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Abstract: Robot tele-operation is significantly de-
graded by delays in the operator visual feedback. We
present a cylindrical image-depth model that can be
automatically acquired at the remote work site and
then used to support both robot localization and pre-
dictive display. We present an implementation for a
mobile robotics system where synthesized immedi-
ate visual feedback replaces the delayed real images.
Experimentally we found that a predicted view could
be rendered with an geometric viewpoint error of no
more than 2.4cm/1.2 degrees in a 100m? work scene.
Keywords: Image-based modeling, Robot naviga-
tion, Panoramic model, Predictive display.

1 Introduction

An important and challenging problem in tele-
robotics is how to convey the situation at a distant
robot site to a human operator. Efficient and accu-
rate tele-operation makes use of two types of feed-
back. Real-time high-fidelity visual feedback quali-
tatively conveys the remote situation in an intuitive
way. A metric model of the remote scene combined
with a real-time localization method allows the op-
erator to make decisions and base motions on quan-
titative measurements.

In real-world applications such as emergency re-
sponse, unmanned exploration, and contamination
cleanup, typically the remote scene geometry is un-
known, and the data link between the robot and op-
erator can have both delays and limitations in ca-
pacity. Hence, at the outset, the operator has not
only little information about the remote scene, but
also limited means of transmitting timely high fi-
delity video and other data. Yet, research has shown
that tele-operation performance is significantly de-
graded with delays of as small as 0.4 seconds [10].
This causes operators to lose direct intuitive connec-
tion between their control actions and effects at the
remote site displayed in the video feedback.

Both quantitative and qualitative information
from a remote tele-robotics scene can be improved
through the use of geometric modeling. For quanti-
tative robot localization, typically a 2 or 3D Carte-
sian world model is used. Unfortunately, without

a-priori knowledge about the environment, it is in
general difficult to create a precise metric map at a
level of detail sufficient for robot localization [16, 1].
More recent vision-based localization systems use ge-
ometric features, obtained from a variety of sensors
(ultrasound, laser, vision) and integrated into a prob-
abilistic map [23, 7]. Image patches that have a dis-
tinct signature can be matched from one frame to the
next using either PCA encoded [19] or SIFT land-
marks [17].

A different approach to geometric feature-based
maps are the appearance maps that are created by
“memorizing” the navigation environment using im-
ages or templates. By comparing the templates in
the model with its current view, a robot can derive
control commands to steer itself along a memorized
route [13] or to a goal position [11, 14, 24]. One of the
major drawbacks of these appearance-based maps is
that robot motion is restricted to either a predefined
route or positions close to the locations where the
images were originally acquired.

By contrast, in image-based computer graphics
the objective is to generate models which repre-
sent the visual appearance of a scene from all view
points. In model-based approaches a detailed ge-
ometric scene model, and several photos registered
with the scene are used to render new views[20].
Rendering based on a lumigraph on the other hand
represents the ray set (plenoptic function) on some
surface, and hence does not need exact knowledge of
the scene geometry[9, 12], but instead uses exactly
knowledge of the camera position to determine the
ray set. By representing the plenoptic function on
a cylinder (panoramic image) views can be synthe-
sized for different directions, but only from the same
viewpoint[21].

In mobile robotics obviously different viewpoints
need to be represented. However, current localiza-
tion algorithms do not give precise enough pose to
integrate the views from several positions into one
lumigraph. We present an approach in-between im-
age and geometry based modeling. A cylindrical
panoramic image is accurately captured by rotating
a camera about its optical center. The image infor-
mation is augmented by depth values obtained from



data registratio
plane fitting
line detection

Localization on—line Currentview

feature matching

[

|

|

|

: feature detection
! - -

1| localization

|

|

|

Figure 1: Overview of the navigation system with predictive display. The image-based panoramic model is
acquired and processed off-line using a camera and a laser range finder (a). The on-line localization system
matches lines features in the model with the ones extracted from the current view (b). The robot location
is send to the remote site where a predictive view is immediately rendered (c). The remote user can control

the robot using the image-based interface.

a laser range finder attached to the rotating camera.
As we have shown in [6], this model supports robot
localization. In this paper we present a method to
refine the cylindrical model into a piece-wise planar
format suitable for rendering, and then implement a
predictive display system for tele-robotics.

