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Abstract 

This paper presents a method for estimating the 
position of a mobile robot in an indoor environment. The 
proposed technique uses a model of the environment 
formed by two panoramic cylindrical images taken at 
different locations, and a planar image taken at the 
current position. The current position and orientation of 
the robot are then computed without any additional 
information. We assume that the robot is moving on a 
plane (floor plane), which is very common for indoor 
environments. Our method is attractive because it does 
not require an explicit 3D model of the environment, and 
the location of the camera is not restricted to positions 
very close to the cylindrical models. We will describe 
experimental results for both synthetic and real data to 
demonstrate the effectiveness of the proposed method. 

1 INTRODUCTION 
Position estimation (localization) is important 

especially in the context of robot navigation. For 
autonomous navigation, the robot should know how to 
locate itself with respect to its environment in order to 
reach a desired destination. The destination can be 
specified with respect to a world model in the Cartesian 
space, or in terms of an image taken from that position. 
There have been many solutions proposed for the 
problem of robot localization. Some use active sensors to 
form an abstract world model to help localization [9]. 
Others represent the robot environment in terms of a set 
of sampled images, organized in a meaningful way. The 
second approach is similar to what people do when they 
remember a certain place. It is referred to as "image-
based model" in compute vision and graphics research 
communities [5,11].  

An image-based model of a route has been used for 
localizing the robot along that route. In [10] the model 
contains a sequence of front views along the route. The 
robot memorizes, at each position, an image obtained 
from a camera facing forward, and the directional 
relation to the next view. The problem, however is that it 
requires a large amount of memory to store the images. 
The localization process matches stored images with the 
current one, and the current position is determined 
incrementally using information about the previous 
position. In [20] a panoramic representation of the route 
is obtained by scanning side views along the route. The 
robot uses the panoramic representation recorded in a 

trial move and the current one for locating itself along 
the trial route only. Dudek et al. [6,15] proposed a 
localization method that uses a multi-layer back-
propagation neural network trained over a dense set of 
images of the environment. The network can determine 
the position of the robot by interpolating between the 
stored images. The system described in [13] estimates 
the position of a mobile robot based on the comparison 
of the real images taken by the robot and images taken 
by a virtual camera in a virtual environment, which is 
built by texturing planar walls of a 3D model.  

Another related work can be found in [8], where 
spherical panoramic images are taken at target locations, 
and the robot is moved to the desired position by 
comparing the target image with images acquired by the 
robot. Their method does not compute the exact 
direction or distance to the target location, but a velocity 
vector that will guide the robot to the target location. 
Barsi et al. [1,2] present a method for guiding a robot to 
a desired position and orientation. The target position is 
specified by an image taken from that position. They do 
not use a 3D model of the environment, but their 
algorithm requires significant overlap between the scene 
in the current image and target images. Working with 
panoramic images, which sample a wide space, our 
algorithm does not have this limitation. 

In this paper, we propose a system that uses 
panoramic cylindrical models, constructed at known 
locations, to represent the robot environment. The 
localization algorithm uses two panoramic models and a 
planar image taken at the current location of the robot to 
determine the position and orientation of the robot, 
assuming that the robot is moving on a plane. 

One advantage of our proposed method is that we do 
not require an explicit 3D model of the environment. In 
addition, we need only two panoramic images for 
representing an environment with a minimum storage 
requirement, which will not grow rapidly even if we 
extend the algorithm to achieve a wider coverage of the 
environment and reduce the problem of occlusions. 
Finally, the localization algorithm does not require a 
known starting position and is not restricted to positions 
close to the cylindrical models. As will be shown later, 
we have excellent localization results for positions 
between the two cylinders.  

The rest of the paper will be organized as follows. 
Section 2 defines the problem to be solved, Section 3 
presents the formation of the cylindrical panoramic 



model, and Section 4 describes the localization 
algorithm. Experimental results for both synthetic and 
real data are shown in Section 5.  

2 PROBLEM FORMULATION 
The general problem of localization with two 

panoramic image-based models can be defined as 
follows. We assume two panoramic image-based models 
constructed at two known locations of a common 
environment, displayed in Figure 1 as the two cylinders 
with the texture map of the environment. When a robot 
with an on-board camera travels in the same 
environment in the proximity of the two image-based 
models, we would like to determine, from a single planar 
image captured by the robot, the position and orientation 
of the robot with respect to either one of the two 
panoramic models. 

