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Abstract

While the geometric aspects of structure and motion
estimation from uncalibrated images are well under-
stood, and it has great promise in applications, it has
not seen widespread use. In this paper we combine SSD
tracking with incremental structure computation into
a system computing both motion and structure on-line
from video. We show how in combination the struc-
ture estimation and tracking benefit each other, result-
ing in both better structure and more robust tracking.
Particularly, through the 3D structure, our method can
manage visibility constraints, add new image patches to
track as they come into view and remove ones that are
occluded or fail. This allows tracking over larger pose
variations than possible with conventional SSD track-
ing (e.g. going around an object or scene where new
parts come into view.) Experiments demonstrate track-
ing and capture of a scene from a camera trajectory
covering different sides without mutual visibility.

Keywords: SSD tracking, structure-from-motion
(SFM), incremental estimation.

1 Introduction

Tracking and structure-from-motion (SFM) can re-
ciprocally benefit from integration. First, tracking pro-
vides good corresponding points for SFM thus enabling
autonomous real-time capturing of 3D. Second, the
computed 3D structure can improve tracking stability
and robustness. In this work we focus on integrating
tracking with an incremental structure computation
and we study how tracking stability can be improved
in order to provide reliable feature correspondences in
SFM. A third benefit is that the incrementally acquired
structure allows the tracking of motions larger than the
visible field of the camera at any one time. Our system
works with uncalibrated monocular video that is known
to have several advantages over the classical calibrated
approach (e.g. no need to calibrate camera, robustness
to variation in internal parameters during sequence).

In the past two decades the fundamental study of
camera imaging in a framework of projective geom-
etry has produced new methods and algorithms for
extracting geometric structure from uncalibrated im-
ages, the well known problem of structure-from-motion
(SFM) [14]. Despite the theoretical progress, there are
yet few practically useful systems and hence most of
the real users of 3D models such as designers and ar-
chitects are still using traditional technologies (manual
3D modeling, laser scanning). This is mainly due to
the difficulty of getting good automatic image corre-
spondences, required by the SFM methods, and thus
demanding significant manual intervention to add and
adjust correspondences.

Traditionally feature correspondences are obtained
in a two step process: feature detection followed by
a robust correlation-based matching [20, 5]. When
working with video the correspondence problem turns
into visual tracking. Existing tracking methods take
advantage of the temporal smoothness of the images
and compute image points or 3D camera pose as an
incremental state update. While traditional feature-
based tracking requires a-priori 3D and feature models
that are registered with the current image measure-
ments (e.g. [17]), in registration-based (SSD) tracking
the pose computation is based on directly aligning a
(time t = 0) reference intensity patch with the current
image [18, 11, 3, 7], thus not relying on any predefined
features or special markers.

In this paper, we propose a method that aims toward
automating the 3D structure and motion recovery in
video-based capture systems by integrating SSD track-
ing and structure computation. The system tracks fea-
tures and computes the structure in an incremental
fashion. We take a different approach than previous
systems that attempt to automate the feature detec-
tion and correspondence [5, 20] and use tracking as a
way of obtaining correspondences. We concentrate on
developing methods to stabilize the tracking and make
use of the structure that is incrementally computed
along with the tracking. Thus our method is differ-
ent than Cornelis et al.’s system [8] which also uses
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Table 1. A comparision of on-line and off-line sequential SFM approaches

tracking to get initial correspondences, but still uses
traditional SFM methods (ransac) to eliminate bad
correspondences. Instead we stabilize the tracking by
re-acquiring the SSD template when needed and elim-
inate mistracked points based on monitoring slight in-
creases in the re-projection error. As a consequence our
system is designed for on-line use and is capable of cov-
ering a larger motion than what is visible in any one
view. It is therefore similar in flavor to model-based
mobile robotics systems [2] but without requiring an
a-priori model, as the model is also acquired along with
the tracking.

In summary the contributions of our paper are:

• We designed an on-line visual tracking and 3D
structure estimation system,

• We developed on-line ways of incrementally up-
dating and optimizing the 3D structure,

• We propose two ways of stabilizing the SSD track-
ing using knowledge of the computed structure and
motion (by re-acquiring the template after a signif-
icant motion and by eliminating mistracked points
that do not agree with the reconstructed struc-
ture),

• Experimentally we verify the validity of the pro-
posed method by successfully tracking a large mo-
tion while incrementally extending the 3D struc-
ture.

