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Given the difficulty of experimental determination of drug-protein interactions, there is a significant
motivation to develop effective in silico prediction methods that can provide both new predictions for
experimental verification and supporting evidence for experimental results. Most recently, classifica-
tion methods such as support vector machines (SVMs) have been applied to drug-target prediction.
Unfortunately, these methods generally rely on measures of the maximum “local similarity” between
two protein sequences, which could mask important drug-protein interaction information since drugs
are much smaller molecules than proteins and drug-target binding regions must comprise only small
local regions of the proteins. We therefore develop a novel sparse learning method that considers sets
of short peptides. Our method integrates feature selection, multi-instance learning, and Gaussian
kernelization into an L1 norm support vector machine classifier. Experimental results show that it not
only outperformed the previous methods but also pointed to an optimal subset of potential binding
regions. Supplementary materials are available at “www.cs.ualberta.ca/~ys3/drug_target”.
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1. Introduction

Proteins operate in highly interconnected networks (“interactome networks”) that play a cen-
tral role in governing cell functions. If a protein’s conformation is changed, its function can
be altered, thus affecting cell function. Drugs are small molecules that bind to target pro-
teins to intensionally change the protein conformation, ultimately achieving treatment effects.
The function of many classes of pharmaceutically useful protein targets, such as enzymes, ion
channels, G protein coupled receptors (GPCRs), and nuclear receptors, can be modulated by
ligand interaction. Identifying interaction between ligands and proteins is therefore a key to
genomic drug discovery.

Various high-throughput technologies for analyzing the genome, the transcriptome, and
the proteome have enhanced our understanding of the space populated by protein classes.
Meanwhile, the development of high-throughput screening technology has enabled broader
exploration of the space of chemical compounds.1–3 The goal of the chemical genomics re-
search is to identify potentially useful compounds, such as imaging probes and drug leads,
by relating the chemical space to the genomic space. Unfortunately, our understanding of the
relationship between the chemical and the genomic spaces remains insufficient. For example,
the PubChem database at NCBI4 contains information of millions of chemical compounds,
but the number of compounds with known target proteins is limited. The lack of documented
protein-chemical interactions suggests that many remain to be discovered, which motivates



the need for improved methods for inferring potential drug-target interactions automatically
and efficiently. To facilitate the study of protein-chemical interactions, Kuhn et al. created a
protein-chemical interaction database called STITCH,5 which, up to now, contains interactions
for between 300,000 small molecules and 2.6 million proteins from 1,133 organisms.

By elucidating the interaction between proteins and drug molecules, 3D-structure based
“docking analysis” has been the principle method for drug discovery.6–8 In docking analysis,
drug-protein binding affinities are modeled by non-covalent intermolecular interactions, such as
hydrogen bonding, electrostatic interactions, hydrophobic and Van der Waals forces. Through
establishing equations that model the physical interaction between a receptor and potential
ligand, the potential energy of binding can be calculated. There are many docking software
tools available, including DOCK,8 GOLD,6 and AutoDock.7 All these methods require com-
plete 3D structural information for the target, which might not be available in practice. Such
a major disadvantage makes docking analyses infeasible for genome wide application.

Given the difficulty of experimental determination of compound-protein interactions,9,10

there is a significant motivation to develop effective in silico prediction methods that can
provide both new predictions for experimental verification and supporting evidence for exper-
imental results. To predict compound-protein interactions various computational approaches
have been developed. Keiser et al.11 propose using the known structure of a set of ligands
to predict target protein families. This method does not take advantage of available pro-
tein sequence information, and is thus limited to those between known ligands and protein
families. Campillos et al.12 propose predicting drug-target interaction based on similarities
between side-effects of known drugs. Some results of this approach have been verified by in

vitro binding assays, but the approach remains limited to predictions involving drugs with
known side-effects. Yamanishi et al.13 have investigated the relationship between drug chem-
ical structure, target protein sequence, and drug-target network topology, and developed a
regression-based learning method for predicting unknown drug-target interactions. In partic-
ular, they integrated the chemical and the genomic spaces into a unified space, referred to
as the “pharmacological space”, wherein chemical-chemical, protein-protein, and chemical-
protein similarities can be modeled. Perlman et al.14 used a combination of Smith-Waterman
score, protein-protein interaction, and Gene Ontology information to measure the gene-gene
similarity (similarity between targets), but these ancillary information is not always available
making the prediction hard to extend to general case, and the way of combining different
information sources is somehow tricky.

