and each of the testing path is set
as the first price in the time series of the company.

For each of the Dow Jones 30 companies, we average payoffs over 10,000
testing paths. Then we average the average payoffs over the 30 companies. The
results in Table 3 show that LSPI and TVR gain larger payoffs than LSM, both
in the GBM model and in the SV model, with interest rate r = 0.03.

maturity GBM model SV model
term LSPI TVR LSM LSPI TVR LSM

quarterly 2.071 2.054 2.044 1.889 1.866 0.785

semi-annual 2.771 2.758 2.742 2.546 2.530 0.997

annual 3.615 3.645 3.580 3.286 3.311 1.241
Table 3. Average payoffs on synthetic data with parameters estimated from real data.

Again, an explanation for that LSPI and TVR gain larger payoffs is that LSPI
and TVR optimize weights across all time steps, whereas LSM makes a single
backward pass through time. LSPI and TVR follow the policy iteration approach,
so that the policies they discover improve iteratively. LSM learns the policy only
once in the backward-recursive approach with least squares regression.

We also vary various parameters for either the GBM or the SV model to
generate synthetic sample paths. We vary the interest rate r from 0.01, 0.03 to
0.05, and set the strike price K (initial stock price) to 50. With GBM, we vary
the constant volatility σ from 0.1, 0.3 to 0.5. With the SV model, we vary β from
0.2, 0.5 to 0.8, and set α = 0.96−β. We test the learned policies on testing paths
generated with the same model and the same parameters. Results in Table 4 and
Table 5 show that LSPI and TVR outperform or have similar performance as
LSM in our studied experiments.

In Figure 1, we present the exercise boundaries discovered by LSPI, TVR and
LSM. The optimal exercise boundary for an American put option is a monotonic
increasing function, as shown in [6]. Figure 1 (a) for real data from Intel shows
that the exercise boundaries discovered by LSPI and TVR are smooth and re-
spect the monotonicity, but not the boundary discovered by LSM. The scarcity of
sample paths may explain this non-monotonicity. The boundary of TVR is lower
than that of LSPI, which explains that TVR gains larger payoffs than LSPI. Fig-
ure 1 (b) shows that the exercise boundary discovered by LSPI is smoother and
lower than that discovered by LSM. The exercise boundary discovered by TVR
is also smooth. It crosses those of LSPI and LSM.



r = 0.01 r = 0.03 r = 0.05
σ LSPI TVR LSM LSPI TVR LSM LSPI TVR LSM

0.1 1.294 1.300 1.286 1.095 1.117 1.061 0.925 0.902 0.896

0.3 4.086 4.062 4.095 3.684 3.666 3.679 3.533 3.604 3.504

0.5 6.965 6.798 6.051 6.514 6.521 6.476 6.315 6.274 6.365

Table 4. Average Payoffs of LSPI, TVR and LSM. K = 50. Semi-annual maturity.
50,000 training paths and 10,000 testing paths are generated with the GBM model.

r = 0.01 r = 0.03 r = 0.05
β LSPI TVR LSM LSPI TVR LSM LSPI TVR LSM

0.2 0.925 0.931 0.350 0.720 0.721 0.299 0.567 0.555 0.257

0.5 1.167 1.172 0.441 0.960 0.959 0.385 0.792 0.798 0.336

0.8 1.449 1.450 0.548 1.236 1.220 0.485 1.078 1.053 0.430

Table 5. Average Payoffs of LSPI, TVR and LSM. K = 50. Semi-annual maturity.
50,000 training paths and 10,000 testing paths are generated with the SV model.

LSPI TVR LSM
maturity mle garch data mle garch data mle garch data

quarterly 1.862 1.905 1.938 1.869 1.871 1.872 0.613 0.613 0.613

semi-annual 2.733 2.785 2.827 2.649 2.626 2.687 0.578 0.578 0.578

annual 4.171 4.188 4.376 4.149 4.275 4.187 0.680 0.661 0.681
Table 6. Average payoffs of LSPI, TVR and LSM on real data. Asian options.

4.5 Results for American Asian call options

The experimental settings are similar as those for American put options in Sec-
tions 4.3 and 4.4. In our experiments, there are 21 lockout days, and the average
is taken over the stock prices over the last 21 days.

The experimental results in Table 6 to Table 9 show that LSPI gains larger
or similar payoffs than TVR, and both LSPI and TVR gains larger payoffs than
LSM. Table 6 shows that for LSPI, policies learned from real data gain larger
payoffs than policies learned from simulated samples.

5 Conclusions

Options are important financial instruments, whose prices are usually deter-
mined by computational methods. Computational finance is a compelling appli-
cation area for reinforcement learning research, where hard sequential decision
making problems abound and have great practical significance. Our work shows
that solution methods developed in reinforcement learning can advance the state
of the art in an important and challenging application area, and demonstrates
furthermore that computational finance remains an under-explored area for de-
ployment of reinforcement learning methods.

We investigate LSPI for the problem of learning an exercise policy for Amer-
ican options, and compare it with TVR, another policy iteration method, and
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(a) Real data for Intel, r = 0.03 (b) GBM synthetic data, r = 0.03,
50,000 sample paths, K = S0 = 50.

Fig. 1. Exercise boundaries discovered by LSPI, TVR and LSM. Semi-annual maturity.

LSM, the standard least squares Monte Carlo method, on both real and synthetic
data. The results show that the exercise policies discovered by LSPI and TVR
gain larger payoffs than those discovered by LSM, on both real and synthetic
data. Furthermore, for LSPI, TVR and LSM, policies learned from real data
generally gain larger payoffs than policies learned from simulated samples. The
empirical study shows that LSPI, a solution technique from the reinforcement
learning literature, as well as TVR, is superior to LSM, a standard technique
from the finance literature, for pricing American options, a classical sequential
decision making problem in finance.

It is desirable to investigate alternative reinforcement learning methods, such
as the TD method and policy gradient. It is also desirable to investigate more
complex models, such as stochastic interest rate models and jump-diffusion mod-
els for asset prices and volatility.
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