2 Related work

Structure-from-motion techniques recover the 3D
features and camera positions from corresponding 2D
image features in uncalibrated images [14]. It is now
well known that even if the cameras are not calibrated
it is possible to reconstruct a projective structure of the
scene. The structure can be updated to metric (Eu-
clidean + scale) by making some assumptions about
the camera internal parameters (e.g. zero skew, known
principal point), by a process known as autocalibra-
tion (e.g. [9]). To minimize errors, the structure and
cameras are optimized, using bundle adjustment, a step

borrowed by the computer vision community from pho-
togrammetry [23].

The complete SFM process results in quite accu-
rate reconstructions recovered for a set of correspond-
ing points. One of the main drawbacks of these meth-
ods is the difficulty of getting corresponding features.
Most of the initial work was done with a limited set
of images and manual correspondences. Some systems
like Photomodeler [19] have been designed to provide
user interfaces in assisting selecting the corresponding
points. But the automation of this process is never-
theless required when working with large image se-
quences or video. One approach is to automatically
select image features (e.g. [25]) and then match them
across two, three pairs of images using robust scores
(cross-correlation). Once a set of corresponding fea-
tures in two or three images are available, the funda-
mental matrix or trilinear tensor, respectively, can be
computed and further used to refine correspondences
(e.g. [20, 5, 10]). While this method provides good
results and is successfully used even in commercial ap-
plications such as Boujou [1] or Realviz [21], it is still
designed for off-line processing and does not take ad-
vantage of the motion continuity present in a video
sequence.

In this paper we explore the use of tracking to pro-
vide correspondences. In registration based tracking
the pose computation is based on directly aligning a
reference intensity patch with the current image to
match each pixel intensity as closely as possible. Of-
ten a sum-of-squared differences (e.g. L2 norm) error
is minimized, giving the technique its popular name
SSD tracking [18]. The method does not require a 3D
structure, as it is purely image-based and efficient real-
time algorithms have been developed [11, 3] making it
a good candidate for on-line SFM systems. We pro-
pose ways of improving the robustness of tracking by
both using constraints from the partial structure and
acquiring a better template when needed thus focus-
ing on developing an on-line system and eliminating
the need to do ransac at every step. Table 1 shows
the main differences between off-line and on-line SFM
systems showing both the characteristics on the input
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images, type of scene/motion and the target applica-
tions.

When working with sequences of images, the struc-
ture can also be sequentially updated [20, 5] (as op-
posed to classical batch updates [14]). But the final
bundle adjustment is still performed at the end, thus
there is no guarantee that the intermediate structure
or motion is accurate. One way to deal with noise and
errors is to model structure and motion update as a
probabilistic process using a Kalman Filter (or EKF).
Beardsley et al. [4] propose the use of an EKF for up-
dating a quasi-Euclidean or affine structure. We are
proposing a different approach to solve the error ac-
cumulation problem by performing one (or very few)
bundle adjustment steps when incrementally comput-
ing the structure. Experiments show that this signifi-
cantly reduces the reprojection error and it is less time
consuming than a full bundle adjustment.

3 Background and system overview

3.1 SSD tracking

The goal of the SSD tracking algorithm, as originally
formulated by Lucas-Kanade [18], is to find an image
warp W (x; µ) that aligns a 2D template region T (x)
with the current image region I(x). Under the image
constancy assumption, the problem is formulated as
finding the warp parameters µ that minimize the er-
ror between the template and the image warped into
the space of the template. The problem is solved it-
eratively by finding an incremental update ∆µ for the
warp parameters from frame It−1 to It that updates
current warp.

∑

x

[T (x) − It(W (x; µt−1 ◦ ∆µ))]2 (1)

where function composition (“◦”) is chosen for the
warp update. Assuming small motion, the problem
is linearized and the warp update is found as a least
square solution of the following objective function:

∑

x

(

T (x) − It(W (x; µt−1)) −∇It

∂W

∂µ
∆µ

)2

(2)

An efficient formulation as described by Baker et al [3]
inverts the role of the template and image and com-
putes the update in the space of the template.
Advantages: SSD tracking provides an elegant formu-
lation for pose update and results in real-time (60 Hz)
algorithms [12] that perform well for dense continuous
sequences.
Disadvantages: The main weakness of the algorithm
is that the linear approximation is valid only under
small motion (convergence 3-5 pixels), and therefore
tracking easily becomes unstable. Another problem
with large motions is that, due to discretization errors,
the template might need re-initialization.