Most recently, classification methods have been adopted in drug-target prediction.15–17

These methods firstly calculate the similarities between targets and/or drugs, then use these
similarities to construct kernel matrices for the classifiers, such as the support vector machines
(SVMs) for predicting novel drug-target interactions. The prediction can be cast into two
ways, one for drug side or drug-to-target and the other for target side. For drug-to-target
prediction, drug-drug similarities are first obtained, based on structural or pharmacological
information; then a bipartite known drug-target interaction graph is constructed; for a new
drug with known structural or pharmacological information, its similarities to known drugs are
calculated to predict its interactions with known targets using the bipartite interaction graph.



Similarly for target-to-drug prediction, target-target similarities are first obtained using the
primary amino acid sequences;13,17,18 then for a new target with known primary sequence, its
similarities to known targets are calculated to predict its interactions with known drugs again
using the bipartite interaction graph.

It should be pointed out that in the state-of-the-art works of target-to-drug prediction,
the target-target similarity is defined out of the normalized Smith-Waterman score.17 This
S-W score measures the maximum “local similarity” between two protein sequences,19 thus
reasonable, but the local similarity still uses the whole sequences and consequently might
involve long substrings, which is unreasonable. In fact, long substrings could mask important
interaction information, since drugs are usually much smaller molecules than proteins and the
drug-target binding sites mostly comprise of only small local regions of the target.

In this work, we focus on the latter target-to-drug prediction to address the issues in the
existing works. We first attempt to identify key local binding regions from the common short

substrings shared by proteins that interact with the same drug. These key short substrings
are then used to construct a vector representation for a protein sequence, to be used in the
training and testing phases of a classifier. The use of key short substrings (i.e. potential binding
regions) as features for the targets is a more direct and meaningful representation for drug
interaction prediction. Additionally, the explicit vector representation of targets, as opposed
to assessing similarity based on the S-W score, maps the targets into higher dimensional
spaces, thus increasing the effectiveness of kernel-based classifiers. We remark that our use of
common short substrings differ from the substring composition representation for proteins,15

which uses all substrings while disregarding whether interactions exist.
The rest of the paper is organized as follows. In Section 2, we introduce the details of our

prediction method, in which we focus on the SVM classifiers. We demonstrate in Section 3
the performance of our method compared against the existing ones. Lastly, in Section 4, we
discuss the advantages and disadvantages of our method and propose future work.

2. Methods

The drug-target interaction prediction framework is the same as in Bleakley et al.,17 in which
we assume a dataset containing m drugs d1, d2, . . . , dm and n targets t1, t2, . . . , tn, and the binary
indicator on whether or not drug di interacts target tj. The goal is to predict which of the
drugs a new target tc will interact.

2.1. Target Vectorization

In the bipartite local model (BLM) by Bleakley et al.,17 to which our method will compare
against, the similarity between two targets t and t′ is defined as the normalized Smith-
Waterman score:17

s(t, t′) =
SW (t, t′)

√

SW (t, t)
√

SW (t′, t′)
, (1)

where SW (·, ·) denotes the original Smith-Waterman score.19 As we mentioned in the intro-
duction, such a similarity measure might overlook the key short sequence regions to which a
drug binds.



To address this issue, we want to identify the common short substrings of the targets
that interact the same drug. We consider one drug, say di, at a time. From the dataset, we
first retrieve the set of targets Ti = {ti1, ti2, . . . , tini

} interacting with di. By including the new
target tc, we obtain another set Ti ∪ {tc}. Using a substring length lower bound, we compute
for each of the two sets Ti and Ti ∪{tc} the multi-set of pairwise maximal common substrings,
denoted as withoutSS = {si1, si2, . . . , siq′} and withSS = {si1, si2, . . . , sip′}, respectively. In each
of the two multi-sets, if two substrings differ at at most one position, they are merged into
one and their frequencies are summed together. This way, we obtain two reduced sets with-

outSS = {si1, si2, . . . , siq} and withSS = {si1, si2, . . . , sip}, containing q and p unique substrings
respectively, and each substring is associated with its number of occurences.

