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Abstract. Estimating geometric structure from uncalibrated images accurately enough
for high quality rendering is difficult. We present a method where only coarse geomet-
ric structure is tracked and estimated from a moving camera. Instead a precise model of
the intensity image variation is obtained by overlaying a dynamic, time varying texture
on the structure. This captures small scale variations (e.g. non-planarity of the rendered
surfaces, small camera geometry distortions and tracking errors). The dynamic texture
is estimated and coded much like in movie compression, but parameterized in 6D pose
instead of time, hence allowing the interpolation and extrapolation of new poses in
the rendering and animation phase. We show experiments tracking and re-animating
natural scenes as well as evaluating the geometric and image intensity accuracy on
constructed special test scenes.

A problem of significant interest is how to capture and represent the image information
from several sample views of a scene for the purpose of generating views from novel
directions of that same scene. Such methods have applications in the confluence of vi-
sion and graphics where real scenes, too complex or tedious to model with conventional
techniques, can instead be captured from photos or video and included in graphics ren-
derings and animations.

Image-based rendering techniques focus on the ray set and generate images by map-
ping pixels from an original set of sample views without having a precise geometric
model of the scene. There are two main approaches to this problem. One is sampling
the plenoptic function under some viewing constraints - limited camera motion inside a
bounding box [6, 11] or to only rotations [12]. Another approach is presented in [10],
where a photoconsistent volumetric model is reconstructed from a set of input images
by organizing the rays. These methods will theoretically generate correct renderings but
are practically hard to apply for real scene and require calibrated cameras.

Another approach is to reconstruct a projective, affine or metric model from the input
views using traditional structure from motion techniques. New renderings are generated
by mapping the texture from the source images on the model. In most of the cases
the metric structure is reconstructed based on planar surfaces [18] or lines [4] and the
process is tedious and require a lot of human intervention. In order to have a valid texture
reprojection, the model has to be decomposed in small planar patches. An advantage of
metric reconstruction is that the model can be correctly reprojected under perspective
projection. Non-euclidean models are more easy to construct from a set of input images
[5, 21], but without additional metric information it is difficult to specify physically
correct novel views.

Two significant practical challenges are: (1) Corresponding points are needed when
acquiring models from images. In principle, accurate geometric structure can be ob-
tained if the correspondences of all points in a scene between successive images can
be determined. In practice, usually only a few points can be tracked reliably and accu-
rately and object structure estimated at best coarsely. (2) In conventional texture-based



rendering, the placement of triangles so that real edges on the object are aligned with
edges in the model is critical. However, with a sparse model obtained from images of an
otherwise unknown object this is difficult to ensure.

In this paper we present a two stage method which computes a coarse structure from
motion, and then compensates for inaccuracies in the structure by modeling residual
image variation as a dynamic, time varying texture on the coarse structure (see Figure 1).
Both the structure and dynamic texture variation is parameterized in terms of object-
camera pose, hence allowing reprojection and rendering in new positions.

In [1] a mixture model is introduced where intensity variation is modeled as a lin-
ear combination of iconic, form (motion), specular and illumination changes. We extend
this by considering variation not on the image plane but on an object surface approxi-
mation. We also derive a connection between geometric plane homography warps and
spatial image derivatives and show how image motion resulting from the warps can be
expressed in the same way as iconic variation [13], i.e. using a set of specially tuned
“eigen-filters” here optimized for capturing image motion instead of object appearance.
Note that, as we show in [9], these eigen-filters parameterize motion in directly in im-
age intensity space, unlike other approaches [2, 1], where the optic flow field has to be
computed.

We present experimental results that compare the dynamic texturing with a regular
static texture rendering and measuring errors in image intensities of the rendered images
and geometric pixel errors of corresponding points.

1 Theory

The presented method generates new views by warping a dynamic texture on the pro-
jection of an estimated structure of the scene (see Figure 1). The input to the algorithm
is a sequence of images I(t) and tracked fiducial points p(t) = (u(t),v(t)) grouped in
quadrilateral regions. More precisely, each image I is composed from Q quadrilaterals
Iq :

I =

Q
∑

q=1

Iq (1)

where each quadrilateral patch is obtained by warping its corresponding dynamic texture
Iwq (Equation 3) from a standard shape (rectangle) to the desired position specified
by the projection uq ,vq of its corresponding fiducial points P in the affine structure
(Equation 4) through a homography (Equation 2, Section 1.2).