3.2 Structure from motion

Structure-from-motion (SFM) involves estimating
structure and motion from two or more views of a static
scene given a set of corresponding image features. As-
suming a projective camera model, and using homo-
geneous coordinates, 3D points X are projected into
image points x through the projection equation:

x = PX (3)

where P is a 3 × 4 projection matrix (11 DOF) that
accounts for both internal and external camera param-
eters.

From only image measurements x in at least two
views, both camera motion P and structure points
X can be recovered. For example, in the two view
case, the image measurements x1,x2 are related by
the 3 × 3 fundamental matrix F (rank deficient, 7
DOF). After recovering F , it can be decomposed into
the two canonical projection matrices P1 = [I |0] and
P2 = [[e2]×F |e2], where e2 denotes the epipole in the
second image. Knowing P1, P2 the structure points are
recovered through intersection from the two projection
equations (Eq. 3).

Often a final step, called bundle adjustment, opti-
mizes both structure and motion based on image repro-
jection error of all points in the entire sequence. For-
mally bundle adjustment performs a non-linear mini-
mization of the following objective function:

r = min
PtXi

∑

t

∑

i

(xti − PtXi)
2 (4)



Advantages: The now well known SFM formulation
recovers both the structure and the unknown camera
motion without any need for calibration.
Disadvantages: The method relies on existing corre-
sponding image points, but the correspondence prob-
lem is still one of the most difficult vision problems.
Robust estimation (using ransac) can be used to elim-
inate bad matches but it cannot be performed in real
time. Similarly bundle adjustment is designed as a
batch process being quite costly.

3.3 Proposed method

We are proposing here the integration of SSD track-
ing and SFM for an on-line acquisition system. The
main challenges of the integration are:

• SFM usually assumes significant motion (e.g. for
triangulation) while tracking works with small mo-
tions. Therefore, we need to ensure good tracking
for significant motion and update the structure
only when enough motion has been performed.

• A full bundle adjustment cannot be used in real
time and therefore we designed an incremental
bundle adjustment.

• Ransac cannot be performed at every frame and
therefore ways to stabilize tracking need to be
found. We take advantage of the current struc-
ture knowledge to check tracking accuracy.

As depicted in Fig. 1, our system has three main
components:

• In the bootstrapping phase (approx. 100 frames)
trackers are initialized then used use to acquire
an initial structure. The camera motion is rela-
tively limited during this short time and a consis-
tent structure is kept in view which ensures SSD
tracking convergence.

• During the robust tracking and camera estimation
phase, camera position is computed by resection-
ing the 2D-3D correspondences. Tracking perfor-
mance is monitored in terms of reprojection error
and trackers that deviate beyond a threshold are
removed.

• After a sufficient amount of camera motion (ap-
prox. 15 deg. rotation with respect to major struc-
ture) the structure is refined and extended. To en-
sure that the structure is correct (as the following
motion rely on a good structure) we do a bun-
dle adjustment step and robust intersection. The
motion is assumed somewhat smooth, so no large
errors are introduced and a limited bundle adjust-
ment is enough. Feature correspondences without

associated 3D points are robustly matched and, if
found consistent with the existing structure, are
added by triangulation.

4 System Details

4.1 Acquiring initial structure

A number of choices exist for the warp function used
in (Eq. 1). Six parameter affine or eight parameter ho-
mography warps provide good tracking of large planar
regions, even over extended change in view, but con-
verge poorly for small templates and are difficult to
initialize automatically. Simpler warps, such as 2 pa-
rameter translation or 4 parameter translation + rota-
tion + scale are less resilient to large changes in view,
but are more stable for small templates, can be up-
dated more quickly, and can effectively be initialized
at automatically detected features. Although trackers
are initialized manually in the first frame to encourage
a good starting structure, additional trackers are auto-
matically added later, so we use the efficient and stable
translational warp with a template size of 11 × 11.

Mistracking features not only leads to outliers which
later need to be removed, it also results in unneces-
sary computation. We use the SSD residual (Eq. 1)
directly to monitor trackers in all phases. We deter-
mine a threshold and when a tracker’s residual exceeds
the threshold we remove it. As a safety margin we
also remove the associated feature position in the pre-
vious few frames as it may affect future batch compu-
tations. The residual depends on the specific template
pixels so it is not suggested to use a global threshold.
We compute the threshold as follows: during tracker
initialization, when the template is acquired, the ini-
tial warp parameters are perturbed. SSD residuals are
computed between the template and images warped by
the perturbed parameters. The maximum SSD resid-
ual is chosen as the threshold. In our implementation,
the translational parameters are perturbed ±2, corre-
sponding to a 2 pixel motion in each direction.