In predictive display two qualities of the model
are essential: The ability to determine the correct
view point (location) to render, and the support
of high fidelity image rendering of that view point.
Most current systems use geometric CAD models to
support rendering and calibrated additional sensors
(e.g magnetic or joint angle) to determine pose [18].
However, this is impractical in unstructured envi-
ronments often encountered in mobile robotics. A
better method to align the predicted display is to
register the remote camera image with the model [2].
In our approach the model is obtained once through
automatic sensing as described above, then a sin-

gle camera image is used to align the current view
location with the model to support both localiza-
tion and predictive display. An overview of our sys-
tem is presented in Figure 1. Specifically, the model
is formed by a panoramic image-based model aug-
mented with a sparse set of 3D vertical line features
(a) as described in Section 2. This model contains
sufficient information about the navigation environ-
ment without explicit full 3D reconstruction. The
model acquisition and processing is performed off-
line once. When the room map has been obtained,
we use an incremental on-line localization algorithm
that matches the line features in the robot’s current
camera view, with the line features in the naviga-
tion map to estimate the robot’s position (b) (this is
described in [6]). After robot position has been ob-
tained, it is sent to the remote location to generate
a synthesized view using the same model (c) as de-
scribed in Section 3. In this way, the operator that



is controlling the robot has a user friendly interface
as shown in the experiments, Section 4.

2 Image and Depth Model

Our image-based model consists of a panoramic im-
age mosaic that is registered with range data ac-
quired by a laser range finder (see Figure 2). The
main steps in building the model are:

(1) Data acquisition
panoramic mosaic acquisition
(rotating camera)
range data acquisition
(rotating laser rangefinder)
(2) Data registration
range data filtering
range data cylindrical representation
global registration (image to image warp)
(3) Robust plane fitting
edge detection and linking
constraint Delaunay triangulation
region growing based on fitted plane
data projection on fitted planes
(4) Vertical line detection
vertical segments in panoramic mosaic
3D line parameters
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Figure 2:  System configuration: the laser-
rangefinder with the camera attached on top of it
is mounted on a pan-tilt unit

Step 1: Data acquisition

The model is acquired using a laser rangefinder (Acu-
ity Research, Inc.) and a CCD camera, mounted on
a pan-tilt unit (PTU) (see Figure 2). We use the
pan axis of the PTU to rotate the camera in order
to build a cylindrical or panoramic image model. A
180° panoramic mosaic is shown in Figure 3. The
pan axis of the PTU and a rotating mirror attached
to the laser range finder produce two degrees of free-
dom, spanning a unit sphere. The range data is reg-
istered with respect to the center of rotation and
represented as a spherical image.

Step 2: Data registration

After acquiring the panoramic image mosaic and the

spherical range data set, they need to be registered
with respect to a common reference frame. The regis-
tration of volumetric and intensity data is an impor-
tant problem especially in the fields of model build-
ing and realistic rendering. Most of the proposed
solutions recover the rigid transformation between
the sensors using point or line features (e.g. [20]).
This is in general a non-linear problem and requires a
good initial estimate to converge. In contrast, image-
based techniques compute a direct mapping between
the points in the data sets to recover the transfor-
mation. In a recent paper [5] we compared the two
approaches and found that image-based methods are
fast and adequate for application that does not re-
quire a high precision alignment. In the setup pre-
sented here, the two sensors are very close to each
other, and an image to image warp is suitable for
aligning the two data sets. The spherical range im-
age is converted to a cylindrical representation with
the radius equal with the focal length of the camera.
Then a image mapping is established between the
intensity and range data in similar cylindrical image
representations. The detailed registration algorithm
is described in [6].