In this paper we solve the planar case of the above 
general problem; i.e., motion of the robot is restricted to 
a plane, and the vertical axes of the two panoramic 
models are aligned and parallel to the image plane of the 
robot’s camera. Our localization algorithm uses a set of 
corresponding points for the two panoramic models and 
the planar image. We do not consider the 
correspondence problem in this paper, and assume they 
already exist. For the experiments, the process of 
detecting tie points is performed manually. 

 
Figure 1. Two panoramic models and the planar image to be 
localized each sampling 180° of the view. 

3 PANORAMIC MODEL 
In this section we will describe the method of 

building the panoramic image-based model by 
mosaicing. Image mosaicing means merging a collection 
of images into a larger image. In order to construct a 
mosaic from a set of images, they should be related by a 
2D transformation. There are two cases when the 
projective model correctly describes the relationship 
between frames in an image sequence: arbitrary scene 
with camera at a fixed location but free to rotate about 
its center of projection, and planar scene with camera 
freely moving in the environment. Having these 

relations, different kinds of image mosaics can be 
constructed: spheres, planes, and cylinders.  

There has been a lot of work done in mosaicing 
[3,4,11,14,16,17]. We choose the method in [11] which 
can be easily implemented, and whose results can be 
easily stored. The cylindrical panoramic image mosaic 
model is the most suitable for our application of 
navigation and localization in 2D, and it can be acquired 
by panning the camera around its optical center. 

3.1 Model construction 

We used a CCD video camera mounted on pan-tilt 
control unit on top of a tripod. The pan-tilt unit allows us 
to control the amount of rotation and also to keep the 
camera horizontal. For merging the planar images we 
used an algorithm similar to that of McMillan and 
Bishop [11]. For calibrating the camera we used the Tsai 
algorithm [18] with a 3D calibration pattern. Consider 
the camera model,  
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where αu and αv are the horizontal and vertical scale 
factors and uc and vc are the image coordinates of the 
intersection of the optical axis with the image plane [7]. 
Given each image pixel (u,v) taken by the camera, we 
first compute the direction of the ray of light (dx, dy, dz) 
for the image point (u,v) (see Figure 2) using  
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Figure 2. Image formation 

 
Then, we project the planar images on a cylinder of a 

radius equal to the focal length f, using the mapping 
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We use a correlation-based technique to determine the 
amount of rotation between two consecutive projected 
images. In the cylindrical space a translation becomes a 
rotation, so we can easily build the cylindrical image by 
translating each image with respect to the previous one. 
To reduce discontinuities in intensity between images we 
weight the pixels in each image proportionally to their 
distance to the edge [17]. The result of this mosaicing 
technique will be shown in Section 5. 

3.2 Calibrating two cylindrical images 

For the localization algorithm we need the exact 
position and orientation (starting angle) of the panoramic 
images with respect to the world coordinate system. For 
simplicity, and without loss of generality, we choose the 
center of the first panoramic image as the origin of world 
coordinate system. We used the algorithm described in 
[11] to compute the relative position and orientation of 
the two panoramic images.  �
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Figure 3. Two corresponding rays in the panoramic images 
 

Assume that a set of corresponding points in the two 
images is known. Each pair of corresponding points 
determines two rays in space (see Figure 3), d0, d1, given 
by, 
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where (θ0,v0), (θ1,v1) are the cylindrical coordinates for 
the corresponding points, f is the focal length of the 
camera (and also the radius of the cylindrical image), 
C1(x,0,z) is the unknown position of the second cylinder 
and α0 and α1 are the rotational offsets which align the 
angular orientation of the two cylinders to the world 

coordinate system, respectively. In total there are four 
unknown variables: α0, α1, x and z.  

The pair of rays intersect at the space point that 
generates the two corresponding points on the cylinders. 
Because of the errors in model construction and feature 
extraction these rays do not intersect exactly. The 
distance between the rays is given by [11] 8
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Having n pairs of corresponding points on the cylindrical 
models we can determine the unknown parameters by 
minimizing the following error function, using the 
Powell’s method [12], 
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where d is the given distance between the two cylinders. 
If the starting values for the unknowns are close to the 
real ones, the algorithm converges to the desired solution 
in a few iterations.  

4 LOCALIZATION  
As mentioned before, we assume that the motion of 

the camera takes place in a plane (the floor). For indoor 
environments this is normal because the floor is almost 
flat. The localization algorithm takes as input the 
position information of the panoramic images (described 
in Section 3), together with triplets of corresponding tie 
points between the two panoramic images and the planar 
image to be localized. For the moment we manually pick 
the corresponding points, although algorithms exist for 
automatically generating corresponding points [19]. 