Iq = Iwq(H(uq ,vq)) (2)

Iwq = Bqyq + Īq (3)
[

uq

vq

]

= RP +

[

a
b

]

(4)

Equation 3 represents the dynamic texture decomposition into its components on
an estimated basis that capture the image variability caused by nonplanarities and il-
lumination changes, algorithm described in Subsection 1.3. Equation 4 describes the
reprojection of the estimated affine structure P in the image position specified by a
scaled rotation R and the image components of the translation a, b. Subsection 1.1 de-
scribes the proposed factorization algorithm that is estimating the affine structure of the
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Fig. 1. A sequence of training images I(1) · · · I(t) is decomposed into geometric shape infor-
mation and dynamic texture for a set of quadrilateral patches. The scene structure P and motion
(r, s, a, b) is determined from the projection of the structure using a factorization algorithm. The
dynamic texture for each quadrilateral is decomposed into its projection y on an estimated basis
B. For a given desired position, a novel image is generated by warping new texture synthesized
from the basis B on the projected structure.



scene (fiducial points) and the motion parameters from the image sequence under weak
perspective assumption.

1.1 Acquiring geometric structure from motion

There are several techniques to build model structure from multiple uncalibrated im-
ages. In general they rely on obtaining corresponding points between images and solve
for structure and motion using viewing geometry constraints. For a few images, under
perspective projection assumption, this can be done using epipolar geometry (two im-
ages) or trilinear tensor (three images) [5, 14].

In the case of video, i.e. long motion sequences, methods which utilize all image
data in an uniform way are preferred. Such methods recover affine [21, 22] or projective
[19] structure using factorization approaches.

In our case of uncalibrated vision we have to pick a camera model and associated
geometric framework. The methods above are formulated in either projective or affine
geometry, corresponding to a perspective, weak perspective or orthographic camera as-
sumption. In [3] we compare image based rendering using projective or affine geometry.
Methods (e.g. [19, 16]) using projective camera depend on the fundamental matrix, F ,
between pairs of images. With only a few tracked points we found it difficult to accu-
rately estimate F .

On the other hand, a weak perspective model allow a direct linear formulation of
the viewing geometry constraints between multiple images, and using factorization, an
efficient method for decomposing the image data into object structure and pose. Us-
ing multiple images allow for stable solutions despite relatively few tracked points and
typical tracking errors.

Here we develop an extension of the Tomasi-Kanade factorization algorithm[21] for
weak perspective camera projection model inspired by [22]. First, the algorithm recovers
affine structure from a sequence of uncalibrated images. Then, a relation between the
affine structure and camera coordinates is established. This is used to transform the
estimated scene structure to an orthogonal coordinate frame. Finally, using similarity
transforms expressed in metric rotations and translations, the structure can be reprojected
into new, physically correct poses. Since we use only image information our metric unit
of measure is pixel coordinates.

Weak perspective projection - a factorization approach Under weak perspective
projection, a point Pi = (Xi,Yi,Zi)T is related to the corresponding point pti =
(uti, vti)T in image frame I(t) by the following affine transformation:

uti = sti
T
t Pi + at

vti = stj
T
t Pi + bt

(5)

where it and jt are the components along the camera rows and columns of the rotation
Rt , st is a scale factor and (at, bt) are the first components t1t of the translation tt (Rt

and tt aligns the camera coordinate system with the world reference system).



Having N points tracked in M frames we can write
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or
W = RP + t1 (6)

whereW contains image measurements,R represents both scaling and rotation, P is the
shape and t1 is the translation in the image plane [22].

If the image points are registered with respect to their centroid in the image plane
and the center of the world coordinate frame is the centroid of the shape points, the
projection equation becomes:

Ŵ = RP where Ŵ = W − t1 (7)

Rank theorem Following [21], in the absence of noise rank(Ŵ ) = 3. Under most
viewing conditions with a real camera the effective rank is 3. Assuming 2M > N , Ŵ
can be decomposed Ŵ = O1ΣO2, where O1 is an orthonormal 2M ×N matrix, Σ is
an N ×N diagonal matrix and O2 is an N ×N orthonormal matrix (SVD).

Defining
R̂ = O′

1

P̂ = Σ′O′

2

(8)

we can write
Ŵ = R̂P̂ (9)

O′

1 is formed from the first three columns of O1, Σ′ is the first 3 × 3 matrix of Σ
and O′

2
contains the first three rows of O2 (assuming the singular values are ordered in

decreasing order).