Using the substrings in set withSS and their occurrences, we can map the n training targets
and the new target tc into the p dimensional Euclidean space, where each substring represents
a dimension and the coordinate of target t in dimension s is calculated as the normalized
match score between t and s in set withSS :

M(t, s) =
L(t, s) · cs
∑p

i=1 csi
, (2)

where L(·, ·) is length of the longest common substring between the two sequences and cs is
the number of occurrence of substring s. Intuitively, if target tc contains a long substring that
is also frequent in the binding targets, then its match score for this feature substring will
be high indicating a high likelihood of binding. We use (M(t, s1),M(t, s2), . . . ,M(t, sp)) as the
vector representation for target t.

This way we obtain an n × p training matrix X, where each row represents a training
target, and a p×1 testing vector xc representing the new target tc, along with the n×1 binary
training label vector y (with 1 indicating the target interacts with drug di and −1 otherwise).
The task is to construct a classifier to return 1 if the new target tc interacts with drug di, or
−1 otherwise.

The classification problem can be analogously formulated using set withoutSS substring
set. Next we show how to construct a classifier from the training data.

2.2. Classification with Feature Selection

In any classification problem, the quality of features used determines the accuracy of pre-
dictions. Here, features correspond to substrings of target proteins, which comprise potential
binding regions between the proteins and drugs. Thus, selecting good features not only im-
proves classification accuracy, but also provides candidate drug-target binding sites for further
investigation. We investigated an approach that integrates feature selection in L1-norm based
support vector machine (SVM) classification method.

The primal form of L1-norm SVM is:

min
w,b,ξ

β‖w‖1 + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − b1),

ξ ≥ 0.

(3)

where △(y) denotes putting the vector y on the main diagonal of a square matrix. Here



X ∈ R
n×p, y ∈ {+1,−1}n, n is the number of data points (targets), and p is the number of

features. Since by Micchelli et al.20

‖w‖1 = min
γ≥0

1

2

∑

j

(
w2
j

γj
+ γj) = min

γ≥0

1

2
(wT△(γ)−1w + γT1),

so (3) becomes

min
w,b,ξ,γ

β

2
(wT△(γ)−1w + γT1) + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − b1),

ξ ≥ 0,γ ≥ 0.

(4)

By introducing Lagrangian multipliers λ ≥ 0 and µ ≥ 0, (4) becomes

min
w,b,ξ,γ

max
λ,µ

β

2
(wT△(γ)−1w + γT1) + 1T ξ + λT (1−△(y)(Xw − b1)− ξ)− µT ξ

s.t. : λ ≥ 0,µ ≥ 0,γ ≥ 0.
(5)

Let the objective function of (5) be L1, and let ∂L1

∂ξ
= 0, we get λ = 1−µ. Therefore, since

µ ≥ 0, we conclude that λ ≤ 1, hence 0 ≤ λ ≤ 1. By substitution, (5) becomes

min
w,b,γ

max
λ

β

2
(wT△(γ)−1w + γT1) + λT1− λT△(y)Xw + bλT△(y)1

s.t. : 0 ≤ λ ≤ 1,

γ ≥ 0.

(6)

Let the objective function of (6) be L2, and let ∂L2

∂b
= 0. We get λTy = 0, so (6) becomes

min
w,γ

max
λ

β

2
(wT△(γ)−1w + γT1) + λT1− λT△(y)Xw

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0.

(7)

Let the objective function of (7) be L3, and let ∂L3

∂w
= 0, we get β△(γ)−1w−XT△(y)λ = 0,

so that w = 1
β
△(γ)XT△(y)λ. By substitution, (7) becomes

min
γ

max
λ

λT1−
1

2β
λT△(y)X△(γ)XT△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0.