Step 3: Robust plane fitting

Man-made environments are mostly composed from
planar regions. A common technique in data mod-
eling [20, 22] is to segment the range (3D data) into
planar regions. In most of the cases, the goal is to
create a 3D CAD-like model of the scene, composed
of planar regions that are suitable for rendering. In
our case, we do not reconstruct a full 3D model of
the scene, but extract a sparse set of robust 3D fea-
tures (e.g. lines) that are required by the localization
algorithm. So we use the plane fitting algorithm to
eliminate bad data and create a cleaner model.

For planar region detection, we used an algorithm
inspired by [8, 4]. It starts with a set of triangles
in image space and merges these into larger regions
based on residual error from a best fitted plane to
the corresponding 3D data points.

In a typical indoor environment, planar regions
are often bordered by intensity discontinuities (edges
in the image). Based on this observation, our algo-
rithm starts with a 2D mesh of triangles generated
in the panoramic mosaic by a constrained Delaunay
triangulation with edge segments. From the initial
triangular regions, a region adjacency graph is cre-
ated, where the vertices represent the regions and the
edges indicate that two regions are adjacent. Each
edge is weighted by the residual error of a plane ro-
bustly fitted to the union of the 3D points corre-
sponding to the adjacent regions R;,IR; that share
that edge.

Ei,j = Z ak(nTPk + d)2 (1)

PLER;,R;

where Py, are corresponding 3D laser points for the



Figure 3: Spherical representation of the range data from an 180° scan after filtering (top). Corresponding
180° panoramic image mosaic (bottom).

regions and «ay, is a weight factor (see the paragraph
about plane fitting). Larger regions are grown from
the initial mesh by merging, at every step, adjacent
regions that produce the smallest error. This guaran-
tees that the total error grows as slowly as possible.
We use a threshold on the total number of regions
as the stopping criterion. At the end we project the
3D points in each region to the corresponding fitted
plane. Figure 4 illustrates the plane detection algo-
rithm on a segment of the panoramic image: original
image (a), detected edge segments (b), mesh trian-
gles (c), and final planar regions (d).

The plane equation is n”’P + d = 0, where n
is the plane normal, and d represents the distance
from the origin to the plane. With N points, a least
square plane fitted to the points can be estimated by
minimizing the error

N
min » " (n"Pj + d)’ (2)

k=1
By normalizing the points with respect to their cen-

troid P = & "% | Py, we obtain the zero mean
points Ay = Py — P, and the problem can be rewrit-

ten as
N

min Z n” Ay, (3)
k=1
The solution to this problem n,,;, is an eigenvector
of length one of the covariance matrix A associated
with the smallest eigenvalue. The covariance matrix
has the form

1 N
A=) AAT
N; R

The distance to the best fitted plane is given by

1 N
_ T
dmin = _N kE_l nminPk (4>

It is well known that even a few outliers present in
the data set can cause an erroneous estimation of the
fitted plane. We adopted a robust fitting algorithm
that first estimates a plane as described before and
then assigns weights to the points depending on their
residual:

ap =1/(n"Py, + d)?

The plane is re-estimated by solving the weighted
least square problem

N
minZak(nTPk + d)? (5)
k=1

In practice we eliminate points that have residuals
above some threshold (¢ = 0) and re-estimate the
plane with the remaining ones (a = 1).

Step 4: Vertical line detection

The robot localization algorithm matches 3D vertical
line features from the model with detected vertical
edges in the current image. To calculate the model
lines’ parameters, we first detect vertical edges in
the panoramic model and then the corresponding
3D points from the registered range data. There
are three major categories of discontinuities in 3D
that can generate an edge in the image: (a) lines on
the same surface that are discontinuities in intensity
(color), (b) surface discontinuities, and (¢) occlud-
ing contours on a smooth surface. In our algorithm
we used only the first case where the line points be-
long to the same planar region, and a unique line can
be calculated by fitting the line equation to the 3D
points.