Metric constraints The matrices R̂ and P̂ are a linear transformation of the metric
scaled rotation matrix R and the metric shape matrix P . More specifically there exist a
3 × 3 matrix Q such that:

R = R̂Q

P = Q−1P̂
(10)

Normally, to align P̂ with an exocentric metric frame the world coordinates of at
least four scene points are needed. In our case we assume no scene information, and we
instead align P̂ with the pixel coordinate system of the camera row and column. This
relates Q to the the components of the scaled rotation R:

îTt QQ
T ît = ĵTt QQ

T ĵt ( = s2t )

îTt QQ
T ĵt = 0

(11)

where R̂ = [̂i1 · · · îM ĵ1 · · · ĵM ]T The first constraint assures that the corresponding rows
sti

T
t , stj

T
t of the scaled rotation R in Eq. 6 are unit vectors scaled by the factor st and



the second equation constrain them to orthogonal vectors. This generalizes [21] from an
orthographic to a weak perspective case. The resulting transformation is up to a scale and
a rotation of the world coordinate system. To eliminate the ambiguity we align the axis of
the reference coordinate system with the first frame and estimate only eight parameters
in Q (fixing a scale). We solve this data fitting problem using Levenberg-Marquardt
non-linear minimization algorithm [15].

To extract the motion parameters from each camera position, we first estimate the
scale factor st and rotation components it and jt by computing the norm of the rows in
R that will represent the scale factors and then normalizing them. Considering that it and
jt can be interpreted as the orientation of the vertical and horizontal camera image axes
in the object space, we compute the direction of the camera projection axis kt = it × jt.
We now have a complete representation for the metric rotation that we parametrize with
Euler angles rt = [ψt, θt, ϕt]

[it, jt,kt]
T = R(rt) =





cosψt cosϕt − cos θt sinψt sinϕt cosψt sinϕt + cos θt sinψt cosϕt sin θt sinψt

− sinψt cosϕt + cos θt cosψt cosϕt − sinψt sinϕt + cos θt cosψt cosϕt sin θt cosψt

sin θt sinϕt − sin θt cosϕt cos θt





We recover the complete pose information Xt = [rt, st, at, bt] for each image I(t)
in the initial sequence and the metric structure of the scene P (remember that the image
components of the translation can be represented by the coordinates of the centroid
at,bt).

Reprojection property Given a set of position parameters at time t,Xt = [rt, st, at, bt],
we can reproject the estimated object shape P using

pt =

[

ut1 · · · utN

vt1 · · · vtN

]

= stR(rt)P +

[

at

bt

]

(12)

1.2 Warping through a homography

To apply the dynamic texture techniques described in Subsection 1.3, patches in the
original images have to be warped to a standard shape. Considering that each patch is
determined by four tracked points and represents a rigid part an object, it can be approxi-
mated with a planar surface and mapped to a rectangular shape through a homography. It
is well known [5, 20] that, under perspective transformation, points in two planar scene
views I(t1) and I(t2) are related by a 2D projective transformation (homography).





u1t1 · · · uNt1

v1t1 · · · vNt1

ξ1t1 · · · ξNt1



 = H





u1t2 · · · uNt2

v1t2 · · · vNt2

1 · · · 1



 (13)

This transformation is up to a scale, so in general H has eight independent parameters
h1, h2, h3, h4, h5, h6, h7, h8 and it can be computed from four corresponding points in
the two views. In our case we map the quadrilateral patches to a standard rectangu-
lar shape by computing the homography defined by the four corners and mapping the
interior points through this homography.

1.3 Texture variability modeling

Let Iw(t) be a rectified texture patch extracted from the image stream and warped to
a standard rectangle as described in the previous section. Commonly, the texture Iw(t)



(a) (b)

Fig. 2. (a) Original patch (b) Warped patch

is assumed constant. This is motivated by the fact that planar patches are mapped in a
physically correct way to the camera plane. However, in a real case there will be errors
in the estimated plane parameters, and the real world surface that we model may not
be quite planar. In addition, we include illumination in our variability model. Hence,
here we purposefully focus on the intensity variation. In the following we first motivate
analytically that under small motions the image intensity variations in the texture can be
modeled as a set of spatial basis filters modulated by the motion, then we show how to
statistically estimate this basis.