The localization algorithm consists of two steps: in 
the first step we determine the space points P(x,y,z) 
corresponding to the pairs of cylindrical tie points (θ0,v0) 
and (θ1,v1); in the second step, from the space points and 
corresponding points in the planar image (u2,v2) we 
determine the position C2(x2,0,z2) and orientation α of the 
robot (see Figure 4). 
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Figure 4. Corresponding rays in panoramic images and planar 
image 

4.1 Finding the space points 

Having a pair of corresponding cylinder’s points 
(θ0,v0), (θ1,v1), we want to derive the space point that 
generated these tie points. We used the same algorithm 
described in 3.2 for calibrating the cylinders. 
Specifically, we compute the middle point between the 
light rays generated by the pair of cylindrical points 
using 

"
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where d0(θ0, v0) and d1(θ1, v1) are given by (4), and s and t 
are computed using (7). 

4.2 Robot localization  

Having the space points P(x
(i)

, y
(i)

, z
(i)

) and the 

corresponding points in the planar image (u
(i)

, v
(i)

), we 
next derive the robot position and orientation with 
respect to the world reference frame. Again we suppose 
that the camera model (1) is known. The relationship 
between the space points and the image points is given 
by, 
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where  

C2=(x2,0,z2)
T, 
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given by (2). By expanding equation (9) and reducing l 
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with the unknowns  x2, z2, cosα, sinα. With more than 
two pairs of corresponding points, we can then compute 
the unknown parameters using the least square approach. 
By considering sinα and cosα as separate unknowns, 
once (10) is solved, the orientation of the camera is 
determined by 
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In the next section we will describe the results of this 
algorithm using both synthetic and real data. 

5 EXPERIMENTAL RESULTS 

5.1 Synthetic data 

To evaluate the robustness of the algorithm, we test it 
in the presence of noise. The noise can be caused by 
errors in selecting corresponding points, by finite image 
resolution, and by errors in the model construction or 
calibration. We produce 100 space points, and project 
them on two cylinders. Both cylinders have a radius 
equal to the focal length. The first cylinder shares the 
origin with the world coordinate system. The second one 
is three meters away from the first. We also project the 
space points on a planar image, using the camera 
calibration data. To simulate erroneous point selection, 
we added uniform noise in the interval (-w, w) to the 
coordinates of the points in the cylindrical models and 
planar image. Then we apply the algorithm to recover 
the position and orientation of the third image captured 
by a robot between the two cylinders. For the noise level 
w=3, the error was about 2 cm for position estimation, 
and 0.5° for orientation. We repeat the experiment for 
different number of points, and the results show that the 
localization error decreases if the number of points 
increases, and it becomes almost stable for more then 15 
triplets of corresponding points. 

5.2 Real data 

To evaluate the algorithm with real data, we first 
built two panoramic cylindrical images. We used a 
tripod and a pan-tilt unit on top of the tripod. For 
simplicity, we sampled only half of the environment, or 
180° of each cylinder. The distance between the 
cylindrical models was about three meters. Then, we 
compute the exact location and starting angles for the 
cylindrical models using the method described in Section 
3.2. The results are shown in Figure 5, where the 
cylindrical images are unrolled.  



 
 

 
 
Figure 5. Two cylindrical panoramic images (each formed using 25 planar images sampling 180 degrees) 
 

Then, we took images at nine locations in between 
the two cylindrical models and apply our localization 
algorithm for recovering the camera position and 
orientation. Figure 6 shows one typical image. We chose 
the origin of the coordinate system at the center of the 
first model, and the X axis along the line that connects 
the centers of the cylinders. 

 

 
 

Figure 6. Planar image from in between the two panoramic 
images with the feature points superimposed 

 

Figure 7(a) shows the original and the estimated 
position, and Figure 7(b) shows the error in estimated 
angle for each position. The position error is measured in 
centimeters, and the rotation error in degrees. We 
measured the actual location of the robot using a meter 
stick. The average position error was around 4 cm in X 
and Z directions, and 3.5° for the rotation angle 

In addition to positions between the cylinders, we 
have also tested our algorithm with images taken from 
other positions. The accuracy of the proposed method 
depends mostly on the viewing direction, but not on the 
position of the robot. When the rays generated by the 
feature points from the current image and from one of 
the cylindrical models are very close to each other, the 
localization error increases. This happens, for example, 
when the robot is close to the location of one of the 
models and the actual space points that generated the 
feature points are far away from the camera. We 
obtained very good results when the depth of the feature 
points is comparable to the relative distance between the 
models and the robot. 

 

Figure 7. (a) Recovered positions from the 9 images. The first 
panoramic model is situated at (x, z)=(0, 0) and the second one 
at (x, z)=(300, 0);  (b) Error for the recovered orientation. The x 
coordinates show the position of the planar image regarding the 
first panoramic model. 