Finally, to produce the composite model, the
image-based navigation map that is used for robot
navigation and predictive display consists of the
panoramic image mosaic registered with a sparse,
piece-wise planar 3D model, and a set of vertical line
segments with corresponding 3D coordinates.
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Figure 4: Planar region segmentation: (a) Original image; (b) Edge detection and linking; (c¢) Constraint

Delaunay triangulation; (d) Merged planar regions

3 Predicted Scene Rendering
In tele-robotics a robot at a remote site is controlled
by a human operator. Good operator and system
performance depends on the tele-robotics system’s
ability to visually immerse the operator in the re-
mote scene. In particular, it is necessary to ensure
that round trip delay between an operator motion
command and the visual feedback received by the
operator from the remote site must be minimized. It
has been shown that longer delays prevent complex
motion tasks, and operators adopt inefficient “move
and wait” strategies to motion control [3]. While
time delays are inherent in information transmission
over a distance, the effect of the delays can be re-
duced by synthesizing estimated images based on our
model, and showing this video for operator visual
feedback. In the current implementation, we used
the model to synthesize the current robot view from
the acquired model ahead of the arrival of actual (de-
layed) scene video. Three components are needed to
render a predicted view:

1. A geometric model of the scene segment to be
rendered. We use the piece-wise planar model
derived in Section 2.

2. A viewpoint for the predicted image. From our
model we can derive the robot location as shown

in [6], (showing current motion) and to it add
the operator motion command (predicting the
outcome of the next action ahead of its comple-
tion).

3. A texture image to warp onto the geometric
model. The predicted view can be textured ei-
ther from the panorama or a previous camera
image.

The image-based panoramic model with regis-
tered sparse range values are stored at both robot
and tele-operator locations. We used as a geometric
model of the scene the triangulation mesh formed
by a constrained Delaunay triangulation with edge
segments in the panoramic mosaic. This triangular
mesh was the starting point of the region growing
algorithm in Section 2 (see Figure 4 (c)). For each
vertex in the panoramic image p., we compute its
corresponding 3D coordinate P (in model coordinate
system) by interpolating the existing 3D laser points
in its vicinity.

We developed an OpenGL hardware accelerated
implementation that allows rendering in real-time.
Given a viewpoint, the geometric model is projected
in the virtual camera and textured with an image
from the remote scene. The panoramic image con-
tains the textures for all viewing directions, but from
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Figure 5: Tele-operator interface where the user can view a 2D floor map with robot position and the
predictive robot view. The vector in the small left window shows robot orientation.

a single viewpoint. This provides a good approxima-
tion to textures also in nearby viewpoints. For ren-
dering viewpoints far away from the model center the
panoramic texture has several drawbacks (e.g. signif-
icant quantization effects due to aliasing, occlusions,
amplification of errors in the geometric model). A
better alternative is to instead use the last received
image from the robot site. Through the localization
procedure it is registered with the model and then
re-warped into a new view. Since the motion of the
real robot is continuous and smooth most of the new
view can usually be textured from a previous delayed
image. Only during large rotational motions where
the robot rotates with an angular speed approach-
ing the transmission delay does the limited viewing
angle of the real camera cause significant portions of
the predicted view to not be textured. The process
of generating the predictive view can be summarized
as follows.

for each time step ¢
robot site:
(1) calculate robot location (Ry(t),t(t))
(2) send position to operator site
(3) add current operator motion command
(Asynchronously) Send robot camera image
user remote site:
(4) project scene model points P
p(t) = C(R, ()P + (1))
(5) generate synthesized robot view with
(a) texture from panoramic model image
(b) or texture using delayed
image from t—1
end for

In Step 1, the robot location (position and ori-
entation) is calculated from the robot view in terms
of a 2D image. We assume planar motion, which

is reasonable for indoor environments where motion
takes place on the floor. We developed an on-line
incremental localization algorithm [6] that is match-
ing the model lines with detected vertical edge seg-
ments in the current robot view. From corresponding
pairs of line segments we compute robot orientation
(pan angle) R, (t) and position on the floor plane (2D
translation) t(¢).

After the robot position has been calculated, it
is sent to the remote site in Step 2, the current
incremental operator motion comand between ¢ — 1
and t is added in Step 3, and a predictive view can
be generated by projecting the geometric model in
the new location in Step 4.