Consider the distribution of texture differences Iz(t) = Iw(t) − Itref around a
texture image Itref . This distribution can be described in both statistical and struc-
tural terms. Assuming small image variation we apply an optic flow constraint, Iz =
∂Iw

∂u
∆u+ ∂Iw

∂v
∆v, where u and v are the camera coordinates.

Structural image variability The above motion equation relates image intensity vari-
ation to a motion field. Assuming the texture patch is sourced from a rigid surface, the
structure of the motion field is constrained to a low dimensional parameter space. Recall
that we obtained the texture patch from a homography based on tracked points. Varia-
tion in the warping homography parameters h1 . . . h8 introduces image variability of the
form:

∆Iw =

8
∑

i=1

∂I

∂hi

∆hi =

[

∂I

∂u
,
∂I

∂v

] [ ∂u
∂h1

· · ·
∂u
∂h8

∂v
∂h1

· · ·
∂v
∂h8

]

∆hi = [B1 . . .B8][y1, . . . , y8]
T ,

(14)
Where I is the image patch Iw flattened into a column vector. Note the form of the above
equation: A weighted linear combination of eight filters only dependent on the spatial
image derivatives times a constant matrix. This now reduces the space of possible image
flow fields to an 8-dimensional variation.

In the above we assumed a planar patch. Real world patches will often not be planar,
and this planarity will introduce a parallax error. The intensity variation due to the depth
parallax can be written as a linear basis:

∆Id = [Bd1,Bd2][yd1, yd2]
T (15)

Illumination variation It has been shown that for a convex Lambertian object, the im-
age variability due to different illumination can be expressed as a three dimensional lin-
ear basis[17, 7]. For a general object, the illumination component can be approximated



with a low dimensional basis. (In practice often three to five basis vectors suffice)

∆Ii = [Bi1 . . .Bi3 . . .][yi1 . . . yi3 . . .]
T , (16)

Composite variation model Adding up the above contributions we can differentially
model the composite image intensity variation as:

∆I = ∆Iw +∆Id +∆Ii +∆Ie = By +∆Ie, (17)

where∆Ie is a noise term. The structural model in particular is only valid for parameter
changes∆hi which are small with respect to the spatial image derivatives. By extending
the basis to a scale space hierarchy[8] (where the spatial derivatives are smoothed in the
coarser scales) the applicability can be widened by adding more elements to the basis
B = [B1 . . .Bk]. However, as a result, the basis grows large and indeed is likely to
represent more than the actually occurring texture variation.

Statistical variability modeling In principle a variability basis B could be computed if
very accurate a-priori models of the objects, lighting, cameras and their relative geom-
etry are available.1 In practice this is seldom the case. Instead we propose to estimate
a sufficient basis B̂. Consistent with the estimation of coarse geometry in the previous
section we do this from observing an image sequence in an uncalibrated camera, Îw(t),
and obtaining a sample for t = 1 . . .M . Note that:

1. The estimated basis only represents the intensity variability actually present in the
image sequence, which can be less than the possible variation as described above.

2. The estimated basis B̂ can be any linear transform of the analytically derived basis
B above. It can also contain basis vectors that in addition to what is captured in B
represents other types of variability.

A standard technique to estimate a linear basis B̂ which best captures (in a least squares
sense) the part of B actually present in our observed intensity sequence is principle
component analysis. The variation in texture is considered a stationary process with
temporal mean Ī =

∑M

t=0

1

M
Iw(t). Let the zero mean texture be Îz(t) = Iw(t)− Ī, and

a measurement matrixA = [Iz(1), . . . , Iz(M)]. The principle components are the eigen
vectors of the covariance matrix C = AAT . A dimensionality reduction is achieved by
keeping only the first k of the eigenvectors.

For practical reasons, usually k � M � l, where l is the number of pixels in
the texture patch, and the covariance matrix C will be rank deficient. We can then save
computational effort by instead computing L = ATA and eigen vector factorization
L = V DV T , where V is an ortho-normal and D a diagonal matrix. From the k first
eigenvectors V̂ = [v1 . . .vk] of L we form a k-dimensional eigenspace B̂ of C by
B̂ = AV̂ . Using the estimated B̂ we can now write a least squares optimal estimate of
any intensity variation in the patch as

∆I = B̂ŷ, (18)

1 One of the components, ∆Iw , can be computed only from spatial image derivatives. In tracking
this commonly used for a low dimensional (in practice 2-4) variability model of planar warps[7].
However, the 8 derivatives for the homography parameters are difficult to compute accurately
from only one image.



the same format as Eq. 17, but without using any a-priori information to modelB. While
ŷ captures the same variation as y, it is not parameterized in the same coordinates,
so in addition we estimate a second transform J between our pose description and ŷ.
In our application we represent one object using several texture patches, and estimate
J between texture mixing coefficients ŷ and tracked global camera-object pose x̂ (=
[r, s, a, b]T ).