6 CONCLUSIONS AND FUTURE WORK 
We have presented a vision-based localization 

algorithm using a panoramic image-based representation 
of the environment. The image-based model consists of 
two panoramic cylindrical images taken at different 
known locations. The proposed algorithm estimates the 
position and orientation of the camera given a planar 
image taken at an arbitrary position in the same 
environment. 

As a future extension we want to automatically track 
corresponding feature points between frames, to use 
more than two panoramic images for improving the 
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localization accuracy, and to automatically update the 
model for changes in the scene. We are also developing 
an algorithm that uses line features instead of points. 

REFERENCES 

[1]  R. Barsi, E. Rivlin, and I. Shimshoni. Image-based robot 
navigation under the perspective model. In Proc. of the 
IEEE Int. Conf. on Robotics and Automation: 2578-2583, 
1999. 

[2]  R. Barsi, E. Rivlin, and I. Shimshoni. Visual-homing: 
surfing the epipoles. In Proc. of the 6th Int. Conf. on 
Computer Vision (ICCV-98): 863-869, 1998. 

[3]  S. Chen. QuickTime VR - an image-based approach to 
virtual environment navigation. In Computer Graphics 
(SIGGRAPH’95): 29-38, 1995. 

[4]  S. Chen and L. Williams. View interpolation for image 
synthesis. In Computer Graphics (SIGGRAPH’93): 279-
288, 1993. 

[5]  P. E. Debevec, C. J. Taylor and  J. Malik. Modeling and 
Rendering architecture from Photographs. In Computer 
Graphics (SIGGRAPH’96), 1996 

[6]  G. Dudek and C. Zhang. Vision-based robot localization 
without explicit object models. In Proc. of the IEEE Int. 
Conf. on Robotics and Automation: 76-82, 1996.  

[7]  O. D. Faugeras. Three Dimensional Computer Vision: A 
Geometric Viewpoint. MIT Press, Boston, 1993. 

[8]  J. Hong, X. Tan, B. Pinette, R. Weiss, and E. Rseman. 
Image-based homing. In IEEE Control Systems: 38-44, 
1992 

[9]  L. Mathies and A. Elfes. Integration of sensor and stereo 
range data using a grid based representation. In Proc of 
IEEE Int. Conf. on Robotics and Automation: 727-733, 
1988 

[10] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation 
using view-sequenced route representation. . In Proc. of 
the IEEE Int. Conf. on Robotics and Automation: 83-88, 
1996. 

[11] L. McMillan and G. Bishop. Plenoptic modeling: Am 
image-based rendering system. In Computer Graphics 
(SIGGRAPH’95): 39-46, 1995. 

[12] W. H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. 
Vetterling. Numerical Recipies in C: The Art of Scientific 
Computing. Cambridge University Press, Cambridge, 
England, second edition, 1992. 

[13] M. Schmitt, M. Rous, A.Matsikis, K.-F. Kraiss. Vision-
based self-localization of a mobile robot using a virtual 
enviroment. . In Proc. of the IEEE Int. Conf. on Robotics 
and Automation: 2911-2916, 1999. 

[14] H.-Y. Shum and R. Szeliski. Panoramic image mosaics. 
Technical Report MSR-TR-97-23, Microsoft Research, 
1997. 

[15] R. Sim and G. Dudek. Learning visual landmarks for pose 
estimation. In Proc. of the IEEE Int. Conf. on Robotics and 
Automation: 1972-1978, 1999. 

[16] R. Szeliski. Video mosaics for virtual environments. In 
IEEE Computer Graphics and Applications: 22-30, March 
1996. 

[17] R. Szeliski and H.-Y. Shum. Creating full view panoramic 
image mosaics and environmental maps. In Computer 
Graphics (SIGGRAPH’97): 251-258, 1997. 

[18] R. Tsai. A versatile camera calibration technique for high 
accuracy 3D machine vision metrology using off-the-self 
TV cameras and lenses. In IEEE Journal of Robotics and 
Automation, 3(4): 323-344, 1987.  

[19] Z. Zhang, R. Deriche, O. Faugeras and Q.-T. Luong. A 
robust technique for matching two uncalibrated images 
through the recovery of the unknown epipolar geometry. 
Rapport de Recherche 2273, INRIA Sophia-Antipolis, 
France, 1994 

[20] J. Y. Zheng and S. Tsuji. Panoramic representation for 
route recognition by a mobile robot. In International 
Journal of Computer Vision, 9(1): 55-76, 1992. 

 