In Step 5, texture mapping a geometric model
assumes that it is decomposed in triangular planar
surfaces. In a complete mesh, some of the triangles
might not represent physical planes but are artifacts
of occluding contours. In most cases, these appear
as silhouette edges [15] where points from the ob-
ject are connected with background points. To avoid
this phenomenon, we eliminate all the triangles that
(within a threshold) are parallel to the viewing di-
rection.

Texturing the predicted view from the cylindrical
panorama can be done directly, since the registra-
tion provides the texture coordinates for each model
vertex. In the cases where a previous camera image
I(t — 1) from a different view point is used the cor-
rect texture coordinates are obtained by projecting
the geometric model using the robot location at time
t—1, (Ry(t —1),t(t — 1)). In this way the delayed
image I(t — 1) is warped into the new view location
to generate a predictive view at time t. Assuming
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Figure 6: Examples of predictive views using different texturing

a continuous and smooth motion, we can generate
real-time realistic views along the entire robot tra-
jectory.

4 Experimental Results

We integrated the localization algorithm and the pre-
dicted display into a common interface where the re-
mote user can visualize both robot position on a 2D
floor map and a see a predictive synthesized robot
view (see Figure 5). In addition to forward predict-
ing and rendering views one or a few time steps ahead
of the robot, using the model and panoramic im-
age, the operator can also visualize entire simulated
robot motion trajectories in the remote scene before
executing the actual robot motion. The navigation
system can be extended by offering the user the pos-
sibility to control the robot by dragging and clicking
on desired locations in the rendered view. This will
offer a natural and intuitive way to control the robot
without having to interpret the geometric map.

To evaluate the model accuracy and performance
of the localization algorithm with predictive display,
we acquired a panoramic image and range model
from the Center for Intelligent Mining (CIMS) lab
(see Figures 3 and 4). Comparing to ground truth
(obtained by measuring and marking locations on
a floor grid in the 100m? lab) we found that local-
ization and predictive view rendering could be per-
formed with an average 2.2 cm translational and 1.2
degrees rotational accuracy of the view points. In
evaluating the on-line forward prediction from de-

layed images, 26 robot camera images along a trajec-
tory were forward warped to viewpoint about 10cm
ahead on the trajectory and compared to a real image
obtained at that same viewpoint. Figure 6 shows ex-
amples of rendered views along robot trajectory us-
ing texture from panoramic model (middle column)
and previous (delayed) real image (left column). No-
tice that as mentioned in Section 3, in texturing from
the cylindrical panoramic image, any pan angle can
be rendered, while when texturing from a delayed im-
age, only the overlap in pan angle between the two
views can be rendered. This accounts for the black
stripe to the left or right of the predicted views in
the middle column. The black stripe in the bottom
is due to the cylindrical model being cut off at that
level. Comparing the predicted with real views (in
the right column), we notice that the rendering from
delayed images produces better quality visual feed-
back than rendering from the panorama. This is to
be expected because between two successive robot
views there is only a small displacement, so distor-
tions caused by texture or geometry errors are minor.

5 Conclusions

A main consideration in designing robotic tele-
operation systems is the quality of sensory feedback
provided to the human operator. For effective tele-
operation the operator must get the feeling of being
present in the remote site and get immediate visual
feedback from his or her motion commands. While in
consumer applications of image rendering, the most



important criterion may be the subjective pleasant-
ness of the view, for accurate robot control the ge-
ometric precision of the rendered viewpoint is more
important than minor errors in scene surfaces or tex-
tures. Our system synthesizes the current view of the
robot using only position information, which is calcu-
lated with a centimeter accuracy. In a low bandwidth
system, this avoids the delay introduced by sending
the full robot image. By also adding the current op-
erator motion command to the pose estimate, local
predictive display is synthesized immediately in re-
sponse to operator command. This provides direct
visual feedback to the operator movement, avoiding
both the latency and bandwidth introduced delays
in remote scene communication.

Our model directly relates geometric robot pose
and image views, and this also can support control
interfaces where the motion goal is specified in image
space instead of robot motor space. One such pos-
sible intuitive interaction paradigm is tele-operating
the robot by “pointing” in the image space or by
dragging the model viewpoint to obtain the desired
next view, and then have the robot move to this lo-
cation using visual servo control.
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