For every training image It we have from the orthogonality of V̂ that the corre-
sponding texture mixing are the columns of [ŷ1, . . . , ŷM ] = V̂ T . From the factorization
of geometric structure we also have the corresponding x̂t. Estimating a linear model
∆ŷ = J∆x̂, where ∆ŷt = ŷt − ŷref we need 6 or more motions ∆ŷ, ∆x̂ (From one
center reference and 6 nearby training images) to solve for J in





∆ŷ1

...
∆ŷm



 =





∆x̂1

...
∆x̂m



 JT (19)

The linear model ŷ = ŷref +J∆x̂ is only locally valid and has to be recomputed around
each desired pose x̂ref . A globally valid spline approximation f̂ , s.t. ŷ = f̂(x̂) can be
computed instead if, in the training samples, x̂t is monotonic and plaid. For a linear
spline, this corresponds to organizing the computed matrices J into an indexable array.

1.4 Interpretation of the variability basis

In our application, the geometric model captures gross image variation caused by large
movements. The remaining variation in the rectified patches is mainly due to:

1. Tracking errors as well as errors due to the weak perspective approximation cause
the texture to be sourced from slightly inconsistent locations in the training images.
These errors can be modeled as a small deviation∆[h1, . . . , h8]

T in the homography
parameters from the true homography, and causes image differences according to
Eq. 14. The weak perspective approximations, as well as many tracking errors are
persistent, and a function of object pose. Hence they will be captured by B̂ and
indexed in pose x̂ by f .

2. Depth variation is captured by Eq. 15. Note thatZ and∆Z is depth along the camera
optic axis, and hence also varies as a function of object pose.

3. Assuming fixed light sources and a moving camera or object, the light variation is a
function of relative camera-object pose as well.

From the form of Equations 14 and 15 we expect that pose variations in the image
sequence will result in an texture variability described by combinations of spatial image
derivatives. In Fig.3 we compare numerically calculated spatial image derivatives to the
estimated variability basis B.

In synthesizing texture to render a sequence of novel images the function f modu-
lates the filter bankB so that the new texture dynamically changes with pose x̂ according
to Iw = Bf(x̂) + Ī.

2 Composition of geometric and image-based models

Based on the theory described in Section 1 we have developed an algorithm that gener-
ates new views using an estimated geometric model and a dynamic texture mapping.



Fig. 3. Comparison between spatial derivatives ∂Iw

∂x
and ∂Iw

∂y
(left two texture patches) and two

vectors of the estimated variability basis [B1,B2] (right) for the house in Fig. 1.

Training data We took sequences of M images I(t) and tracked N fiducial points
pt = [ut,vt]

T using SSD trackers from XVision system [7]. The tracked points are
grouped into disjunctive quadrilaterals that will cover the scene. For a simple squared
object, it is possible to find a decomposition into quadrilateral regions that correspond
to physical planes. In practice, considering also the limitation of the tracking algorithm,
we are decomposing the object into nonplanar regions. The dynamic texture algorithm
will correct the reprojection errors due to nonplanarities.

Structure from motion We use the factorization algorithm from Section 1.1 to acquire
the structure of the scene P and calculate the pose xt.

1. Form the normalized measurement matrix Ŵ by registering the image coordinates
with respect to their centroid.

2. Compute SVD of Ŵ and the approximate rotation R̂ and shape P̂ Equation 8.
3. Impose metric constraints from Equation 11 to calculate the true scaled rotations R

and shape P .
4. Estimate the camera pose [rt, st, at, bt] for each view. st is the norm of the rows

corresponding to it and jt in R. rt = [ψt, θt, ϕt] are the Euler angles corresponding
to the rotation matrix formed from it, jt and kt = it × jt.

Dynamic texture For each quadrilateral Iq we compute a texture basis Bq and a set of
texture coefficients yq :

1. Warp the patch Iqt to a standard shape Iwqt using the homography (see Section 1.2)
determined by the four corners. We choose the biggest rectangle that includes the
patch through the image sequence as the standard shape.