Tracking continues until enough correspondence
data has been collected to compute an initial structure
(∼100 frames). For a good initial structure, scene fea-
tures need to be selected in a general configuration.
Furthermore, camera motion should span the maxi-
mum possible change in position with respect to the
scene while keeping all tracked features visible. We
found that a spiral motion with the centre of rota-
tion near the tracked features was effective. From the
correspondences xt, we estimate fundamental matrices
Ft between a reference view and a sparse set of other
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views. From these Ft matrices, we extract projection
matrices Pt in the reference frame.

While monitoring SSD error reduces the number of
incorrect correspondences, in practice it is possible for
some to remain even after several frames. Incorrect
correspondences result in an incorrect estimate of Ft

and Pt. To avoid this, we use ransac in estimating
the fundamental matrix between any two views (only in
this initial phase). To further minimize computational
cost, we compute initial structure with a subset of the
available views.

From the estimated cameras, Pt, and feature corre-
spondences, xt, we triangulate 3D feature points, X.
These points define the initial structure of the scene,
satisfy the projection equation (Eq. 3) and are in the
same projective space as the camera matrices. It is
possible to upgrade the structure to a Euclidean recon-
struction, where scale is the only remaining ambiguity.
However, we avoid the additional cost of calibrating
the structure by using the projective reconstruction.

(Upgrading to a Euclidean structure can be done as
a final offline step if desired.) To improve the initial
structure we apply bundle adjustment, which is other-
wise typically the last step in SFM computation. Once
the initial structure is acquired the camera motion can
proceed along an arbitrary trajectory.

4.2 Robust tracking and camera motion
estimation

At the beginning of each tracking cycle, we start
with a set of trackers, their associated image features,
the estimated structure and estimated camera pose
for the previous frames. We initialize new trackers at
all existing feature point positions, which have shown
to track well. To prevent an accumulation of several
trackers at each position we flag those features to not
generate more trackers. Next, we detect new features.
Harris corners [13] provide an efficient way to get fea-
tures which can be tracked well, however selecting cor-



ners with the highest response in the entire image may
result in densely clustered trackers in regions of high
contrast. To ensure a more even distribution of new
trackers, the image is tiled (3 by 4) and a maximum of
5 features is selected in each tile.

In each tracking step we take the current image, It,
and perform an SSD step, a motion update step, and
a step to remove trackers. In the SSD step, we solve
(Eq. 2) for each tracker to update warp parameters and
determine feature positions, xt, in It. The described
SSD error threshold is used to remove potential mis-
tracked features. Next, the current camera pose is es-
timated in a motion update step. We resection xt, X

to estimate Pt satisfying (Eq. 3). The camera estimate
is biased by mistracking but is determined mostly by
the well tracked features. For each feature, xti, repro-
jection error is computed:

‖xti − PtXi‖ (5)

and if the error exceeds a defined threshold (3 pixels
in our experiments) the feature and associated tracker
is removed. Under the assumption that there are few
mistracked features, and mistracking is on the order
of a few pixels, this formulation works well as an al-
ternative to robustly estimating Pt. When using SSD
tracking with video this assumption holds.

Robust tracking and camera motion estimation con-
tinues long enough to have a good baseline for trian-
gulating new points (approx. 50 frames).

4.3 Refining and extending structure

From feature correspondences, xt, and camera ma-
trices Pt in two or more views, 3D position of the fea-
tures, X, is triangulated. Good triangulation depends
on having accurately estimated cameras and a suffi-
cient baseline between the cameras. To improve our
structure and camera motion estimates and to remove
error contributed by trackers that have been removed,
we perform a quick incremental bundle adjustment.

In iteratively minimizing (Eq. 4) in a bundle adjust-
ment, each of the n camera matrices has 11 degrees
of freedom and each of the m points has 3 degrees of
freedom. The total number of parameters in the min-
imization is 11n + 3m, and one iteration of the algo-
rithm is cubic in this number. Efficient algorithms exist
that take advantage of the lack of interaction between
most parameters [16]. Nevertheless, for a real-time im-
plementation it is important to limit the size of the
problem.