(8)

Note that γ is the feature selection vector. Crucially, this problem is convex in γ and has no
local minima,21 hence it provides an optimal form of feature selection that can be efficiently
obtained in conjunction with SVM training. Because a drug may bind to different regions
of different proteins, i.e., different regions on different targets can bind to the same drug,



each positive data point may correspond to a different set of important features (substrings).
Therefore, the nature of this drug-target classification problem is essentially a multi-instance
classification problem. To address this, we consider two ideas:

Idea (a) Use a radial basis function (RBF) kernel (Gaussian kernel), rather than a linear
kernel since this addresses the multi-instance classification problem more effectively after
implicitly mapping data points to an infinite dimensional space. After Gaussian kernelization,
the original linear kernel matrix K = X△(γ)XT becomes K ′

ij = e
−1

2σ2
(xi−xj)T△(γ)(xi−xj).

Idea (b) Because each positive data point may correspond to a unique set of important
features, in principle each positive example xi should employ its own feature selection vector γ+

i

while all negative examples should share a same vector γ−. So we get K ′′
ij = e

−1

2σ2
‖γi⊙xi−γj⊙xj‖2

for all i and j, where γi = γ+
i if yi = +1, and γi = γ− if yi = −1. Here ⊙ stands for element-wise

multiplication.
Idea (a) can be easily applied to (8) at the sacrifice of convexity, while applying Idea

(b) to (8) will introduce too many extra coefficients which makes the model computationally
expensive. To circumvent these issues, we introduce an efficient approach to re-weight the
features. Intuitively, we wish to down-weight the features that are false positive indicator of
binding, i.e. features that have a high score/value at some negative training examples (not
bind). This motivation is similar to the case in multi-instance learning, where false positive
indicators call for more strict control than true positive indicators. Towards this end, we
introduce a p-dimensional weight vector c corresponding to the p features, and re-scale the
feature matrix X by X̃ = X△(c). A simple formula of c that concretizes our intuition is
cj = 1

n

∑

i aij, where aij = 1 if xij ≤ 1 − ǫ and yi = 1, and aij = 0 otherwise. Here ǫ is a
small positive number, and all elements in X are assumed to have been normalized to [0, 1].
Therefore by replacing X with X̃ in (8), we encourage using features that indicate less false
positive, and formally we obtain

min
γ

max
λ

λT1−
1

2β
λT△(y)K ′△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0,

(9)

where K ′
ij = exp

(

−1
2σ2 (x̃i − x̃j)

T△(γ)(x̃i − x̃j)
)

.
We solve (9) by using a combination of L-BFGS-B (Limited-memory Broyden-Fletcher-

Goldfarb-Shanno Bounded Optimization) and gradient decent method over γ. After optimiza-
tion, we get solutions for γ and λ. γ serves as a useful feature selector, with γj > ǫ indicating
the j’s features should be selected and otherwise not. λ can be used to construct the hyper-
plane in the SVM and to predict new data points. Given a test data point (target) xc, we can
predict its label (binding to the drug or not) based on the sign of the classifier’s output:

yc =

n
∑

i=1

λiyi exp

(

−1

2σ2
(x̃c − x̃i)

T△(γ)(x̃c − x̃i)

)

− b. (10)

As a key step for solving (9), we need the partial derivative of the objective function in (9)



(denoted as L4) with respect to the k’s feature selector γk:

∂L4

∂γk
=

1

2β

∑

ij

λiλjyiyj
∂K ′

ij

∂γk
+

β

2
,

where
∂K ′

ij

∂γk
= K ′

ij

[ −1

2σ2
(x̃ik − x̃jk)

2
]

= exp

(

−1

2σ2
(x̃i − x̃j)

T△(γ)(x̃i − x̃j)
T

)

[ −1

2σ2
(x̃ik − x̃jk)

2
]

.