2. Form a zero mean sample and compute the PCA as described in Section 1.3. Keep
k, typically about a dozen basis vectors Bq and the corresponding coefficients in
each frame yqt.

New view rendering Given a new pose x = [r, s, a, b]T we render the dynamic texture
on the reprojected structure.

1. Compute reprojection p = [u,v]T of shape P in the desired pose using Equation
12.

2. For each quadrilateral q



(a) interpolate a texture coefficient yq corresponding to the new pose x using the
nearest neighbors in the training data,

(b) compute the texture in the standard shape using Equation 18,
(c) rewarp the texture in the desired image position determined by the reprojected

corners.

3 Experimental results

To test the proposed algorithm we recorded motions of three types of objects: a cali-
bration pattern (pattern), a toy house (house) and a flower (flower). We tested
each for several sequence lengths between 15 and 256 images. The first two objects can
be relatively accurately decomposed into a few planar patches. However, this is not the
case for the flower. The motion was mostly composed by rotations with some depth vari-
ation. We tracked between 8 and 15 points using XVision [7] and grouped them into 3
or 4 non-overlapping quadrilaterals.

We compute the metric structure and pose for the tracked points using the algorithm
from Section 1.1 and the texture basis and coefficients for each quadrilateral. As men-
tioned in Section 1.3, a minimum of 13 basis vectors will capture the errors caused by
depth and illumination changes under small motions. In a real case with significant mo-
tion variation, and other errors like inaccuracies in tracking, more vectors are required to
capture the image variability. In our case we kept about 25 texture basis vectors for the
long sequences. For the shorter sequences, where the actual variation in motion was lim-
ited, we found that 3 to 5 vectors were enough. From the estimated model, we generated
three types of new image sequences by:

1. Interpolating the original motion. New pose points were generated between the orig-
inal poses and a longer temporally up-sampled movie of both the original and new
poses was rendered from the model.

2. Smoothing the original motion. In this case we computed the original pose trajec-
tory, smoothed it by polynomial fitting, and rendered a new video sequence with
smooth motion.

3. Perturbing the original rotations by user supplied values (we used up to 5◦-15◦) and
rendering a motion edited animation.

Figure 4 shows some examples of rendered picture from the house sequence. The mo-
tion is limited by the fact that the factorization algorithm requires that the fiducial points
are visible in all the frames. To generate larger motions we composed renderings from
two sequences taken from different view angles. Another solution would be to incre-
mentally update the model when introducing a new view based on the common fiducial
points.

For testing the performance of our algorithm, we compared the dynamic texture al-
gorithm with a static texture algorithm. For generating the static texture sequences we
warped texture from original images onto the reprojected metric structure. Considering
that the dynamic texture algorithm requires a mean image and k basis texture images,
we source the static texture from k + 1 original images. The source images are equally
spaced through the sequence and the texture for the current generated image will be
textured from the closest source image. There are two types of errors that we are inves-
tigating for the generated image sequence - static errors in individual rendered image
frames and dynamic errors through the whole sequence.



Fig. 4. Generated pictures from house sequence

3.1 Static errors

Most of the static errors are caused by nonplanarities of the texture patches that will re-
sult in a misalignment in the generated images. Figure 5 shows a rendered picture from
the pattern sequence using static texture (left) and dynamic texture (right). Notice
the effect of bent horizontal line in the left image, that was corrected using the dynamic
texture in the right image. The scene was decomposed into three quadrilaterals two pla-
nar on the sides and one nonplanar in the middle, where the pattern has a corner. The
nonplanar region in the middle is causing this distortion. A similar effect can be seen in
Figure 6, which shows pictures generated from the house sequence. The small house
(middle of the zoomed picture) appear broken in the case when using static texture.

While in the case of the pattern or house it can be argued that these types of scenes
can be better decomposed into planar surfaces, this would not be possible for many
scenes with natural instead of man-made objects. As an example we show the flower
sequence. Figure 7 shows the quadrilateral decomposition (left), a rendered image using
static texture with visible geometric errors (middle) and a rendered image from the same
pose using dynamic texture (right) where the geometric errors are compensated.