Performing bundle adjustment with only a subset of
cameras effectively reduces the number of parameters
in the problem, but the resulting structure is biased

towards the selected cameras. Since camera motion is
continuous, eliminating nearby views is a good choice.
We use every sixth new view and an even sparser set
of older views when refining and extending structure.
We perform one or two iterations of bundle adjustment
on this set of views to achieve a balance between com-
putational cost and accuracy. This typically reduces
reprojection error to below 1 pixel (Fig. 4).

In addition to the good existing structure and cam-
era motion estimates implied by a low reprojetion error,
it is important to ensure that candidate points are con-
sistent with the existing structure before adding them.
To achieve this consistency we robustly compute F for
the camera positions in the last cycle. From the set of
all new features and any old features appearing in the
recent views we find the set of inliers consistent with
the existing structure. Each of these inliers is triangu-
lated to get a new X.

The two cameras with the widest baseline are se-
lected. From these the point is triangulated using Hart-
ley and Sturm’s optimal method [15]. Since the 2D
correspondence is not perfect, the back projected rays
may not intersect. Their non-iterative method finds
the closest rays that do intersect. For the correspon-
dence x1,x2 and cameras P1, P2, it computes the new
correspondence x̂1, x̂2, closest to x1,x2 while obeying
the epipolar constraint implied by P1, P2. X is trian-
gulated from x̂1, x̂2, P1, P2.

Once points have been added the system returns to
the robust tracking and camera estimation phase.

5 Experimental Results

We show the results of the system on a 580 frame
320 × 240 video sequence. 40 features are initially se-
lected by hand. They are tracked for 150 frames, while
the camera is moved in a small spiral motion. Initial
structure is acquired from 10 of the first 150 frames.
Additional trackers are automatically initialized and
tracking continues. Every 54 frames the structure is
refined and extended using every sixth view (9 frames).
An average of 45 additional trackers are added every
cycle and an average of 25 trackers are used for camera
estimation each frame.

The reprojection error computed during each track-
ing step is shown in Fig. 4. Since trackers may not
account for the true image variation of the scene fea-
tures they represent, over time they can slip from their
intended position leading to an accumulation of repro-
jection error. This is visible in the increasing portions
of Fig. 4. The vertical bars indicate the structure ex-
tension steps. A drop in reprojection error follows the
bundle adjustment in these steps. Peaks in mid cycle
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correspond to trackers mistracking and increasing the
reprojection error; then being removed and restoring
the error to its previous value.

Images with overlayed projective structure are
shown in the top row of Fig. 5. The bottom row shows
a euclidean structure and camera motion. From left
to right we show the initial structure and camera posi-
tions and the progress as camera motion is estimated
and structure is extended. The far right column shows
the resulting structure and motion after a final bundle
adjustment, at which point the mean global reprojec-
tion error for all features over the entire sequence is 0.6
pixels.

6 Conclusion

We have presented an on-line system that integrates
SSD tracking with uncalibrated structure computation.
Two main benefits of the integration are: (1) Track-
ing automatically provides corresponding points used
in incrementally computing the structure while par-
tial structure provides constraints on the tracked points
and therefore improves tracking accuracy by integrat-
ing large numbers of tracked image patches, and ro-
bustness by detecting image motion inconsistent with
the 3D motion. (2) The structure is extended with
new views of the scene or object when these appear.
This allows tracking without requiring all features to
be visible, and hence enables tracking through much
larger motions than previously possible using only ba-

sic SSD tracking. Finally we show that both tracking
and structure can be computed with very small image
residuals even over large motions (A few pixels before
bundle adjustment, and sub-pixel precision after bun-
dle adjustment.)

7 Future work

In the future we plan to further stabilize the track-
ing by imposing strong structure constraints (either
directly in the SSD tracking [7] or using a Kalman
filter [6, 4]). One approach that might stabilize the
tracking is to keep multiple templates (or an appear-
ance model) for a tracker and index these by view di-
rection. This would also allow integration (merging) of
points that represent the same physical feature.

Regarding structure computation, a possible im-
provement would be to use model selection for choosing
the frames on which bundle adjustment and structure
update is performed. Also, an automatic system should
detect degenerate configurations in either structure or
motion [24]. Finally, combining different features types
(lines, planes) could improve the quality of resulting
models and provide further ways to integrate tracking
with structure estimation.
Acknowledgments: Funding for this project was pro-
vided by PIMS, NSERC, IRIS, ASRA and CFI.