3. Experimental Results and Discussion

3.1. Methods under Comparison

We compared our method with the state-of-the-art method proposed by Bleakley et al.17 In
particular, we focused on target-side prediction of their method to make the two approaches
comparable. Bleakley et al.17 used the normalized Smith-Waterman score in (1) to evaluate
the similarity between two target sequences. In the context of SVM classification, they used
this target-target similarity matrix as the kernel matrix, i.e. the kernel matrix was fixed in
their method. Based on this similarity measure, nearest neighbor (NN) classifiers can also be
constructed as a baseline. We refer to Bleakley et al.’s approach as BLM SVM and BLM NN
respectively. On the other hand, our methods include:

• SS L1-SVM: L1-SVM with withSS feature (the main model of this paper),
• SS L1-SVM: the classic L2 norm SVM with withSS feature,
• SS NN FS: nearest neighbor classifier based on the features selected by SS L1-SVM,
• SS NN noFS: nearest neighbor classifier based on all withSS features.

3.2. Experiment Settings

The framework of our experiment is similar to Bleakley et al.17 Specifically, we enumerated
all pairs of drug di and protein t in the whole data set. For each (di, t) pair, we treated t as
the single test example while the remaining proteins were used as training examples. To learn
an L1 and L2 SVM, we chose the hyper-parameters (e.g. β and ǫ) by using three-fold cross
validation on the training set, making sure that all the three folders contain at least one target
that binds to the drug (i.e., at least one positive example). After the classification model was
learned, we applied it to protein t in a way like (10), and obtained a score yit that could be
subsequently used to compute useful performance measures (see Section 3.4). All yit calculated
by ranging over all drugs di and target t in the data set constituted a drug-by-target score
table.

We set the minimum length of a feature sub-sequence to 5 after trying all lengths from
4 to 12, noting that a too small cutoff generated excessively many features while a too big
cutoff generated an insufficient number of features.

3.3. Datasets

We used drug-target interaction information from Bleakley et al.,17 which was collected from
the KEGG BRITE,2 BRENDA,22 SuperTarget23 and DrugBank24 databases. In particular, we
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Fig. 1. The precision-recall curves of the four methods SS L1-SVM, SS SVM, BLM SVM, BLM NN,
SS NN FS, SS NN noFS on three data set. The results are based on training data with drug interacting
with at least 2 targets.

used three data sets—nuclear receptors, GPCRS, and ion channel—which have 54, 223, 210
drugs, 26, 95, 204 targets, and 90, 635, 1476 interactions, respectively. The three data sets
used in this article are identical to those used in the state-of-the-art study,17 which facilitates
a fair comparison between the two methods. Since we only focused on target-side prediction,
we did not require any drug structural or pharmacological information to obtain drug-drug
similarity information. The amino acid sequences of the target proteins were obtained from
the KEGG GENES database.2

3.4. Classification results

We used five measurements to evaluate the quality of drug-target prediction: Area under the
Precision-Recall Curve (AUPR), Area under the ROC Curve (AUC), F-Measure, Precision
(or Specification), and Recall (or Sensitivity). With the prediction score table yit available
from Section 3.2, these performance measures were all computed in a micro-average fashion.
That is, given a cutoff point, all yit could be converted into a binary label via thresholding
(i.e., binding or not). By comparing these labels with the ground truth over the whole drug-
by-target score table, we derived the number of false positive and false negative, which led to
Precision, Recall, and F-Measure. The AUPR and AUC were derived by increasing the cutoffs
with a fine step size, which led to thousands of points in the precision-recall curve. Of the five
measurements, AUPR, AUC, and F-Measure are more robust than the others.

We only demonstrate the results based on withSS feature because the withoutSS feature
set did not result in as good performance. Tables 1, 2, and 3 demonstrate the effectiveness
of the different drug-target prediction methods over the five evaluation quantities. The F-
Measure, Precision, and Recall scores reported in these tables were obtained at the cutoff point
where F-Measure was maximized for respective methods. Figure 1 demonstrates the precision-
recall curves of SS L1-SVM and SS SVM compared to BLM SVM, BLM NN, SS NN FS, and
SS NN noFS on three data sets, namely Nuclear, GPCR, and Ion Channel from left to right.

Based on these evaluation, the SVM approaches that use withSS feature set (i.e.,
SS L1-SVM and SS SVM) outperform the current state-of-the-art methods BLM SVM and
BLM NN. Moreover, the L1 norm feature selection method SS L1-SVM is more effective than
the traditional SVM method; it uses only 72.85%, 85.02%, and 62.86% of the original features



Table 1. Evaluations of classification quality on Nuclear data set. The F-Measure,
Precision, and Recall scores were obtained at the cutoff point where F-Measure was
maximized for respective prediction methods.