Fig. 5. Geometric errors (Left) Static texture: broken line caused by nonplanar patch; (Right) Dy-
namic texture: error was compensated

To quantify the geometric errors we regenerate the original positions from the pat-
tern sequence and compare them with the original images by measuring the differences
in pixel intensities (Figure 8). Notice that the error was almost constant in the case of
dynamic texture and very uneven in the case of static texture. For the static texture case
we used frame 0,5,9,13 for sourcing the texture (consistent with using three texture basis
vectors in the dynamic case) so is expected that the error drops to zero when reproducing
these frames. The mean relative intensity error was 1.17% in the case of static texture
and 0.56% in the case of dynamic texture.



Fig. 6. Geometric errors in house sequence. (Left) Rendered images using static and dynamic
texture respectively; (Right) Detail showing the geometric error

Fig. 7. Geometric errors in flower sequence. (Left) One of the original images and the outline of
the quadrilateral patches. (Middle) Image generated using static texture. (Right) Image generated
in the same pose using dynamic texture.

3.2 Dynamic errors

For an animation there are global errors through the whole movie that are not visible in
one frame but in motion impression from the succession of the frames. We call these dy-
namic errors. We identified two types of dynamic errors connected to depth impression
and motion smoothness. We again compared the static and dynamic texturing.

If the surfaces that are rendered with static texture are not physical planes, it is very
hard to capture the depth impression when re-animating the object. Our dynamic texture
algorithm capture the depth variation and give an impression of a “real” 3D object. This
is only noticeable in a movie (refer to the attached movie flower animation.mpg).
Notice how the rendering with dynamic texture animates the flower to create a realistic
impression of the leaves being spaced in 3D, while in the static texture it looks like the
flower is a picture pasted on a few planes.

Another important quality is smoothness of motion. When using static texture we
source the texture from a subset of the original images (k + 1 if k is the number of tex-
ture basis) so there is significant jumping when changing the texture source image. We
tracked a point through a generated sequence from the pattern in the two cases and
measure the smoothness of motion. Table 1 shows the average pixel jitter. As an appli-

0 5 9 13 15
0

5

10

15

Time

M
ea

n 
er

r Static texture
Dynamic texture

Fig. 8. Intensity pixel error in the rendered images (compared to original image)



cation to motion smoothness, we used the proposed algorithm to correct the unevenness
in the original motion. The enclosed movie flower animation.mpg shows the re-
generated smooth motion of the original flower sequence.

Vertical pixel jitter Horizontal pixel jitter

Static texture 1.15 0.98
Dynamic texture 0.52 0.71

Table 1. Average pixel jitter

4 Discussion

The presented method allows acquisition of scene structure and appearance using video
from an uncalibrated camera. The scenes can then be rendered from novel poses. Our
main objectives were to balance requirements for calibration, user interaction, and com-
putation, while rendering realistic images and motion animations. By using only coarse
approximate geometric structure, this structure can be extracted from images in a com-
putationally efficient and reliable way. The structure corresponds to the major salient
object features. The user can tune the representation by focusing on the most salient
structure in the scene, yet the interaction is limited to pointing out only a few (about a
dozen) scene points in the first view of the scene to initialize the real-time visual track-
ing.

To be able to accurately capture the scene details we developed a two stage method.
First, the coarse geometry is used to warp scene patches into a canonical form. Then,
the residual intensity variation is captured using a locally valid linear model based on a
multidimensional optic flow-like constraints. The resulting representation is a dynamic
texture which, when modulated by overall object pose, can add fine scale variation rep-
resenting fine scale scene geometry.

To validate the model we recorded and re-animated various scenes and compared our
dynamic texture rendering to conventional model-based rendering using a static texture
image. We found that our method reduced both intensity error and motion jitter to about
half of those values obtained by conventional rendering.

Applications of our method include: (1) Animation editing, where a movie segment
of a scene with motion is recorded, but the motion trajectory needs to be somewhat ad-
justed afterwards. We tested this for adjustments up to 15 degrees of angle. (Translation
range is unlimited). (2) Motion smoothing. This can stabilize video where a scene has
been recorded, for instance, from a vehicle, and the original video has vibrations and
bumps. (3) Visual modeling in general when done for representing intensity variation
rather than obtaining detailed geometry.

Currently, in one model, we only represent the scene regions which are simultane-
ously visible in the whole video sequence. To achieve larger motions we have to piece
together several models. In future work we plan to extend our work to a panoramic cam-
era, using cylindrical texture images to capture interior of a whole indoor scene in one
model.
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