References

[1] Boujou 2d3. http://www.2d3.com/jsp/index.jsp.

[2] N. Ayache and O. D. Faugeras. Maintaining rep-
resentation of the environment of a mobile robot.
IEEE Transactions on Robotics and Automation,
5(6):804–819, 1989.

[3] S. Baker and I. Matthews. Lucas-kanade 20 years
on: A unifying framework. IJCV, 56(3):221–255,
2004.

[4] P. A. Beardsley, A. Zisserman, and D. W. Murray.
Sequential updating of projective and affine struc-
ture from motion. IJCV, 23(3):235–259, 1997.

[5] Paul A. Beardsley, Philip H. S. Torr, and Andrew
Zisserman. 3d model acquisition from extended
image sequences. In ECCV ’96: Vol. II, pages
683–695, 1996.

[6] Alessandro Chiuso, Paolo Favaro, Hailin Jin, and
Stefano Soatto. 3-d motion and structure from
2-d motion causally integrated over time: Imple-
mentation. In ECCV ’00: Part II, pages 734–750,
2000.

[7] D. Cobzas and M. Jagersand. 3d ssd tracking
from uncalibrated video. In ECCV 2004 Workshop
on Spatial Coherence for Visual Motion Analysis
(SCVMA), 2004.



Frame: 150 Frame: 258 Frame: 366 Frame: 580

Figure 5. Top: Images with overlayed reprojected feature points. Bottom: Euclidean reconstruc-
tion for visualization. From left to right: After initial structure, after 2 structure extensions, after 3
structure extensions, after final bundle adjustment.

[8] Kurt Cornelis, Marc Pollefeys, and Luc Van Gool.
Tracking based structure and motion recovery for
augmented video productions. In VRST ’01: Pro-
ceedings of the ACM, pages 17–24, 2001.

[9] O. Faugeras. Camera self-calibration: theory and
experiments. In ECCV, pages 321–334, 1992.

[10] Projective Vision Toolkit G. Roth.
http://www.cv.iit.nrc.ca/g̃erhard/pvt/index.html.

[11] G.D. Hager and P.N. Belhumeur. Efficient region
tracking with parametric models of geometry and
illumin. PAMI, 20(10):1025–1039, 1998.

[12] G.D. Hager and K. Toyama. X vision: A portable
substrate for real-time vision applications. CVIU,
69(1):23–37, 1998.

[13] C.G. Harris and M. Stephens. A combined corner
and edge detector. In Proc. Fourth Alvey Vision
Conf., pages 147–151, 1988.

[14] R. I. Hartley and A. Zisserman. Multiple View
Geometry in Computer Vision. Cambridge Uni-
versity Press, 2000.

[15] Richard I Hartley and Peter Sturm. Triangula-
tion. Comput Vision and Image Understanding,
68(2):146–157, 1997.

[16] M.I.A. Lourakis and A.A. Argyros. The de-
sign and implementation of a generic sparse bun-
dle adjustment software package based on the

levenberg-marquardt algorithm. Technical Report
340, FORTH-ICS, 2004.

[17] D.G. Lowe. Fitting parameterized three-
dimensional models to images. PAMI, 13(5):441–
450, 1991.

[18] B. Lucas and T. Kanade. An iterative image reg-
istration technique with an application to stereo
vision. In Int. Joint Conf. on Artificial Intelli-
gence, 1981.

[19] Photomodeler. http://www.photomodeler.com/.

[20] M. Pollyfeys. Tutorial on 3D Modeling from Im-
ages. Lecture Nores, Dublin, Ireland (in conjunc-
tion with ECCV 2000), 2000.

[21] Realviz. http://www.realviz.com/.

[22] S. Se, D. Lowe, and J. Little. Vision-based mo-
bile robot localization and mapping using scale-
invariant features. In Proceedings of the IEEE
ICRA, pages 2051–2058, 2001.

[23] C. Slama. Manual of Photogrammetry. Ameri-
can Society of Photogrammetry, Falls Church, VA,
USA, 4th edition, 1980.

[24] Peter Sturm. Critical motion sequences for monoc-
ular self-calibration and uncalibrated euclidean re-
construction. In CVPR, 1997.

[25] C. Tomasi and J. Shi. Good features to track. In
CVPR94, pages 593–600, 1994.