Performance comparison: AUPR AUC F-Measure Precision Recall

SS L1-SVM 0.8756 0.9512 0.8205 0.8205 0.8205
SS SVM 0.7635 0.9277 0.7111 0.8205 0.6275

BLM SVM 0.6163 0.8034 0.6353 0.7941 0.5294
BLM NN 0.7111 0.8347 0.6916 0.6607 0.7255
SS NN FS 0.6985 0.8680 0.6415 0.5075 0.8718

SS NN noFS 0.6743 0.8459 0.6308 0.5190 0.8039

Table 2. Evaluations of classification quality on GPCR data set. The F-Measure,
Precision, and Recall scores were obtained at the cutoff point where F-Measure was
maximized for respective prediction methods.

Performance comparison: AUPR AUC F-Measure Precision Recall

SS L1-SVM 0.8039 0.9603 0.7840 0.8360 0.7381
SS SVM 0.7720 0.9600 0.7607 0.8013 0.7240

BLM SVM 0.6800 0.9435 0.6812 0.7152 0.6503
BLM NN 0.7287 0.8721 0.7209 0.6842 0.7618
SS NN FS 0.7155 0.8878 0.6997 0.6219 0.7996

SS NN noFS 0.7219 0.8875 0.7081 0.6365 0.7977

Table 3. Evaluations of classification quality on Ion data set. The F-Measure, Preci-
sion, and Recall scores were obtained at the cutoff point where F-Measure was maxi-
mized for respective prediction methods.

Performance comparison: AUPR AUC F-Measure Precision Recall

SS L1-SVM 0.8632 0.9666 0.8205 0.8260 0.8151
SS SVM 0.8450 0.9690 0.8045 0.8173 0.7921

BLM SVM 0.8561 0.9568 0.8088 0.7785 0.8416
BLM NN 0.8226 0.9075 0.8179 0.8101 0.8258
SS NN FS 0.7041 0.8542 0.6954 0.6647 0.7290

SS NN noFS 0.6702 0.8640 0.6497 0.5671 0.7606

in the Nuclear, GPCR, and Ion Channels datasets, respectively. The significant reduction in
feature set size can not only make the classification more efficient and effective, it can also
help biological practitioners to identify important features more accurately.

We further investigated the prediction result generated by the SS L1-SVM method and
the BLM SVM method. At the prediction cutoff where both methods attained their own
maximum F-Measure score, there were 8, 127, and 78 true positive interactions that SS L1-
SVM managed to identify but were missed by BLM SVM. This was in comparison to 7, 16,



52 true positives that were identified by BLM SVM but not by SS L1-SVM. False positive is
another important measurement of a method. On the three datasets Nuclear, GPCR, and Ion
Channels, SS L1-SVM generated 0, 73, and 139 false positive interactions, compared to 2, 85,
117 false positive interactions generated by BLM SVM.

Some interesting case studies are in order. On the Nuclear dataset, the two nearest neigh-
bors of the target protein RORB (KEGG Homo sapiens protein ID “hsa6096”) under the nor-
malized Smith-Waterman score are RORA (“hsa6095”) and RORC (“hsa6097”), with scores
0.578 and 0.458 respectively. RORB and RORC share a common interacting drug Tretinoin

(KEGG drug ID “D00094”) while RORB and RORA do not. According to the BLM method,
RORB will be predicted to have no interaction with Tretinoin because its nearest neighbor
RORA does not interact with Tretinoin. On the contrary, our method can correctly identify
the interaction between RORB and Tretinoin because the withSS feature set based method
can discover two important substrings “EVVLVRMCRA-N” and “N-TV-FEGKYGGM” that
exist in both RORB and RORC. Therefore, although the overall match score between RORB
and RORC is not the highest, their feature vectors (with respect to the two feature substrings)
are the most similar.

On the GPCR dataset, the five nearest neighbors of the target protein CHRM1 (KEGG
Homo sapiens protein ID “hsa1128”) under the normalized Smith-Waterman scores are
CHRM5 (“hsa1133”), CHRM3 (“hsa1131”), CHRM4 (“hsa1132”), CHRM2 (“hsa1129”),
and HRH3 (“hsa11255”), with scores 0.4707, 0.4536, 0.4237, 0.4228, and 0.2446 respec-
tively. Although CHRM1 is supposed to bind to drug Metoclopramide (KEGG drug ID
“D00726”), none of its five nearest neighbors bind to this drug. In fact binding occurs
only with the 6-th nearest neighbor, HRH2 (“hsa3274”), whose SWnorm score with re-
spect to CHRM1 is 0.2137. Therefore, the BLM methods can hardly predict that CHRM1
binds to Metoclopramide. In contrast, our method can correctly predict this interac-
tion because the important substrings such as “KRTPRRAA”, “Y-AKRTP-RAA-MI-L-
W”, and “NYFL-SLA-AD” are present in both CHRM1 and several proteins that bind
to Metoclopramide, e.g., HTR1A (“hsa3350”), HTR1B (“hsa3351”), HTR1D (“hsa3352”),
HTR1E (“hsa3354”), HTR1F (“hsa3355”), HTR2A (“hsa3356”), HTR2B (“hsa3357”),
HTR2C(“hsa3358”), HTR4(“hsa3360”), HTR5A(“hsa3361”), and HTR6(“hsa3362”), which
are all considered as faraway neighbors according to the SWnorm scores.

The binding regions discovered by our computational model can also be found on the
Ion dataset. To provide potential drug-target binding regions for further investigation, we
produced all the important common substrings selected by the SS L1-SVM method, which
are made available online at “http://www.cs.ualberta.ca/~ys3/drug_target”.

4. Conclusions

In this article, we proposed a novel drug-target interaction prediction method based on poten-
tial drug-target binding regions. According to the evaluation metrics, the proposed method
significantly outperformed the current state-of-the-art methods. More importantly, it identi-
fied a number of drug-target interactions that were missed by previous methods. We believe
that the poor recall of previous methods is due to the use of a target kernel matrix based



on Smith-Waterman score: a low overall similarity between two protein sequences does not
mean they do not share common drug binding regions. This drawback was overcome in our
approach by collecting a large number of candidate binding regions (i.e., common substrings)
that subsequently played the primary role in interaction prediction. In addition, the use of an
explicit vector representation, as opposed to implicit similarity measure, enabled the easy use
of non-linear kernel expansions that were not possible for fixed kernel methods like BLM.

Besides the kernels based on substring feature vector, we believe the techniques of string
kernel proposed in25 could be useful in this problem. One straightforward benefit of using the
string kernel is that it will automatically consider all substrings of a given sequence pair. It can
also provide more intuitive understanding of substring-based sequence similarities than using
Gaussian kernel. However, to employ the string kernel, one needs to customize the feature
selection function into the model and to extend the non-gapped matching in string kernels.

We presented a feature selection method based on L1-norm SVM that could not only pre-
dict the binding relations more accurately, but also find important candidate binding regions
(features). It integrated feature selection directly into L1-norm SVM and kernelized the op-
timization model. A drawback was that the sparse regularization term tended to select only
a single feature from the candidate set. This is a well known problem with L1 based regu-
larization.26 To avoid this limitation, we will investigate a combination of L1 and L2 norm
regularizers, known as the elastic net,26 which is generally more effective at group feature
selection. Another possible extension is to adopt the OSCAR model,27 which appears even
more effective. We also discovered that the inference problem of drug-target interaction—in
some cases—can be considered as a multi-instance learning problem. So we proposed using
multiple feature selection vectors for each positive training example in theory and applied the
feature cost vector to address the multi-instance problem in practice. We hypothesize that
more advanced machine learning methods specifically tailored for multi-instance classification
can further improve the accuracy of drug-target interaction prediction. Moreover, considering
that protein 3D structures carry the essential binding information and an increasing amount of
protein 3D structure is being made available (e.g., PSI Nature Structural Biology Knowledge-
base28), incorporating protein 3D information in the prediction model in addition to sequence
information would lead to promising improvement.
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